A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia
Abstract
:1. Introduction
Brief Overview of State of the Art
2. Materials and Methods
Dead Wood Density (Specific Gravity)
3. Results
3.1. Modeling the Dead Wood Expansion Factors (DWEF)
3.2. Density of Dead Wood
3.3. Carbon Fraction in Dry Matter of Dead Wood
4. Discussion
4.1. Application of Models for the Vologda Region
4.2. Uncertainties and Cautionary Notes
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Site Index by M.M. Orlov | Birch, Aspen and Other Deciduous Softwood Species (50 Years Old) | Siberian Pine (160 Years Old) | Other Species (100 Years Old) |
---|---|---|---|
If | 36.1 | 58.4 | 51.1 |
Ie | 33.2 | 54.1 | 47.4 |
Id | 30.4 | 49.9 | 43.7 |
Ic | 27.5 | 45.7 | 40.0 |
Ib | 24.6 | 41.4 | 36.3 |
Ia | 21.7 | 37.2 | 32.5 |
I | 18.9 | 33.0 | 28.8 |
II | 16.0 | 28.7 | 25.1 |
III | 13.1 | 24.5 | 21.4 |
IV | 10.3 | 20.2 | 17.7 |
V | 7.4 | 16.0 | 14.0 |
Va | 4.5 | 11.7 | 10.3 |
Vb | 1.6 | 7.5 | 6.2 |
Species | Zonal Belt 1 | Region | Equation (2) Parameter Estimate | SI Min | SI Max | N | |||
---|---|---|---|---|---|---|---|---|---|
â0 | â1 | â2 | â3 | ||||||
Pine | NT | Eur | 6.8200 | −1.9474 | −0.9431 | 0.0215 | 6.2 | 25.1 | 145 |
Sib, FE | 8.5502 | −1.9988 | −1.0136 | 0.0131 | 6.2 | 25.1 | 34 | ||
MT | Eur | 1.7497 | −0.4954 | −0.8071 | 0.0079 | 6.2 | 32.5 | 115 | |
Sib, FE | 10.5683 | −2.2041 | −1.5417 | 0.0164 | 10.3 | 32.5 | 64 | ||
ST | Eur | 5.2691 | −1.7731 | −0.9136 | 0.0269 | 6.2 | 36.3 | 354 | |
Sib, FE | 5.2236 | −1.2030 | −1.2495 | 0.0084 | 6.2 | 36.3 | 49 | ||
TF | all | 1.0621 | −0.7655 | −0.5297 | 0.0102 | 10.3 | 36.3 | 121 | |
Larch | NT | Eur, Sib | 6.8765 | −1.7264 | −0.6872 | 0.0125 | 6.2 | 25.1 | 63 |
FE | 4.9720 | −0.9470 | −1.4341 | 0.0089 | 6.2 | 25.1 | 63 | ||
MT | Eur, Sib | 9.1048 | −2.1444 | −1.1829 | 0.0132 | 6.2 | 32.5 | 21 | |
FE | 7.2334 | −1.7823 | −0.8916 | 0.0133 | 6.2 | 32.5 | 176 | ||
ST, TF | all | 5.6436 | −0.7945 | −1.5649 | 0.0069 | 10.3 | 32.5 | 67 | |
Spruce & Fir | NT | Eur | 5.0537 | −1.2687 | −0.7783 | 0.0057 | 6.2 | 32.5 | 119 |
NT, MT | Sib | 4.6096 | −0.8350 | −1.0655 | 0.0065 | 6.2 | 32.5 | 44 | |
FE | 6.2442 | −1.2784 | −0.9923 | 0.0044 | 6.2 | 32.5 | 211 | ||
MT | Eur | 5.0894 | −1.0595 | −1.0815 | 0.0085 | 6.2 | 32.5 | 78 | |
ST | Eur | 5.6316 | −1.5316 | −1.1929 | 0.0210 | 6.2 | 32.5 | 385 | |
TF | Eur | 13.1209 | −2.5432 | −2.2282 | 0.0282 | 10.3 | 32.5 | 72 | |
ST, TF | Sib | 7.9305 | −2.1192 | −0.9877 | 0.0208 | 10.3 | 32.5 | 45 | |
FE | 3.4950 | −0.8384 | −0.7183 | 0.0125 | 10.3 | 32.5 | 102 | ||
Siberian pine | NT, MT | Eur, Sib | 7.5877 | −1.4001 | −1.7818 | 0.0111 | 6.2 | 28.8 | 81 |
ST, TF | Eur, Sib | 7.1469 | −1.3234 | −1.3124 | 0.0091 | 10.3 | 28.8 | 30 | |
all | FE | 5.8189 | −1.0443 | −1.1438 | 0.0057 | 10.3 | 28.8 | 43 | |
