Effects of Soil Warming on Soil Microbial Metabolism Limitation in a Quercus acutissima Forest in North Subtropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Treatments
2.3. Soil Sample Collection
2.4. Determination of Soil Physical and Chemical Properties and Enzyme Activities
2.5. Analysis Methods
3. Results
3.1. Effects of Soil Warming on Soil Physical and Chemical Properties
3.2. Changes in Soil Enzyme Activities and Soil Enzymatic Stoichiometry
3.3. Associations of Microbial C and P Limitation with other Factors
3.4. Response of Soil Enzyme Activity and Microbial C, P Limitation to Environmental Factors
4. Discussion
4.1. Effects of Soil Warming on Soil Enzyme Activities
4.2. Effects of Soil Warming on Soil Nutrient Availability
4.3. Effects of Soil Warming on Soil Microbial Nutrient Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SOC | TN | TP | SWC | PH | NO3−-N | NH4+-N | AP | DOC | C/N | C/P | N/P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BG | −0.84 * | −0.398 | −0.021 | −0.642 * | −0.717 * | 0.436 | 0.279 | 0.442 | 0.046 | 0.353 | −0.356 | −0.56 |
LAP | 0.043 | 0.157 | 0.148 | −0.093 | −0.424 | 0.202 | −0.188 | 0.405 | −0.047 | −0.506 | −0.126 | 0.116 |
NAG | 0.372 | 0.158 | 0.368 | 0.102 | 0.143 | 0.2 | 0.856 ** | −0.249 | 0.048 | 0.572 | 0.001 | −0.22 |
ACP | 0.539 | 0.562 | 0.101 | 0.252 | 0.652 | −0.155 | 0.306 | −0.733 * | −0.798 * | 0.236 | 0.903 ** | 0.881 ** |
CEs/NEs | −0.439 | −0.57 | −0.259 | −0.61 | −0.662 | 0.256 | 0.068 | 0.384 | 0.053 | 0.333 | −0.332 | −0.543 |
CEs/PEs | −0.365 | −0.51 | −0.036 | −0.642 | −0.814 ** | 0.44 | 0.15 | 0.607 | 0.302 | 0.241 | −0.587 | −0.760 * |
NEs/PEs | −0.062 | −0.121 | 0.274 | −0.183 | −0.595 | 0.379 | 0.188 | 0.579 | 0.474 | −0.145 | −0.618 | −0.572 |
SOC | TN | TP | pH | SWC | NO3−-N | NH4+-N | AP | DOC | C/N | C/P | N/P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 1 | 0.961 ** | 0.844 ** | −0.157 | 0.651 | 0.431 | 0.383 | −0.408 | −0.119 | 0.394 | 0.625 | 0.442 |
TN | 1 | 0.807 ** | −0.085 | 0.660 | 0.3736 | 0.154 | −0.387 | −0.087 | 0.124 | 0.619 | 0.553 | |
TP | 1 | −0.405 | 0.261 | 0.721 * | 0.234 | 0.050 | 0.300 | 0.334 | 0.122 | −0.031 | ||
pH | 1 | 0.428 | −0.825 ** | −0.023 | −0.590 | −0.141 | −0.286 | 0.231 | 0.372 | |||
SWC | 1 | −0.240 | 0.240 | −0.832 ** | −0.314 | 0.123 | 0.763 * | 0.705 * | ||||
NO3−-N | 1 | 0.233 | 0.464 | 0.221 | 0.308 | −0.146 | −0.282 | |||||
NH4+-N | 1 | −0.322 | −0.407 | 0.861 ** | 0.376 | 0.012 | ||||||
AP | 1 | 0.422 | −0.187 | −0.797 * | −0.710 * | |||||||
DOC | 1 | −0.140 | −0.692 * | −0.628 | ||||||||
C/N | 1 | 0.206 | −0.234 | |||||||||
C/P | 1 | 0.902 ** | ||||||||||
N/P | 1 |
References
- Pörtner, H.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC Sixth Assessment Report; Intergovernmental Panel on Climate: Geneva, Switzerland, 2022. [Google Scholar]
- Zhang, Y.; Dong, S.; Gao, Q.; Liu, S.; Zhou, H.; Ganjurjav, H.; Wang, X. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 562, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Rosinger, C.; Rousk, J.; Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils. Soil Biol. Biochem. 2019, 128, 115–126. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Chen, W.; Wu, Y.; Qiao, L.; Yan, Z.; Liu, G.; Xue, S. Long-term warming does not affect soil ecoenzyme activity and original microbial nutrient limitation on the Qinghai—Tibet Plateau. Soil Ecol. Lett. 2022, 4, 383–398. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, C.; Wang, Y.; Cheng, H.; An, S.; Chang, S.X. Soil extracellular enzyme stoichiometry reflects the shift from P-to N-limitation of microorganisms with grassland restoration. Soil Biol. Biochem. 2020, 149, 107928. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Guo, X.; Wang, X.; Zhang, Y.; Li, P.; Zhang, X. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 2018, 116, 11–21. [Google Scholar] [CrossRef]
