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Abstract: Forest fires have continually endangered personal safety and social property. To reduce the
occurrences of forest fires, it is essential to detect forest fire smoke accurately and quickly. Traditional
forest fire smoke detection based on convolutional neural networks (CNNs) needs many hand-
designed components and shows poor ability to detect small and inconspicuous smoke in complex
forest scenes. Therefore, we propose an improved early forest fire smoke detection model based on
deformable transformer for end-to-end object detection (deformable DETR). We use deformable DETR
as a baseline containing the best sparse spatial sampling for smoke with deformable convolution and
relation modeling capability of the transformer. We integrate a Multi-scale Context Contrasted Local
Feature module (MCCL) and a Dense Pyramid Pooling module (DPPM) into the feature extraction
module for perceiving features of small or inconspicuous smoke. To improve detection accuracy and
reduce false and missed detections, we propose an iterative bounding box combination method to
generate precise bounding boxes which can cover the entire smoke object. In addition, we evaluate
the proposed approach using a quantitative and qualitative self-made forest fire smoke dataset, which
includes forest fire smoke images of different scales. Extensive experiments show that our improved
model’s forest fire smoke detection accuracy is significantly higher than that of the mainstream
models. Compared with deformable DETR, our model shows better performance with improvement
of mAP (mean average precision) by 4.2%, APS (AP for small objects) by 5.1%, and other metrics by
2% to 3%. Our model is adequate for early forest fire smoke detection with high detection accuracy of
different-scale smoke objects.

Keywords: forest fire smoke detection; computer vision; small smoke objects; transformer;
multi-scale features

1. Introduction

Forest resources are essential for the global environment and human society. In
addition to improving the quality of the atmospheric environment, forests also play a
crucial role in the global carbon cycle, soil properties, and climate regulation [1]. The
increasing occurrence of forest fires is destroying the world’s forest resources and impacting
human society in terms of considerable losses in human lives and public properties [2,3].
Due to forest fires being too difficult to rapidly control and extinguish once they occur,
effective detection of early forest fires is an urgent need. The characteristics of smoke are
more obvious, always appearing earlier than fires when a forest fire breaks out. It is of great
significance for fire detection if forest fire smoke can be detected quickly and accurately.

Traditional forest fire smoke monitoring is based on manual inspection and smoke
sensor monitoring [4]. However, manual inspection consumes substantial human and
material resources with low efficiency and unsatisfactory results. Various sensors have
been used to detect fire and smoke in the last two decades. Point sensors [5,6] obtain
remarkable results indoors, but the investment of a fire smoke wireless sensor network over
an entire forest is too expensive, and sensors are easily interfered with and damaged. Smoke
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sensors require close proximity to the forest fire because the alarm needs particles to trigger.
However, when the particle concentration reaches the threshold, the forest fire might be
too strong to be controlled. Unmanned Aerial Vehicles (UAVs) can collect important visual
information on early forest fire smoke detection during patrols [7]. Satellite sensors [8]
have been used widely in forest fire smoke detection, and are not affected by various
environmental factors, but can only monitor large-scale fires. Due to infrequent periods and
resolution limitations, satellite sensors cannot immediately detect forest fires. Currently,
with the development of computer vision technology, video surveillance systems that can
be installed in forests have become a suitable alternative to previous detection methods and
have lower cost, convenient deployment, and high detection efficiency. Watchtowers [9] and
UAVs [4] equipped with cameras are appropriate for automatically monitoring forest fire
smoke. Previous forest fire smoke detection methods based on computer vision technology
usually make use of color and motion characteristics of the pixels from surveillance video
frames. They mostly adopt pattern recognition processes, including feature extraction
and classification, which are human-designed. After the candidate areas are extracted,
static and dynamic smoke features are used for smoke recognition. Gubbi et al. [10] used
wavelets to extract smoke characteristics and then classified them by using SVM (Support
Vector Machines). ByoungChul et al. [11] trained two random forests for wildfire smoke
classification using RGB (Red Green Blue) color, wavelets coefficients, motion orientation
and a histogram of oriented gradients as independent temporal and spatial feature vectors.
Prema et al. [12] proposed an image-processing approach using YUV color space, wavelet
energy, and correlation and contrast of smoke to detect smoke. However, such methods are
heavily dependent on human prior knowledge and are limited in various scenarios due
to complex changeable forest environments, small-target smoke, and low-contrast flame
and smoke.

Deep learning methods have attracted more attention in recent years than traditional
image processing methods. Compared with traditional fire smoke detection methods, the
fire smoke detection methods based on deep learning could extract more abstract and high-
level features, and have the advantages of fast speed, high accuracy and strong robustness
in complex forest environments. Convolutional neural networks (CNNs) have become
prevalent object detection methods due to their outstanding performance in image recogni-
tion [13]. Frizzi et al. [14] proposed a CNN for fire and smoke detection and classification
by extracting features in video. Wu et al. [15] used classical object detection models to
detect forest fires. The adopted models contained You Only Look Once (YOLO) [16], Single
Shot multi-box Detector (SSD) [17] and Faster Region-CNN (R-CNN) [18,19], and the ex-
periments showed that an improved YOLO model could detect early forest fires efficiently.
Semantic segmentation is also a common method to detect smoke. The task of semantic
segmentation is to classify the input image pixel by pixel and mark the pixel-level objects.
Pan et al. [20] introduced a collaborative region detection and grading framework for forest
fire and smoke using a weakly supervised fine segmentation and a lightweight Faster
R-CNN. Frizzi et al. [21] showed the comparison of network performance on two smoke
semantic segmentation databases. Semantic segmentation and object detection, which have
similar task objectives, mark objects and specific classification information of objects. The
difference is that the object marked by semantic segmentation is at the pixel level, while the
object marked by target detection is its bounding box. When preparing the smoke dataset,
there is no need for tedious pixel-level marking operation, nor to classify every pixel in the
image during detection, which leads to great optimization in running speed.