Oak (seeding) | all | Eur, Sib | 1.5762 | −0.5070 | −1.0163 | 0.0065 | 10.3 | 32.5 | 95 |
FE | 4.5711 | −0.6933 | −1.7409 | 0.0104 | 10.3 | 32.5 | 13 | ||
Oak (vegetative) | all | Eur, Sib | 0.0377 | 0.7156 | −1.3102 | −0.0132 | 17.7 | 25.1 | 25 |
FE | −1.2133 | −0.1819 | 0 | 0.0048 | – | – | 20 | ||
Stone birch | NT, MT | any | 7.3329 | −1.714 | −1.2438 | 0.0207 | 10.3 | 28.8 | 58 |
ST, TF | any | 5.5333 | −1.2385 | −1.1819 | 0.0123 | 10.3 | 28.8 | 51 | |
Other hard wood deciduous | all | Eur | 5.9115 | −1.4696 | −1.0995 | 0.0123 | 10.3 | 36.3 | 40 |
Sib, FE | 2.8698 | −0.7634 | −0.8186 | 0.0058 | 10.3 | 36.3 | 52 | ||
Birch | NT | all | 0.5139 | −0.2696 | −0.6009 | 0.0087 | 1.6 | 21.7 | 43 |
MT, ST | Eur, Sib | 3.211 | −1.2203 | −0.9869 | 0.0243 | 1.6 | 33.2 | 271 | |
FE | 5.4091 | −2.0532 | −0.8771 | 0.0392 | 4.5 | 24.6 | 28 | ||
TF | Eur, Sib | −2.5939 | 0.1389 | −0.7039 | 0.0179 | 7.4 | 33.2 | 175 | |
FE | 3.1055 | −0.8225 | −1.1926 | 0.0216 | 7.4 | 33.2 | 24 | ||
Aspen | NT, MT | Eur, Sib | 3.1628 | −1.0131 | −0.6457 | 0.0125 | 7.4 | 21.7 | 19 |
ST, TF | Eur, Sib | −0.9267 | −0.0264 | −0.6672 | 0.0115 | 7.4 | 33.2 | 165 | |
any | FE | 2.7013 | −0.8677 | −0.6018 | 0.0135 | 7.4 | 33.2 | 28 | |
Other soft wood deciduous | all | all | 1.1922 | −0.2292 | −1.0421 | 0.0104 | 10.3 | 47.4 | 199 |
Dwarf pine | all | all | 1.3865 | 0.0804 | −0.7405 | −0.0060 | 6.2 | 17.7 | 17 |
Species | Zonal Belt 1 | Region | Equation (2) Parameter Estimation | SI Min | SI Max | N | |||
---|---|---|---|---|---|---|---|---|---|
â0 | â1 | â2 | â3 | ||||||
Pine | NT | Eur | 3.1943 | −1.0115 | −0.8126 | 0.0111 | 6.2 | 25.1 | 95 |
Sib, FE | 3.8781 | −1.1595 | −0.5998 | 0.0137 | 6.2 | 25.1 | 20 | ||
MT | Eur | 1.1975 | −0.3879 | −0.8618 | 0.0098 | 6.2 | 32.5 | 76 | |
Sib, FE | 4.4085 | −0.9464 | −1.3096 | 0.0131 | 10.3 | 32.5 | 31 | ||
ST | Eur | 0.4059 | −0.2890 | −0.7351 | 0.0087 | 6.2 | 36.3 | 295 | |
Sib, FE | 5.0025 | −1.8260 | −1.0151 | 0.0336 | 6.2 | 36.3 | 22 | ||
TF | all | 3.0180 | −0.6703 | −1.4378 | 0.0154 | 10.3 | 36.3 | 42 | |
Larch | NT | Eur, Sib | 5.7553 | −1.6704 | −0.6508 | 0.0144 | 6.2 | 25.1 | 45 |
FE | 2.9246 | −0.9414 | −0.9269 | 0.0137 | 6.2 | 25.1 | 64 | ||
MT | Eur, Sib | 3.7574 | −1.2037 | −0.7747 | 0.0153 | 6.2 | 32.5 | 19 | |
FE | 3.0147 | −1.0510 | −0.6187 | 0.0119 | 6.2 | 32.5 | 143 | ||
ST, TF | all | 5.7840 | −1.4237 | −1.3383 | 0.0216 | 10.3 | 32.5 | 59 | |
Spruce & Fir | NT | Eur | 1.6432 | −0.5100 | −0.6475 | 0.0087 | 6.2 | 32.5 | 110 |
NT, MT | Sib | 2.9403 | −0.3844 | −1.0089 | 0.0017 | 6.2 | 32.5 | 22 | |
FE | 5.7795 | −0.7887 | −1.5619 | 0.0047 | 6.2 | 32.5 | 175 | ||
MT | Eur | 1.0327 | −0.4380 | −0.3854 | 0.0065 | 6.2 | 32.5 | 82 | |
ST | Eur | 6.8443 | −1.7546 | −0.8392 | 0.0203 | 6.2 | 32.5 | 342 | |