- Hill, B.H.; Elonen, C.M.; Jicha, T.M.; Cotter, A.M.; Trebitz, A.S.; Danz, N.P. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshw. Biol. 2006, 51, 1670–1683. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Huang, C.; Wang, K.; Liu, Q.; Liu, Y.; Hai, X.; Shangguan, Z. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma 2019, 353, 188–200. [Google Scholar] [CrossRef]
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil warming and carbon-cycle feedbacks to the climate system. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Zuccarini, P.; Asensio, D.; Ogaya, R.; Sardans, J.; Peñuelas, J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Change Biol. 2020, 26, 3698–3714. [Google Scholar] [CrossRef] [PubMed]
- Brockett, B.F.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, R.; Xiong, P.; Wan, C.; Cao, G.; Liu, Q. Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: Nutrient availabilities, microbial properties and enzyme activities. Appl. Soil Ecol. 2010, 46, 291–299. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C.; Wang, Y.; Xu, Z.; Han, H.; Li, L.; Wan, S. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 2013, 444, 552–558. [Google Scholar] [CrossRef]
- Allison, S.D.; Treseder, K.K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Change Biol. 2008, 14, 2898–2909. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Liu, Y.; Chen, Y.; Zhang, J.; Li, H.; Wang, L.; Chen, Q. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma 2020, 360, 113985. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L.; Hill, B.H.; Weintraub, M.N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 2016, 93, 1–7. [Google Scholar] [CrossRef]
- Sistla, S.A.; Schimel, J.P. Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: Identifying direct and indirect effects of long-term summer warming. Soil Biol. Biochem. 2013, 66, 119–129. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob. Change Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, H.; Wang, J.; Wang, X.; Tian, Z.; Deng, W.; Wu, C.; Zhu, L.; Lu, Q.; Feng, Y. Effects of nitric acid rain stress on soil nitrogen fractions and fungal communities in a northern subtropical forest, China. Sci. Total Environ. 2023, 856, 158904. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, H.; Wang, J.; Zhu, Z.; Feng, Y. Nitric Acid Rain Increased Bacterial Community Diversity in North Subtropical Forest Soil. Forests 2022, 13, 1349. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Rinkes, Z.L.; Sinsabaugh, R.L.; Weintraub, M.N. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Front. Microbiol. 2013, 4, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardans, J.; Peñuelas, J.; Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 2008, 39, 223–235. [Google Scholar] [CrossRef]
- Menichetti, L.; Reyes Ortigoza, A.L.; García, N.; Giagnoni, L.; Nannipieri, P.; Renella, G. Thermal sensitivity of enzyme activity in tropical soils assessed by the Q10 and equilibrium model. Biol. Fertil. Soils 2015, 51, 299–310. [Google Scholar] [CrossRef]
- Fang, X.; Zhou, G.; Li, Y.; Liu, S.; Chu, G.; Xu, Z.; Liu, J. Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest. Biol. Fertil. Soils 2016, 52, 353–365. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; Li, J.; Zhou, X.; Cao, J.; Wang, R.W.; Wang, Y.; Shelton, S.; Jin, Z.; Walker, L.M. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob. Change Biol. 2017, 23, 1328–1337. [Google Scholar] [CrossRef]