There is a transformer [22] model which has become a preferred settlement for ma-
chine translation, text generation, etc. [23–25] with the development of natural language
processing (NLP). The self-attention mechanism could gather global information and pay
attention to important elements more quickly and efficiently. Inspired by the success of
transformer model and self-attention mechanism, Dosovitskiy et al. [26] proposed Vision
Transformer (ViT) for image recognition. The first end-to-end object detection method based
on transformer (DETR) demonstrated higher accuracy and speed on par with the previous
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well-established Faster R-CNN on COCO dataset [27]. DETR has a simple architecture with
a CNN backbone and transformer encoder–decoders. However, DETR needs more epochs
than Faster R-CNN to converge and shows low performance in detecting small targets.
Deformable DETR [28], which is modified from DETR by using a deformable attention
module, obtains satisfactory results in object detection tasks, especially in detecting small
targets. Here, we set deformable DETR as our baseline for forest fire smoke detection and
demonstrate its efficiency through experiments.

In previous studies of forest fire smoke detection, many detection models have been
used and have obtained good results. However, there are many existing problems for
early forest fire smoke detection in forest environments due to the complex background
and the difficulty of extracting smoke features. Firstly, forest images usually contain not
only smoke but other irrelevant background information with similar characteristics to
smoke, such as clouds, lake surface, fog, etc. The light change in the natural environment
will also cause interference, resulting in the change of some image features, affecting the
subsequent feature extraction and recognition. Secondly, it is challenging to detect early
smoke precisely with their dynamic characteristics and small fuzzy shape. Therefore, in
this paper, we aim to address this critical issue by improving feature extraction and small
object detecting abilities using a Multi-scale Context Contrasted Local Feature module
(MCCL), Dense Pyramid Pooling module (DPPM) [29–31], and iterative bounding box
combination method.

The contributions of our paper are as follows:

• We propose an improved deformable DETR model to detect forest fire smoke which
involves a Multi-scale Context Contrasted Local Feature module (MCCL) and Dense
Pyramid Pooling module (DPPM). The modules enhance low contrast smoke for
detecting small and inconspicuous smoke by capturing locally discriminative features.

• An iterative bounding box combination method is proposed to obtain precise boxes
for smoke objects to obtain more accurate localization and bounding boxes of semi-
transparent blurred smoke.

• In order to evaluate our model, we build a forest fire smoke dataset from public
resources, including various kinds of smoke and smoke-like objects in complex
forest environments.

The rest of the paper is organized as follows. Section 2 describes our dataset and
the details of the improved deformable DETR model, Section 3 presents the experimental
results and performance analysis, the discussion is given in Section 4, and finally Section 5
concludes this paper.

2. Materials and Methods
2.1. Dataset and Annotation

It is well-known that the quality and size of a dataset are essential for a deep learning
model’s performance. However, there are few public datasets about forest fire smoke or
smoke datasets suitable for forest environments. Therefore, we proposed a forest fire smoke
dataset (FFS dataset) by collecting forest fire smoke images (JPG format) from crawling
open data on the Internet. Our self-built dataset contained different views and scales of
forest fire smoke images. We manually labeled smoke areas in images and converted them
to COCO [32] format. The dataset contained 10,250 images total, and we randomly divided
them by 9:1; thus, 90% of the dataset was used as a training set and 10% as a validation set.
Some sample images are shown in Figure 1.

2.2. Deformable DETR

Recently, DETR has demonstrated very competitive performance in the object detection
field as a real end-to-end detector. In contrast to other modern object detect models, it
does not need any hand-crafted components such as anchor generation and non-maximum
suppression (NMS) and has a very simple architecture: a CNN backbone and an encoder–
decoder transformer model. However, DETR has its own issues. Firstly, DETR need more
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epochs to converge, which is mainly due to the difficulty of processing image features to
train for the attention module. While the model is initializing, the cross-attention module
gives average attention to the whole feature map. After training, the attention module gives
attention to feature maps sparsely. Secondly, it is hard for DETR to detect small objects. The
self-attention module in the encoder part of the transformer cannot handle high-resolution
feature maps with unacceptable complexity. Zhu et al. [28] proposed a deformable DETR,
which achieved satisfactory results in small object detection, and training epochs were
reduced by almost a factor of 10. Authors provided the deformable attention module on
each query to pay attention to the more meaningful locations that the network thought
contained more local information, which were fewer in number, and a fixed number of
locations as keys. This alleviated the problem of large computation requirements caused by
high-resolution feature maps.
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The deformable attention feature was calculated by:

De f ormAttn(zq, pq, x) =
M
∑

m=1
Wm[

K
∑

k=1
AmqkW ′mx(pq + ∆mqk)]

(1)

In the formula, x is the input feature map, q represents the query element with content
feature zq and 2-d reference point pq, k indexes the sampled keys with the sampling offset
∆mqk and normalized attention weight Amqk of the k sampling point in m attention head. In
addition, Wm represents attention weights after linear transformation from different heads
and K sampling offsets ∆mqk are calculated according to the linear layer, then K sampling
offsets and pq determine the selected points in the neighborhood.