TF | Eur | 6.4503 | −1.7393 | −0.5777 | 0.0180 | 10.3 | 32.5 | 35 | |
ST, TF | Sib | 4.1708 | −1.0927 | −0.8825 | 0.0120 | 10.3 | 32.5 | 20 | |
FE | 2.0008 | −0.4226 | −0.8162 | 0.0060 | 10.3 | 32.5 | 53 | ||
Siberian pine | NT, MT | Eur, Sib | 6.7510 | −1.0259 | −1.4742 | 0.0058 | 6.2 | 28.8 | 43 |
ST, TF | Eur, Sib | 8.6851 | −1.8469 | −1.2955 | 0.0150 | 10.3 | 28.8 | 28 | |
all | FE | 6.1468 | −0.8738 | −1.4877 | 0.0063 | 10.3 | 28.8 | 24 | |
Oak (seeding) | all | Eur, Sib | 3.7627 | −0.7628 | −1.5642 | 0.0114 | 10.3 | 32.5 | 77 |
FE | 6.6664 | −1.3906 | −1.5361 | 0.0190 | 10.3 | 32.5 | 17 | ||
Oak (vegetative) | all | Eur, Sib | 0.5087 | 0.3806 | −1.1504 | −0.0010 | 17.7 | 25.1 | 25 |
FE | −1.677 | 0.1711 | 0 | −0.0005 | – | – | 20 | ||
Birch ermanii | NT, MT | any | 4.7927 | −1.1345 | −0.9600 | 0.0105 | 10.3 | 28.8 | 57 |
ST, TF | any | 4.6780 | −1.2563 | −0.6701 | 0.0126 | 10.3 | 28.8 | 62 | |
Other hard wood deciduous | all | Eur | 5.1406 | −1.0669 | −1.3779 | 0.0092 | 10.3 | 36.3 | 57 |
Sib, FE | 6.0375 | −1.2662 | −1.3725 | 0.0142 | 10.3 | 36.3 | 59 | ||
Birch | NT | all | 1.6841 | −0.8087 | −0.6230 | 0.0160 | 1.6 | 21.7 | 61 |
MT, ST | Eur, Sib | 2.0303 | −0.9369 | −0.4805 | 0.0110 | 1.6 | 33.2 | 265 | |
FE | 2.3569 | −0.9765 | −0.5167 | 0.0107 | 4.5 | 24.6 | 33 | ||
TF | Eur, Sib | 0.2452 | −0.1023 | −1.1800 | 0.0141 | 7.4 | 33.2 | 91 | |
FE | 1.8109 | −0.6131 | −0.8452 | 0.0140 | 7.4 | 33.2 | 25 | ||
Aspen | NT, MT | Eur, Sib | 7.5838 | −2.1400 | −1.0838 | 0.0306 | 7.4 | 24.6 | 27 |
ST, TF | Eur, Sib | −0.4077 | −0.1946 | −0.7325 | 0.0163 | 7.4 | 33.2 | 196 | |
all | FE | 0.0059 | −0.4884 | −0.4553 | 0.0185 | 7.4 | 36.1 | 39 | |
Other soft wood deciduous | all | all | 1.3246 | −0.5520 | 0 | −0.7672 | 10.3 | 47.4 | 226 |
Dwarf pine | all | all | 10.5273 | −2.6527 | −1.3596 | 0.0286 | 6.2 | 17.7 | 19 |
Species | Zonal Belt 1 | Region | Equation (2) Parameter Estimation | SI Min | SI Max | N | |||
---|---|---|---|---|---|---|---|---|---|
â0 | â1 | â2 | â3 | ||||||
Coniferous | all | Eur | 1.4474 | −1.7263 | 0 | 0.0212 | – | – | 1006 |
all | Sib, FE | 3.3154 | −1.9787 | 0 | 0.0172 | – | – | 300 | |
Hard wood deciduous | all | all | −0.8251 | −0.9562 | 0 | 0.0106 | – | – | 125 |
Soft wood deciduous | all | all | 1.4504 | −1.9928 | 0 | 0.0352 | – | – | 546 |
Species | Zonal Belt 1 | Region | Equation (2) Parameter Estimation | SI Min | SI Max | N | |||
---|---|---|---|---|---|---|---|---|---|
â0 | â1 | â2 | â3 | ||||||
Pine and larch | all | all | 1.146 | −1.7627 | 0 | 0.0192 | – | – | 270 |
Dark coniferous | all | all | −0.7096 | −0.9952 | 0 | 0.0133 | – | – | 125 |
Hard wood deciduous | all | all | −1.3453 | −0.9776 | 0 | 0.0176 | – | – | 22 |
Soft wood deciduous | all | all | −1.4545 | −1.1717 | 0 | 0.0249 | – | – | 62 |
References