- Looby, C.I.; Treseder, K.K. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biol. Biochem. 2018, 117, 87–96. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- García-Palacios, P.; Crowther, T.W.; Dacal, M.; Hartley, I.P.; Reinsch, S.; Rinnan, R.; Rousk, J.; Van den Hoogen, J.; Ye, J.; Bradford, M.A. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2021, 2, 507–517. [Google Scholar] [CrossRef]
- Luan, J.; Liu, S.; Chang, S.X.; Wang, J.; Zhu, X.; Liu, K.; Wu, J. Different effects of warming and cooling on the decomposition of soil organic matter in warm–temperate oak forests: A reciprocal translocation experiment. Biogeochemistry 2014, 121, 551–564. [Google Scholar] [CrossRef]
- Qi, R.; Li, J.; Lin, Z.; Li, Z.; Li, Y.; Yang, X.; Zhang, J.; Zhao, B. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Schindlbacher, A.; Wang, J.; Yang, Y.; Song, Z.; You, Y.; Shi, Z.; Li, Z.; Chen, L. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biol. Biochem. 2019, 133, 155–164. [Google Scholar] [CrossRef]
- Campbell, J.L.; Mitchell, M.J.; Groffman, P.M.; Christenson, L.M.; Hardy, J.P. Winter in northeastern North America: A critical period for ecological processes. Front. Ecol. Environ. 2005, 3, 314–322. [Google Scholar] [CrossRef]
- Meng, C.; Tian, D.; Zeng, H.; Li, Z.; Chen, H.Y.; Niu, S. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Sci. Total Environ. 2020, 705, 135992. [Google Scholar] [CrossRef]
- Rinnan, R.; Michelsen, A.; Bååth, E. Long-term warming of a subarctic heath decreases soil bacterial community growth but has no effects on its temperature adaptation. Appl. Soil Ecol. 2011, 47, 217–220. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Finzi, A.C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. Biogeosci. 2012, 117, 1018. [Google Scholar] [CrossRef]
- Kivlin, S.N.; Treseder, K.K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry 2014, 117, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad Shah, J.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Liu, J.; Xia, H.; Wang, J.; Zhang, W. Bioactive Characteristics of Soil Microorganisms in Different-aged Orange(Citrus reticulate) Plantations. Agric. Sci. Technol. 2012, 13, 1277–1281. [Google Scholar]
- Hu, W.; Tan, J.; Shi, X.; Lock, T.R.; Kallenbach, R.L.; Yuan, Z. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: A global meta-analysis. J. Soils Sediments 2022, 22, 2608–2619. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Gao, Q.; Liu, S.; Ganjurjav, H.; Wang, X.; Su, X.; Wu, X. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shen, Z.; Fu, G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Appl. Soil Ecol. 2015, 87, 32–38. [Google Scholar] [CrossRef]
- Geng, Y.; Baumann, F.; Song, C.; Zhang, M.; Shi, Y.; Kühn, P.; Scholten, T.; He, J. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Abney, R.; Barnes, M.; Bogie, N.; Ghezzehei, T.A.; Jin, L.; Moreland, K.; Sulman, B.N.; Berhe, A.A. The role of the physical properties of soil in determining biogeochemical responses to soil warming. In Ecosystem Consequences of Soil Warming; Elsevier: Amsterdam, The Netherlands, 2019; pp. 209–244. [Google Scholar]
- Wang, Q.K.; Wang, S.L.; Liu, Y.X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter. Appl. Soil Ecol. 2008, 40, 484–490. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Pendall, E.; Morgan, J.A.; Blumenthal, D.M.; Carrillo, Y.; LeCain, D.R.; Follett, R.F.; Williams, D.G. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. 2012, 196, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci Total Environ 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Wang, W.; Liu, H.; Xu, X.; Zeng, H. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry. Ecol. Indic. 2019, 101, 453–464. [Google Scholar] [CrossRef]