Furthermore, a deformable attention module could be extended to a multi-scale
deformable attention module in the deformable DETR’s encoder part. Output feature maps
of the encoder have the same resolution with the input feature maps. The input feature
maps {xl}L−1

l=1 (L = 4) of the encoder are extracted from the backbone’s output feature maps
of stages C3 to C5 (such as ResNet [33], transformed by 1× 1 convolution). Every resolution
of Cl is 2l lower than the input images. Authors proposed C6 stage, which was obtained
by 3 × 3 stride 2 convolution from C5 stage. For clarity of each query pixel’s location,
scale-level embedding is used for feature representation.
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Then, the multi-scale deformable attention module is applied as:

MSDe f ormAttn(zq, pq, {xl}L
l=1) =

M
∑

m=1
Wm[

L
∑

l=1

K
∑

k=1
AmqlkW ′mxl(φl(pq) + ∆mqlk)]

(2)

On the basis of the deformable attention module, l indexes input feature level, {xl}L
l=1

are input feature maps which are divided by different levels, pq are normalized coordinates
which are not equivalent to reference points pq in deformable attention module, function
φl rescales normalized coordinates at every feature layer to locate points that are sampled
at different levels, and the remaining elements are similar to Equation (1) except for an
additional l element.

The network structure of the deformable DETR is shown in Figure 2.
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By replacing the traditional transformer attention module, deformable DETR used a
multi-scale deformable attention module to process feature maps which could be extended
by aggregating multi-scale features naturally.

2.3. Multi-Scale Context Contrasted Local Feature Module

As we know, context information can improve performance through scene labeling.
CNN provides high-level context features which contain abstract and global information
on the whole image for object recognition [31,33]. However, there are many inconspicuous
targets in complex natural environments. Those context features from CNN usually focus
on the dominated objects in the image and cannot make sure that they are useful for
inconspicuous objects recognition. The Context Contrasted Local Feature (CCL) module
solves this problem well by computing the contrast of local context information, which not
only makes full use of context but foregrounds the local information. This is an imitation
of human behavior. Human beings concentrate on an object while we pay attention to its
surrounding context. The contrast is computed by:

CL = Cl(F, θl)-Cc(F, θc) (3)
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where CL indexes the context contrasted local features, Cl and Cc are the local convo-
lution block and context convolution block, respectively, F is the input features and θ
denotes respective parameters. The CCL module obtains context-local information from
different levels by several chained context-local blocks. Each block contains dilated con-
volution blocks with dilation rate = 1 and rate = 5 to integrate multi-level context aware
local features.

Early forest fire smoke can usually be considered as inconspicuous and blurred objects
with low contrast and the CCL module cannot obtain satisfactory results for this task. To
obtain more multi-scale features of inconspicuous smoke objects effectively, we use the
Multi-scale Context Contrasted Local Feature module in our model, which is modified
from a previous module. The MCCL module is shown in Figure 3.
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To process subsequent high-level feature maps conveniently, we resize the input
features as 16 × 16 and restore them at the output block. This module contains 4 different
levels of dilated convolution blocks with dilation rates = 1, 2, 4 and 6, respectively. Then we
concatenate their output feature maps from each of the two blocks. We use a Dense Pyramid
Pooling Module (DPPM) to extract more abstract information from the concatenated multi-
scale feature maps. Confusion categories are a common problem in classification. It is an
enormous challenge to distinguish between smoke and smoke-like objects such as clouds
and haze. Zhao et al. [34] proposed a Pyramid Pooling Module (PPM) for global scene
prior construction upon the high-level feature maps, and this obtains context information
between sub-regions efficiently. Furthermore, the Dense Pyramid Pooling Module (DPPM)
is used to process feature maps efficiently with fewer parameters and a larger size of the
receptive field, as shown in Figure 4.

The module contains features under four different scales. We use four average pooling
layers with different kernels and strides to generate feature maps (size 1× 1, 2× 2, 4× 4 and
8× 8, respectively) into different sub-regions. After that, we use a 1× 1 convolution layer to
reduce the dimension of features which could keep the weights of global feature consistent.
Then we concatenate multi-scale feature maps from different pyramid levels and upsample
several times directly to obtain the same size between input and output features via bilinear
interpolation. Finally, we concatenate these feature maps as multi-scale features.

As we discussed in Section 2.2, the input feature maps {xl}L−1
l=1 (L = 4) of the en-

coder are extracted from the backbone’s output feature maps of stages C3 to C5 (such as
ResNet [33], transformed by 1 × 1 convolution). The input multi-scale feature maps are ob-
tained via 1 × 1 stride 1 convolution on C3, C4 and C5 stage. In addition, we use the MCCL
module to process the lowest-resolution feature maps on final C5 stage, then use 3 × 3
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stride 2 convolution to get the highest-dimensional feature maps as illustrated in Figure 5.
The numbers below each layer represent the size and dimension of the feature maps.
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2.4. Iterative Bounding Box Combination Method

Forest fire smoke is easily affected by complex forest environments, and its charac-
teristics change easily. Early smoke usually represents a semitransparent characteristic
which leads to a blurred boundary. Unlike general object detection, it is difficult to obtain
a precise bounding box for smoke. These uncertain elements inevitably lead to missed
and false detections, as shown in Figure 6. In the previous object detection model, Non-
Maximum Suppression (NMS) is proposed to obtain bounding boxes based on their scores.
However, NMS is not necessary for DETR which lowers AP (Average Precision) in final
layers and only improves AP50 (AP at IoU = 0.5) slightly [27]. Deformable DETR uses
iterative bounding box refinement to obtain precise bounding boxes based on predictions
from each layer and different layers compute parameters independently [28]; each decoder
layer predicts bounding boxes based on the predictions from the previous layer. As shown
in Equation (4), for the boxes from the d-th decoder layer, the key elements are sampled
to boxes predicted from the (d-1)-th decoder layer and the new reference points are set as
(bd−1

jx , bd−1
jy ). Additionally, these methods are not suitable for blurred smoke box proposals.