- Russell, M.B.; Fraver, S.; Aakala, T.; Gove, J.H.; Woodall, C.W.; D’Amato, A.W.; Ducey, M.J. Quantifying Carbon Stores and Decomposition in Dead Wood: A Review. For. Ecol. Manag. 2015, 350, 107–128. [Google Scholar] [CrossRef]
- Šēnhofa, S.; Jaunslaviete, I.; Šņepsts, G.; Jansons, J.; Liepa, L.; Jansons, Ā. Deadwood Characteristics in Mature and Old-Growth Birch Stands and Their Implications for Carbon Storage. Forests 2020, 11, 536. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Kirdyanov, A.V.; Myglan, V.S.; Guggenberger, G. Wood Transformation in Dead-Standing Trees in the Forest-Tundra of Central Siberia. Biol. Bull. Russ. Acad. Sci. 2009, 36, 58–65. [Google Scholar] [CrossRef]
- Yatskov, M.; Harmon, M.E.; Krankina, O.N. A Chronosequence of Wood Decomposition in the Boreal Forests of Russia. Can. J. For. Res. 2003, 33, 1211–1226. [Google Scholar] [CrossRef]
- Dai, Z.; Trettin, C.C.; Burton, A.J.; Jurgensen, M.F.; Page-Dumroese, D.S.; Forschler, B.T.; Schilling, J.S.; Lindner, D.L. Coarse Woody Debris Decomposition Assessment Tool: Model Validation and Application. PLoS ONE 2021, 16, e0254408. [Google Scholar] [CrossRef]
- Valendik, E.N.; Verkhovets, S.V.; Kisilyakhov, E.K.; Tyulpanov, N.A.; Lantukh, A.Y. Prescribed burning technologies in forests disturbed by the siberian silk moth. In Regional Problems of Forestry Ecosystems; Onuchin, A.A., Ed.; Institute of Forest SB RAS: Krasnoyarsk, Russian, 2007; pp. 241–251. [Google Scholar]
- Franklin, J.F.; Shugart, H.H.; Harmon, M.E. Tree Death as an Ecological Process. BioScience 1987, 37, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Laiho, R.; Prescott, C.E. Decay and Nutrient Dynamics of Coarse Woody Debris in Northern Coniferous Forests: A Synthesis. Can. J. For. Res. 2004, 34, 763–777. [Google Scholar] [CrossRef]
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-139-02584-3. [Google Scholar]
- Sandström, J.; Bernes, C.; Junninen, K.; Lõhmus, A.; Macdonald, E.; Müller, J.; Jonsson, B.G. Impacts of Dead Wood Manipulation on the Biodiversity of Temperate and Boreal Forests. A Systematic Review. J. Appl. Ecol. 2019, 56, 1770–1781. [Google Scholar] [CrossRef] [Green Version]
- Bauhus, J.; Baber, K.; Müller, J. Dead Wood in Forest Ecosystems. Available online: https://www.oxfordbibliographies.com/view/document/obo-9780199830060/obo-9780199830060-0196.xml (accessed on 6 November 2021).
- Trefilova, O.V. Intensity of heterotrophic respiration in pine forests of middle taiga: Comparative analysis of assessments’ methods. Conifer. Boreal Zone 2007, 24, 467–473. [Google Scholar]
- Díaz-Yáñez, O.; Pukkala, T.; Packalen, P.; Lexer, M.J.; Peltola, H. Multi-Objective Forestry Increases the Production of Ecosystem Services. For. Int. J. For. Res. 2021, 94, 386–394. [Google Scholar] [CrossRef]