- Jiang, Y.; Rocha, A.V.; Rastetter, E.B.; Shaver, G.R.; Mishra, U.; Zhuang, Q.; Kwiatkowski, B.L. C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska. Landsc. Ecol. 2016, 31, 195–213. [Google Scholar] [CrossRef]
- Guan, P.; Yang, J.; Yang, Y.; Wang, W.; Zhang, P.; Wu, D. Land conversion from cropland to grassland alleviates climate warming effects on nutrient limitation: Evidence from soil enzymatic activity and stoichiometry. Glob. Ecol. Conserv. 2020, 24, e1328. [Google Scholar] [CrossRef]
- Li, J.; Shangguan, Z.; Deng, L. Dynamics of soil microbial metabolic activity during grassland succession after farmland abandonment. Geoderma 2020, 363, 114167. [Google Scholar] [CrossRef]
- Peng, X.; Wang, W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biol. Biochem. 2016, 98, 74–84. [Google Scholar] [CrossRef]
- Rieke, E.L.; Cappellazzi, S.B.; Cope, M.; Liptzin, D.; Mac Bean, G.; Greub, K.L.; Norris, C.E.; Tracy, P.W.; Aberle, E.; Ashworth, A. Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biol. Biochem. 2022, 168, 108618. [Google Scholar] [CrossRef]
- Cui, Y.; Bing, H.; Fang, L.; Jiang, M.; Shen, G.; Yu, J.; Wang, X.; Zhu, H.; Wu, Y.; Zhang, X. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant Soil 2021, 458, 7–20. [Google Scholar] [CrossRef]
- Nishina, K.; Ito, A.; Beerling, D.J.; Cadule, P.; Ciais, P.; Clark, D.B.; Falloon, P.; Friend, A.D.; Kahana, R.; Kato, E. Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth Syst. Dyn. 2014, 5, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Exbrayat, J.; Pitman, A.J.; Zhang, Q.; Abramowitz, G.; Wang, Y. Examining soil carbon uncertainty in a global model: Response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences 2013, 10, 7095–7108. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Li, X.; Lin, J.; Guo, G.; Zhang, X.; Zeng, G. The mineralization and sequestration of soil organic carbon in relation to gully erosion. Catena 2022, 214, 106218. [Google Scholar] [CrossRef]
Treatments | T0 | T2 | T4 |
---|---|---|---|
pH | 4.60 ± 0.21 a | 4.45 ± 0.09 a | 4.46 ± 0.20 a |
SWC (%) | 21.05 ± 1.08 a | 18.18 ± 0.61 b | 17.54 ± 0.64 b |
SOC (g∙kg−1) | 22.70 ± 3.99 b | 18.33 ± 3.13 a | 18.63 ± 2.42 a |
TN (g∙kg−1) | 1.53 ± 0.35 a | 1.13 ± 0.31 a | 1.30 ± 0.17 a |
TP (g∙kg−1) | 0.34 ± 0.09 a | 0.32 ± 0.08 a | 0.35 ± 0.05 a |
NH4+-N (mg∙kg−1) | 17.75 ± 0.43 a | 19.45 ± 4.64 a | 16.17 ± 1.86 a |
NO3−-N (mg∙kg−1) | 21.95 ± 4.32 b | 24.21 ± 5.17 ab | 26.08 ± 5.14 a |
AP (mg∙kg−1) | 1.41 ± 0.39 b | 2.21 ± 0.57 ab | 2.80 ± 0.50 a |
DOC (mg∙kg−1) | 141.19 ±16.88 a | 153.41 ± 19.20 a | 150.82 ± 23.97 a |
C/N | 14.73 ± 0.56 ab | 15.97 ± 1.17 a | 14.34 ± 0.37 b |
C/P | 65.99 ±1.01 a | 55.87 ± 6.69 a | 53.72 ± 6.09 a |
N/P | 4.48 ± 0.19 a | 3.49 ± 0.51 b | 3.74 ± 0.34 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhou, M.; Hu, H.; Kuai, J.; Wang, X.; Chu, L. Effects of Soil Warming on Soil Microbial Metabolism Limitation in a Quercus acutissima Forest in North Subtropical China. Forests 2023, 14, 19. https://doi.org/10.3390/f14010019
Wang J, Zhou M, Hu H, Kuai J, Wang X, Chu L. Effects of Soil Warming on Soil Microbial Metabolism Limitation in a Quercus acutissima Forest in North Subtropical China. Forests. 2023; 14(1):19. https://doi.org/10.3390/f14010019
Chicago/Turabian StyleWang, Jinlong, Meijia Zhou, Haibo Hu, Jie Kuai, Xia Wang, and Lei Chu. 2023. "Effects of Soil Warming on Soil Microbial Metabolism Limitation in a Quercus acutissima Forest in North Subtropical China" Forests 14, no. 1: 19. https://doi.org/10.3390/f14010019
APA StyleWang, J., Zhou, M., Hu, H., Kuai, J., Wang, X., & Chu, L. (2023). Effects of Soil Warming on Soil Microbial Metabolism Limitation in a Quercus acutissima Forest in North Subtropical China. Forests, 14(1), 19. https://doi.org/10.3390/f14010019