Considering that our ideal goal is to detect early smoke rapidly and obtain an accurate
position in images, we propose an iterative bounding box combination method based on
NMS and iterative bounding box refinement to obtain satisfactory results and decrease the
occurrence of missed and false detections. Our algorithm generates bounding boxes that
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do not overlap with each other, and where the whole smoke objects are surrounded by
bounding boxes. Ablation experimental results are shown in Figure 6.
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Firstly, we set D numbers of deformable DETR decoder layers (e.g., D = 6) and the
predictions of bounding boxes boxj from every decoder layer are sorted by their confidences.
The boxj is defined as:

boxj =
{

σ((∆bd
jx) + σ-1(∆bd-1

jx )), σ((∆bd
jy) + σ-1(∆bd-1

jy )),

σ((∆bd
jw) + σ-1(∆bd-1

jw )), σ((∆bd
jh) + σ-1(∆bd-1

jh ))
} (4)

where d = {1, 2, . . . , D}, bd
j{x, y, w, h} are the predictions of the d-th decoder layer, and boxj is

relevant to the predictions of d-1-th layer. The σ (·) and σ−1 (·) represent sigmoid function
and inverse sigmoid function, respectively.

Secondly, we delete the boxj whose confidences are lower than 0.01. Then we calculate
the Intersection over Union (IoU) between boundingboxi and boxj:

IoU =
boundingboxi ∩ boxj

boundingboxi ∪ boxj
(5)

We keep the boxj as a new bounding box if its IoU equals to zero.
Moreover, we combine bounding boxi and boxj as a new bounding boxi+1 if the boxj

only coincides with one bounding box and the IoU between two boxes is less than 0.7.
We also need to keep the new boxes independent from other bounding boxes. Based on
these, we improve the bounding box generation algorithm and our iterative bounding box
combination algorithm is shown in Algorithm 1.
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Algorithm 1 Iterative Bounding Box Combination

Input: bbox = {bbox1, . . . , bboxI}, box = {box1, . . . , boxJ}, D = {1, . . . , d, . . . , D}
bbox is the bounding boxes.
box is the box predictions from each decoder layers.
D is a list of decoder layers.
Begin:
For d in D do

Rank box by confidence
While confidence of boxj < 0.01 do

delete boxj
If ∑I

i=1 IoU(bboxi, boxj) = 0 do
bbox← boxj

Else If ∑I
i=1 IoU(bboxi, boxj) ≤ 0.7 && k 6=i ∑I

i=1 IoU(bboxk, bboxiUboxj) = 0 do
bbox← bboxi U boxj

End
End

End
Return bbox
End

2.5. Loss Function

In terms of loss function, our model follows the function of deformable DETR. There-
fore, we totally set three components to the loss, classification loss, bounding box distance
loss and GIoU loss [35]. The classification loss is necessary for the training model and
classification task, which are represented as cross-entropy loss. The bounding box distance
loss is set as L1 loss, which calculates the distance between prediction box and the ground
truth then propagates gradients. Furthermore, we use GIoU loss to make the prediction
box closer to the ground truth:

GIoU = IoU-
|C\(A ∪ B)|
|C| (6)

LGIoU = 1-GIoU (7)

where A, B and C represent prediction box, ground truth and smallest closing box between
A and B, respectively. Thus, our total loss is weighed sum of three loss:

Loss = Lcls + L1 + LGIoU (8)

3. Results
3.1. Training

The details of our experimental environments are shown in Table 1. Training param-
eters of our model were designed based on the deformable DETR as shown in Table 2.
Furthermore, we set M as the number of heads for multi-scale deformable attention module,
which equals to 8, and K indexes the number of sample keys, which equals to 4.

Table 1. Experimental environments.

Experimental Environments Details

Program Language Python 3.7
Framework Pytorch 1.5.1

Operating System Windows 10
GPU Type RTX 2080ti

Acceleration Tool CUDA 10.2



Forests 2023, 14, 162 10 of 17

Table 2. Training parameters.

Training Parameters Details

Epochs 50
Batch Size 4

Learning Rate 2 × 10−5

Optimizer SGD
Momentum 0.9

Weight Decay 1 × 10−4

3.2. Comparison and Evaluation

In order to analyze and demonstrate the early forest fire smoke detection performance
of our improved deformable DETR model, we used Microsoft COCO evaluation metrics
here, which are widely used to evaluate object detection tasks. Our model trains on the
training set and evaluates on the validation set. The formulas of the two main metrics AP
(Average Precision) and AR (Average Recall), which are calculated based on Precision (P)
and Recall (R), are shown in Equations (9)–(12).

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
n-1

∑
i=1

(Ri+1-Ri)P(Ri+1) (11)

AR = 2
∫ 1

0.5
R(o)do (12)

TP, FP and FN represent the numbers of true positive samples, false positive samples
and false negative samples, respectively. In Equation (12), the variable o indexes the IoU
between the prediction box and the ground truth box.

Microsoft COCO evaluation metrics include various object detection accuracies of
different area sizes. Therefore, we use AP and AR for comparison. mAP is mean Average
Precision and mAR is mean Average Recall for all categories; APS, APM and APL represent
the AP for small objects (area size < 322), medium objects (322 < area size < 962) and large
objects (area size > 962), respectively. AP50 means average precision at IoU = 0.5 and AR
indicators are similar to AP. Specifically, the units of AP and AR are percentages. We also
added ablation experiments. The experimental results are shown in Table 3.

Table 3. Experimental results. Comparison of our improved model with other detection models on
our FFS dataset.