- Helfenstein, J.; Kienast, F. Ecosystem Service State and Trends at the Regional to National Level: A Rapid Assessment. Ecol. Indic. 2014, 36, 11–18. [Google Scholar] [CrossRef]
- Hof, A.R.; Löfroth, T.; Rudolphi, J.; Work, T.; Hjältén, J. Simulating Long-Term Effects of Bioenergy Extraction on Dead Wood Availability at a Landscape Scale in Sweden. Forests 2018, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; JRC science for policy report; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-27867-2. [Google Scholar]
- Lutz, J.A.; Struckman, S.; Furniss, T.J.; Cansler, C.A.; Germain, S.J.; Yocom, L.L.; McAvoy, D.J.; Kolden, C.A.; Smith, A.M.S.; Swanson, M.E.; et al. Large-Diameter Trees Dominate Snag and Surface Biomass Following Reintroduced Fire. Ecol. Process. 2020, 9, 41. [Google Scholar] [CrossRef]
- Grayson, L.M.; Cluck, D.R.; Hood, S.M. Persistence of Fire-Killed Conifer Snags in California, USA. Fire Ecol. 2019, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Uhl, C.; Kauffman, J.B. Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology 1990, 71, 437–449. [Google Scholar] [CrossRef]
- Cramer, O.P. Environmental Effects of Forest Residues Management in the Pacific Northwest: A State-of-Knowledge Compendium; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1974; p. 543. [Google Scholar]
- Schnepf, C.; Graham, R.T.; Kegley, S.; Jain, T.B. Managing Organic Debris for Forest Health: Reconciling Fire Hazard, Bark Beetles, Wildlife, and Forest Nutrition Needs; University of Idaho, Pacific Northwest Extension: Moscow, ID, USA, 2009; p. 60. [Google Scholar]
- Bouget, C.; Duelli, P. The Effects of Windthrow on Forest Insect Communities: A Literature Review. Biol. Conserv. 2004, 118, 281–299. [Google Scholar] [CrossRef]
- Worrall, J.J.; Lee, T.D.; Harrington, T.C. Forest Dynamics and Agents That Initiate and Expand Canopy Gaps in Picea–Abies Forests of Crawford Notch, New Hampshire, USA. J. Ecol. 2005, 93, 178–190. [Google Scholar] [CrossRef]
- Hennon, P.E. Are Heart Rot Fungi Major Factors of Disturbance in Gap-Dynamic Forests? Northwest Sci. 1995, 69, 284–293. [Google Scholar]
- MNRRF. Methods of Assessing Stock and Mass of Woody Detritus Based on Forest Inventory Data; All-Russia Research Institute of Forestry and Mechanization: Pushkino, Russia, 2002. [Google Scholar]
- Kudeyarov, V.N.; Zavarzin, G.A.; Blagodatskiy, S.A.; Borisov, A.V.; Voronin, P.Y.U.; Demkin, V.A.; Demkina, T.S.; Yevdokimov, I.V.; Zamolodchikov, D.G.; Karelin, D.V.; et al. Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia; Nauka: Moscow, Russia, 2007; ISBN 978-5-02-034064-0. [Google Scholar]
- Shvidenko, A.; Schepaschenko, D.; McCallum, I.; Kraxner, F.; Nilsson, S.; Maksyutov, S. Verified Terrestrial Ecosystems Full Carbon Account for Russia: A Reanalysis. In Proceedings of the 8th International CO2 Conference, Jena, Germany, 7–19 December 2009. [Google Scholar]