Model Epoch mAP AP50 APS APM APL mAR ARS ARM ARL Params Speed

Faster R-CNN + FPN 100 37.4 80.0 24.2 34.3 49.7 47.2 28.3 43.3 54.0 42M 235 ms
YOLOv5s 100 42.7 82.2 29.6 41.1 56.0 48.7 34.9 56.1 62.3 7.2M 52 ms

DETR 500 44.2 84.8 27.4 40.8 60.2 53.6 33.8 51.0 62.4 40M 192 ms
DETR DC5 500 45.0 85.5 28.1 42.4 60.3 56.2 37.6 51.9 62.5 40M 441 ms

Deformable DETR (Baseline) 50 45.5 85.8 33.5 42.6 58.7 54.0 42.8 50.6 59.7 37M 245 ms
+ MCCL Module 50 48.4 86.9 38.6 46.1 60.2 57.7 44.0 59.3 62.8 37M 240 ms

++ iterative bounding box
combination method 50 49.7 88.4 36.9 48.7 62.3 60.1 44.2 59.1 65.3 37M 240 ms

The backbone of DETR series is set to ResNet50, Faster R-CNN and YOLOv5s use ResNet101 and C3+SPPF as
backbone, respectively. Training epochs are set to different values for the best training results of models. The
bolded numbers indicate the best performance in the comparison. + Add ablation experiments are based on
deformable DETR.
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3.3. Detection Performance and Analysis

Compared with other remarkable detection models, extensive experiments indicated
that our improved deformable DETR model with MCCL module and iterative bounding
box combination method achieved satisfactory results in early forest fire smoke detection
tasks. We also used YOLOv5s and DETR for comparison, which are widely used in
object detection. Compared with Faster R-CNN + FPN, DETR shows higher accuracy
of detection performance but needs much more training time to converge and delivers
low accuracy in detecting small smoke. Our baseline, deformable DETR achieves more
satisfactory performance with small targets with fewer training epochs. Compared with
the baseline, the Multi-scale Context Contrasted Local Feature module improves the overall
performance, especially with improvement at APS by 5.1%. After adding the iterative
bounding box combination method, the detection of our model on forest fire smoke obtains
higher accuracy with 4.2% in mAP, 2.6% in AP50 and 6.1% in mAR (compared with baseline),
improving other metrics by 3%. Based on these experiments, we can conclude that our
improved deformable DETR model is competent for small and inconspicuous smoke
detection and the detection accuracy of smoke at different scales is higher than other
common models. Some detection results are shown in Figures 7–11.

As shown in Figure 7, the detection results of the improved model show that there
are no false and missed detections, and the bounding boxes cover the entire smoke objects
with high accuracy. We also used YOLOv5s, DETR and baseline to detect ultra-small smoke
targets in the wild with strong interference (such as strong direct sunlight interference in
Figures 7 and 8); they all had a missed detection, but our model detected them accurately
(as shown in Figures 8–11). A series of images on the left show that small gray smoke can
be detected well by common models. As shown in the right images, ultra-small white
smoke with strong light is too difficult to be detected by general models, but our model
could detect it well.
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To investigate our improvement of feature extraction and understand the multi-scale
attention module better, we visualize sampling points and attention weights of the last layer
in the encoder. As shown in Figure 12, compared with the baseline, our improved model can
focus more precisely on the inconspicuous smoke part by giving it larger attention weights,
while the original model pays attention to the boundary of smoke roughly. The attention
weights and the positions of sampling points lead to the difference in the subsequent
learning and detection modules of the two models.



Forests 2023, 14, 162 13 of 17
Forests 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

  

  
Figure 10. Detection results using deformable DETR. 

  

  
Figure 11. Detection results using our model. 

As shown in Figure 7, the detection results of the improved model show that there 
are no false and missed detections, and the bounding boxes cover the entire smoke objects 
with high accuracy. We also used YOLOv5s, DETR and baseline to detect ultra-small 
smoke targets in the wild with strong interference (such as strong direct sunlight interfer-
ence in Figures 7 and 8); they all had a missed detection, but our model detected them 
accurately (as shown in Figures 8–11). A series of images on the left show that small gray 
smoke can be detected well by common models. As shown in the right images, ultra-small 
white smoke with strong light is too difficult to be detected by general models, but our 
model could detect it well. 

To investigate our improvement of feature extraction and understand the multi-scale 
attention module better, we visualize sampling points and attention weights of the last 
layer in the encoder. As shown in Figure 12, compared with the baseline, our improved 
model can focus more precisely on the inconspicuous smoke part by giving it larger at-
tention weights, while the original model pays attention to the boundary of smoke 

Figure 10. Detection results using deformable DETR.

Forests 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

  

  
Figure 10. Detection results using deformable DETR. 

  

  
Figure 11. Detection results using our model. 

As shown in Figure 7, the detection results of the improved model show that there 
are no false and missed detections, and the bounding boxes cover the entire smoke objects 
with high accuracy. We also used YOLOv5s, DETR and baseline to detect ultra-small 
smoke targets in the wild with strong interference (such as strong direct sunlight interfer-
ence in Figures 7 and 8); they all had a missed detection, but our model detected them 
accurately (as shown in Figures 8–11). A series of images on the left show that small gray 
smoke can be detected well by common models. As shown in the right images, ultra-small 
white smoke with strong light is too difficult to be detected by general models, but our 
model could detect it well. 

To investigate our improvement of feature extraction and understand the multi-scale 
attention module better, we visualize sampling points and attention weights of the last 
layer in the encoder. As shown in Figure 12, compared with the baseline, our improved 
model can focus more precisely on the inconspicuous smoke part by giving it larger at-
tention weights, while the original model pays attention to the boundary of smoke 

Figure 11. Detection results using our model.

Forests 2023, 14, x FOR PEER REVIEW 14 of 17 
 

 

roughly. The attention weights and the positions of sampling points lead to the difference 
in the subsequent learning and detection modules of the two models. 

   

   
(a) (b) (c) 

Figure 12. Visualization results of the multi-scale deformable attention in encoder. We draw the 
sampling points and attention weights from feature maps in one image. Each circle represents a 
sampling point and its color represents the attention weight. Color from blue to red indicates the 
weight from small to large. (a) Raw image; (b) deformable DETR; (c) our improved model. 

4. Discussion 
It is very important to detect forest fires quickly and accurately. Smoke, as a signifi-

cant feature of early fires, should be paid more attention to during detection. However, 
objects such as smoke and flames have irregular shapes and are easily disturbed by com-
plex forest environments. Delayed or even missed detection of forest fire smoke can lead 
to the rapid spread of fire, which causes immeasurable losses. The development of com-
puter vision has made it possible for high-precision automatic inspection to replace man-
ual inspection in the last two decades. Because of the translucency and blurred boundary 
of smoke, it is easily influenced by other factors such as light and wind. Previous smoke 
detection methods based on deep learning have mainly studied the texture and spatio-
temporal characteristics from smoke videos to achieve more accurate smoke detection re-
sults [36–38]. Smoke detection can also adopt another strategy, that is, paying attention to 
data re-processing such as dark channel prior, optical flow, and super-pixel segmentation 
of images [20,39]. 

Our improved deformable DETR model concentrates on feature extraction in order 
to obtain higher accuracy of smoke detection. Through these comparisons and ablation 
experiments, we found that our model is more suitable for early forest fire smoke detec-
tion tasks compared with other common models, as shown in Table 3. The MCCL module 
provides precise multi-scale features of small and inconspicuous smoke objects for high-
level feature processing and the module has more dilated convolution blocks and fewer 
parameters than CCL. We used the DPPM module, which is expanded from the Pyramid 
Pooling Module to generate more features with fewer parameters than the Pyramid Pool-
ing Module. As shown in Figure 4, our DPPM module computes multi-scale features nat-
urally by upsampling at each stage. The module we used combines efficient feature ex-
traction with fewer calculation parameters. In Figure 12, we visualize sampling points and 
attention weights of the last layer in the encoder, and our improved model can focus more 
precisely on smoke objects while the MCCL module extracts more useful features for sub-
sequent feature learning and detection modules. Compared with the original model, more 
accurate sampling points and attention weights show the advantages of our method in 
feature extraction. Additionally, the detection performance of our model also 

Figure 12. Visualization results of the multi-scale deformable attention in encoder. We draw the
sampling points and attention weights from feature maps in one image. Each circle represents a
sampling point and its color represents the attention weight. Color from blue to red indicates the
weight from small to large. (a) Raw image; (b) deformable DETR; (c) our improved model.



Forests 2023, 14, 162 14 of 17

4. Discussion

It is very important to detect forest fires quickly and accurately. Smoke, as a significant
feature of early fires, should be paid more attention to during detection. However, objects
such as smoke and flames have irregular shapes and are easily disturbed by complex
forest environments. Delayed or even missed detection of forest fire smoke can lead to the
rapid spread of fire, which causes immeasurable losses. The development of computer
vision has made it possible for high-precision automatic inspection to replace manual
inspection in the last two decades. Because of the translucency and blurred boundary of
smoke, it is easily influenced by other factors such as light and wind. Previous smoke
detection methods based on deep learning have mainly studied the texture and spatio-
temporal characteristics from smoke videos to achieve more accurate smoke detection
results [36–38]. Smoke detection can also adopt another strategy, that is, paying attention
to data re-processing such as dark channel prior, optical flow, and super-pixel segmentation
of images [20,39].

Our improved deformable DETR model concentrates on feature extraction in order
to obtain higher accuracy of smoke detection. Through these comparisons and ablation
experiments, we found that our model is more suitable for early forest fire smoke detection
tasks compared with other common models, as shown in Table 3. The MCCL module
provides precise multi-scale features of small and inconspicuous smoke objects for high-
level feature processing and the module has more dilated convolution blocks and fewer
parameters than CCL. We used the DPPM module, which is expanded from the Pyramid
Pooling Module to generate more features with fewer parameters than the Pyramid Pooling
Module. As shown in Figure 4, our DPPM module computes multi-scale features naturally
by upsampling at each stage. The module we used combines efficient feature extraction
with fewer calculation parameters. In Figure 12, we visualize sampling points and attention
weights of the last layer in the encoder, and our improved model can focus more precisely
on smoke objects while the MCCL module extracts more useful features for subsequent
feature learning and detection modules. Compared with the original model, more accurate
sampling points and attention weights show the advantages of our method in feature
extraction. Additionally, the detection performance of our model also demonstrates advan-
tages in this task (as shown in Figures 7–11). Our detection samples contain ultra-small
smoke objects with strong inference (such as strong direct sunlight and smoke-like clouds
in Figure 11). Due to the further processing of high-dimensional feature maps by the MCCL
module and DPPM greatly reducing the possibility of misclassification, this model can
more accurately obtain inconspicuous smoke features and distinguish the smoke from
smoke-like objects. In the field of vision-based target detection, small target detection has
always been a difficult problem. Mis-detection of our model occurs when detecting small
targets. Early small smoke targets tend to be easily covered by trees and dissipate quickly.
Limited pixel representations of early smoke flow and the interference from smoke-like
objects usually lead to the problem of mis-detection in the original model. In order to im-
prove the detection performance of inconspicuous smoke targets, we propose using several
dilated convolutions with different rates to obtain useful context information, and also
pay attention to local information of inconspicuous targets. The proposed improvement
strategy obtained satisfactory result in detecting early smoke targets and improved the APS
metric by 5.1% (compared with the original model).