- Shvidenko, A.; Schepaschenko, D.; McCallum, I. Bottom-up Inventory of the Carbon Fluxes in Northern Eurasia for Comparison with GOSAT Level 4 Products. Unpublished Manuscript; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2011; p. 210. [Google Scholar]
- Zamolodchikov, D.G. The Assessment of Carbon Pool in Coarse Woody Debris in Forests of Russia with Account of the Influence of Fires and Fellings. For. Sci. 2009, 4, 3–15. [Google Scholar]
- Alexeyev, V.A.; Birdsey, R.A. Carbon Storage in Forests and Peatlands of Russia; General Technical Report NE-244, USDA, Forest Service, Northeast Research Station: Radnor, PA, USA, 1998. [Google Scholar]
- Lakyda, P.; Shvidenko, A.; Bilous, A.; Myroniuk, V.; Matsala, M.; Zibtsev, S.; Schepaschenko, D.; Holiaka, D.; Vasylyshyn, R.; Lakyda, I.; et al. Impact of Disturbances on the Carbon Cycle of Forest Ecosystems in Ukrainian Polissya. Forests 2019, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Matsala, M.; Myroniuk, V.; Bilous, A.; Terentiev, A.; Diachuk, P.; Zadorozhniuk, R. An indirect approach to predict deadwood biomass in forests of Ukrainian Polissya using Landsat images and terrestrial data. For. Stud. 2020, 73, 107–124. [Google Scholar] [CrossRef]
- Bilous, A.; Matsala, M.; Radchenko, V.; Matiashuk, R.; Boiko, S.; Bilous, S. Coarse Woody Debris in Mature Oak Stands of Ukraine: Carbon Stock and Decomposition Features. For. Ideas 2019, 25, 196–219. [Google Scholar]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar] [CrossRef]
- Harmon, M.E.; Sexton, J. Guidelines for Measurements of Woody Detritus in Forest Ecosystems; US LTER Network Office: Washington, DC, USA, 1996; p. 71. [Google Scholar]
- Woodall, C.W.; Liknes, G.C. Relationships between Forest Fine and Coarse Woody Debris Carbon Stocks across Latitudinal Gradients in the United States as an Indicator of Climate Change Effects. Ecol. Indic. 2008, 8, 686–690. [Google Scholar] [CrossRef]
- Christensen, M.; Hahn, K.; Mountford, E.P.; Гdor, P.; Standovгўr, T.; Rozenbergar, D.; Diaci, J.; Wijdeven, S.; Meyer, P.; Winter, S.; et al. Dead Wood in European Beech (Fagus Sylvatica) Forest Reserves. For. Ecol. Manag. 2005, 210, 267–282. [Google Scholar] [CrossRef]
- Woldendorp, G.; Keenan, R.J.; Barry, S.; Spencer, R.D. Analysis of Sampling Methods for Coarse Woody Debris. For. Ecol. Manag. 2004, 198, 133–148. [Google Scholar] [CrossRef]
- FFS’RF State Inventory of Forests of the Russian Federation. Temporary Manuals for Field Works, Version 5.2; Federal Forest Service: Moscow, Russia, 2008. [Google Scholar]
- Guidelines Guidelines for Conducting a State Forest Inventory; Forestry Agency: Moscow, Russia, 2018.
- Filipchuk, A.N.; Malysheva, N.V.; Zolina, T.A.; Fedorov, S.V.; Berdov, A.M.; Kositsyn, V.N.; Yugov, A.N.; Kinigopulo, P.S. Analytical Review of the Quantitative and Qualitative Characteristics of Forests in the Russian Federation: Results of the First Cycle of the State Forest Inventory. For. Inf. 2022, 1, 5–34. [Google Scholar] [CrossRef]
- Harmon, M.E.; Hua, C. Coarse Woody Debris Dynamics in Two Old-Growth Ecosystems. Bioscience 1991, 41, 604–610. [Google Scholar] [CrossRef]
- Rubino, D.L.; McCarthy, B.C. Evaluation of Coarse Woody Debris and Forest Vegetation across Topographic Gradients in a Southern Ohio Forest. For. Ecol. Manag. 2003, 183, 221–238. [Google Scholar] [CrossRef]
- Shorohova, E.; Kapitsa, E. Stand and Landscape Scale Variability in the Amount and Diversity of Coarse Woody Debris in Primeval European Boreal Forests. For. Ecol. Manag. 2015, 356, 273–284. [Google Scholar] [CrossRef]
- Löfroth, T.; Birkemoe, T.; Shorohova, E.; Dynesius, M.; Fenton, N.; Drapeau, P.; Tremblay, J. Biodiversity in Dead and Dying Trees. In Boreal Forests in the Face of Climate Change—Sustainable Management; Advances in Global Change Research; Springer-Nature: Cham, Switzerland, 2022; ISBN 978-3-031-15987-9. [Google Scholar]
- Harmon, M.E.; Krankina, O.N.; Sexton, J. Decomposition Vectors: A New Approach to Estimating Woody Detritus Decomposition Dynamics. Can. J. For. Res. 2000, 30, 76–84. [Google Scholar] [CrossRef]
- Romashkin, I.; Shorohova, E.; Kapitsa, E.; Galibina, N.; Nikerova, K. Substrate Quality Regulates Density Loss, Cellulose Degradation and Nitrogen Dynamics in Downed Woody Debris in a Boreal Forest. For. Ecol. Manag. 2021, 491, 119143. [Google Scholar] [CrossRef]
- Shorohova, E.; Kapitsa, E. Influence of the Substrate and Ecosystem Attributes on the Decomposition Rates of Coarse Woody Debris in European Boreal Forests. For. Ecol. Manag. 2014, 315, 173–184. [Google Scholar] [CrossRef]
- Shorohova, E.; Kapitsa, E. The Decomposition Rate of Non-Stem Components of Coarse Woody Debris (CWD) in European Boreal Forests Mainly Depends on Site Moisture and Tree Species. Eur. J. For. Res. 2016, 135, 593–606. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Stytsenko, F.V. An Assessment of the Forest Stands Distruction by Fire Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas. For. Sci. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Volokitina, A.V.; Sofronov, M.A. Humidification, Moisture Content and Intensity of Burning of the Ground Cover. In Modeling in the Protection of Forests from Fires; Institute of Forest & Wood, SB, USSR: Krasnoyarsk, Russia, 1979; pp. 45–86. [Google Scholar]
- Siitonen, J.; Martikainen, P.; Punttila, P.; Rauh, J. Coarse Woody Debris and Stand Characteristics in Mature Managed and Old-Growth Boreal Mesic Forests in Southern Finland. For. Ecol. Manag. 2000, 128, 2011–2225. [Google Scholar] [CrossRef]