The previous bounding box generation method is obviously suitable for smoke in
forest fire smoke detection tasks; the generated bounding box always has a smaller or
larger offset to the ground truth, which leads to high training loss. Considering this
situation, we used an iterative bounding box combination method to generate bounding
boxes more consistently with ground truth which reduced the occurrences of false and
missed detections and improved mAP by 4.2%. With the addition of our bounding box
generation method, the detection results become more accurate than the baseline in Figure 6.
Furthermore, we constructed a large forest fire smoke dataset to evaluate our method. Four
common object detection models were obtained in the experiments with good performance
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on forest fire smoke detection, which made it possible to detect the forest fire smoke in
the wild.

However, our model still has some disadvantages to improve. Small object detection
is not only the detection of forest fire smoke but also one of the difficulties of computer
vision. We extracted features from high dimensions to detect small smoke, which will still
be limited by the lack of small target pixel information. Complex environments, such as
foggy weather, greatly affect the detection of our model, but smoke sensors still have high
accuracy in detecting smoke. Therefore, combining computer vision with traditional smoke
sensor networks may make smoke detection more accurate.

5. Conclusions

In this paper, we propose an improved end-to-end deformable DETR model for forest
fire smoke detection. Firstly, in order to capture the information of small and inconspicuous
smoke, a feature extraction module with Multi-scale Context Contrasted Local Feature
module and Dense Pyramid Pooling module is used. Several dilated convolutions with
different rates make full use of context information and local information of inconspicuous
objects, which improves the performance of early forest fire smoke detection. Secondly, we
propose an iterative bounding box combination method to reduce the occurrences of false
and missed detections and generate a bounding box for forest fire smoke more accurately
to the ground truth. Lastly, due to the lack of relevant public datasets, we established
a quantitative and qualitative forest fire smoke dataset to verify the performance of our
model. Ablation experiments show that our improved model for detecting forest fire smoke
is superior to the mainstream detection model in most metrics. Our model not only achieves
high detection accuracy of smoke but can detect early forest fire smoke which is too small
and inconspicuous to be detected by common models.

In the next stage, we plan to conduct joint detection of early fire and smoke, then
prune and distill the knowledge for our improved model so that it can be deployed to edge
devices such as UAVs and watchtowers for real-time detection with fewer parameters and
higher processing speed.

Author Contributions: Conceptualization, J.H.; data curation, J.H., J.Z. and H.Y.; methodology,
J.H.; resources, J.H., J.Z. and H.Y.; software, J.H. and J.Z.; validation, Y.L.; funding acquisition, Y.L.;
writing—original draft preparation, J.H.; writing—review and editing, Y.L. and H.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Postgraduate Research & Practice Innovation Program of
Jiangsu Province (grant number KYCX22_1056) and National Key R&D Program of China (grant
number 2017YFD0600904).

Data Availability Statement: The data in this study are available from the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, C.; Zhang, Y.M.; Liu, Z.X. A survey on technologies for automatic forest fire monitoring, detection, and fighting using

unmaned aerial vehicles and remote sensing techniques. Can. J. For. Res. 2015, 45, 783–792. [CrossRef]
2. Eugenio, F.C.; dos Santos, A.R.; Fiedler, N.C.; Ribeiro, G.A.; da Silva, A.G.; dos Santos, Á.B.; Paneto, G.G.; Schettino, V.R. Applying

GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil. J. Environ. Manag. 2016, 173, 65–71. [CrossRef]
[PubMed]

3. Tang, X.; Machimura, T.; Li, J.; Liu, W.; Hong, H. A novel optimized repeatedly random undersampling for selecting negative
samples: A case study in an SVM-based forest fire susceptibility assessment. J. Environ. Manag. 2020, 271, 111014. [CrossRef]

4. Yang, X.; Tang, L.; Wang, H.; He, X. Early Detection of Forest Fire Based on Unmaned Aerial Vehicle Platform. In Proceedings of
the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December
2019; pp. 1–4.

5. Chen, S.-J.; Hovde, D.C.; Peterson, K.A.; Marshall, A.W. Fire detection using smoke and gas sensors. Fire Saf. J. 2007, 42, 507–515.
[CrossRef]

http://doi.org/10.1139/cjfr-2014-0347
http://doi.org/10.1016/j.jenvman.2016.02.021
http://www.ncbi.nlm.nih.gov/pubmed/26974239
http://doi.org/10.1016/j.jenvman.2020.111014
http://doi.org/10.1016/j.firesaf.2007.01.006


Forests 2023, 14, 162 16 of 17

6. Qiu, X.; Wei, Y.; Li, N.; Guo, A.; Zhang, E.; Li, C.; Peng, Y.; Wei, J.; Zang, Z. Development of an early warning fire detection system
based on a laser spectroscopic carbon monoxide sensor using a 32-bit system-on-chip. Infrared Phys. Technol. 2019, 96, 44–51.
[CrossRef]

7. Sudhakar, S.; Vijayakumar, V.; Kumar, C.S.; Priya, V.; Ravi, L.; Subramaniyaswamy, V. Unmanned Aerial Vehicle (UAV) based
Forest Fire Detection and monitoring for reducing false alarms in forest-fires. Comput. Commun. 2020, 149, 1–16. [CrossRef]

8. Guo, C.H.; Qi, X.Y.; Gong, Y.L. Study on the Technology and Method of Forest Fire Monitoring by Using HJ Satellite Images.
Remote Sens. Inf. 2010, 4, 85–99.

9. Zhang, F.; Zhao, P.; Xu, S.; Wu, Y.; Yang, X.; Zhang, Y. Integrating multiple factors to optimize watchtower deployment for wildfire
detection. Sci. Total Environ. 2020, 737, 139561. [CrossRef] [PubMed]

10. Gubbi, J.; Marusic, S.; Palaniswami, M. Smoke detection in video using wavelets and support vector machines. Fire Saf. J. 2009,
44, 1110–1115. [CrossRef]

11. Ko, B.; Kwak, J.-Y.; Nam, J.-Y. Wildfire smoke detection using temporospatial features and random forest classifiers. Opt. Eng.
2012, 51, 017208-1–017208-10. [CrossRef]

12. Prema, C.E.; Vinsley, S.S.; Suresh, S. Multi Feature Analysis of Smoke in YUV Color Space for Early Forest Fire Detection. Fire
Technol. 2016, 52, 1319–1342. [CrossRef]

13. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2012;
Volume 25.

14. Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.M.; Moreau, E.; Fnaiech, F. Convolutional neural network for video fire and
smoke detection. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence,
Italy, 23–26 October 2016; pp. 877–882.

15. Wu, S.; Zhang, L. Using popular object detection methods for real time forest fire detection. In Proceedings of the 2018 11th
International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 280–284.

16. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020. [CrossRef]
17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
19. Lin, G.; Zhang, Y.; Xu, G.; Zhang, Q. Smoke Detection on Video Sequences Using 3D Convolutional Neural Networks. Fire Technol.

2019, 55, 1827–1847. [CrossRef]
20. Pan, J.; Ou, X.; Xu, L. A Collaborative Region Detection and Grading Framework for Forest Fire Smoke Using Weakly Supervised

Fine Segmentation and Lightweight Faster-RCNN. Forests 2021, 12, 768. [CrossRef]
21. Frizzi, S.; Bouchouicha, M.; Moreau, E. Comparison of two semantic segmentation databases for smoke detection. In Proceedings

of the IEEE Conference on Industrial Technology (ICIT), Virtual Event, 10–12 March 2021; pp. 856–863.
22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017. [CrossRef]
23. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer

learning with a unified text-to-text transformer. arXiv 2019. [CrossRef]
24. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. Bart: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv 2019. [CrossRef]
25. Zhang, X.; Wei, F.; Zhou, M. HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document

Summarization. arXiv 2019. [CrossRef]
26. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16× 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations, Virtual Event, 3–7 May 2021.

27. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland,
2020; pp. 213–229.

28. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection.
arXiv 2020. [CrossRef]

29. Ding, H.; Jiang, X.; Shuai, B.; Liu, A.Q.; Wang, G. Context Contrasted Feature and Gated Multi-scale Aggregation for Scene
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–21 June 2018; pp. 2393–2402.

30. Yuan, F.; Zhang, L.; Xia, X.; Huang, Q.; Li, X. A Gated Recurrent Network With Dual Classification Assistance for Smoke Semantic
Segmentation. IEEE Trans. Image Process. 2021, 30, 4409–4422. [CrossRef] [PubMed]

31. Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; Zhou, X. LoFTR: Detector-Free Local Feature Matching with Transformers. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Virtual Event, 19–25 June 2021; pp. 8918–8927.

32. Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft
coco: Common objects in context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740–755.

http://doi.org/10.1016/j.infrared.2018.11.013
http://doi.org/10.1016/j.comcom.2019.10.007
http://doi.org/10.1016/j.scitotenv.2020.139561
http://www.ncbi.nlm.nih.gov/pubmed/32569901
http://doi.org/10.1016/j.firesaf.2009.08.003
http://doi.org/10.1117/1.OE.51.1.017208
http://doi.org/10.1007/s10694-016-0580-8
http://doi.org/10.48550/arXiv.2004.10934
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1007/s10694-019-00832-w
http://doi.org/10.3390/f12060768
http://doi.org/10.48550/arXiv.1706.03762
http://doi.org/10.48550/arXiv.1910.10683
http://doi.org/10.48550/arXiv.1910.13461
http://doi.org/10.48550/arXiv.1905.06566
http://doi.org/10.48550/arXiv.2010.04159
http://doi.org/10.1109/TIP.2021.3069318
http://www.ncbi.nlm.nih.gov/pubmed/33798085


Forests 2023, 14, 162 17 of 17

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

34. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239.

35. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss
for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, CA, USA, 16–20 June 2019; pp. 658–666.

36. Liu, T.; Cheng, J.; Du, X.; Luo, X.; Zhang, L.; Wang, Y. Video Smoke Detection Method Based on Change-Cumulative Image and
Fusion Deep Network. Sensors 2019, 19, 5060. [CrossRef]

37. Cao, Y.; Tang, Q.; Lu, X. STCNet: Spatiotemporal cross network for industrial smoke detection. Multimed. Tools Appl. 2022, 81,
10261–10277. [CrossRef]

38. Li, X.; Song, W.; Lian, L.; Wei, X. Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data.
Remote Sens. 2015, 7, 4473–4498. [CrossRef]

39. Ryu, J.; Kwak, D. A Study on a Complex Flame and Smoke Detection Method Using Computer Vision Detection and Convolutional
Neural Network. Fire 2022, 5, 108. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s19235060
http://doi.org/10.1007/s11042-021-11766-3
http://doi.org/10.3390/rs70404473
http://doi.org/10.3390/fire5040108

	Introduction 
	Materials and Methods 
	Dataset and Annotation 
	Deformable DETR 
	Multi-Scale Context Contrasted Local Feature Module 
	Iterative Bounding Box Combination Method 
	Loss Function 

	Results 
	Training 
	Comparison and Evaluation 
	Detection Performance and Analysis 

	Discussion 
	Conclusions 
	References