- Fridman, J.; Walheim, M. Amount, Structure, and Dynamics of Dead Wood on Managed Forestland in Sweden. For. Ecol. Manag. 2000, 131, 23–36. [Google Scholar] [CrossRef]
- Ekbom, B.; Schroeder, L.M.; Larsson, S. Stand Specific Occurrence of Coarse Woody Debris in a Managed Boreal Forest Landscape in Central Sweden. For. Ecol. Manag. 2006, 221, 2–12. [Google Scholar] [CrossRef]
- Karjalainen, L.; Kuuluvainen, T. Amount and Diversity of Coarse Woody Debris within a Boreal Forest Landscape Dominated by Pinus Sylvestris in Vienansalo Wilderness, Eastern Fennoscandia. Silva Fenn. 2002, 36, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, M.T.; Jonsson, B.G. Assessing Coarse Woody Debris in Swedish Woodland Key Habitats: Implications for Conservation and Management. For. Ecol. Manag. 2007, 242, 363–373. [Google Scholar] [CrossRef]
- Brin, A.; Meredieu, C.; Piou, D.; Brustel, H.; Jactel, H. Changes in Quantitative Patterns of Dead Wood in Maritime Pine Plantations over Time. For. Ecol. Manag. 2008, 256, 913–921. [Google Scholar] [CrossRef]
- Sippola, A.; Siitonen, J.; Kallio, R. Amount and Quality of Coarse Woody Debris in Natural and Managed Coniferous Forests near the Timberline in Finnish Lapland. Scand. J. For. Res. 1998, 13, 204–214. [Google Scholar] [CrossRef]
- Jonsson, B.G. Availability of Coarse Woody Debris in a Boreal Old-Growth Picea Abies Forest. J. Veg. Sci. 2000, 11, 51–56. [Google Scholar] [CrossRef]
- Man’ko, Y.I. Ajan Spruce; Nauka: Leningrad, Russia, 1987. [Google Scholar]
- Nordén, B.; Götmark, F.; Tönnberg, M.; Ryberg, M. Dead Wood in Semi-Natural Temperate Broadleaved Woodland: Contribution of Coarse and Fine Dead Wood, Attached Dead Wood and Stumps. For. Ecol. Manag. 2004, 194, 235–248. [Google Scholar] [CrossRef]
- Man’ko, Y.I.; Voroshilov, Y.P. Spruce Forests of Kamchatka; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Ivanov, A.V.; Zamolodchikov, D.G.; Loshakov, S.Y.; Komin, A.E.; Kosinov, D.E.; Braun, M.; Grabovskiy, V.I. Large Wooden Debris’ Contribution into a Biogenic Carbon Cycle in Coniferous-Deciduous Forests of the Southern Regions of Russian Far East. For. Sci. 2020, 4, 357–366. [Google Scholar] [CrossRef]
- Ageenko, A.S. Forests of the Russian Far East; Far Eastern Forestry Research Institute: Khabarovsk, Russia, 1969. [Google Scholar]
- Isaev, A.S. (Ed.) Program of Extraordinary Activities on Biological Struggle with Pests in Forests of Krasnoyarsk Kray. In World Bank Project; Federal Forest Service of Russia: Moscow, Russia, 1997. [Google Scholar]
- Klimchenko, A.V. Parameters of Carbon Cycle in Restoration-Age-Specific Row of Larch Forests with Small Shrubs and Green Mosses of Northern Taiga of Middle Siberia. Ph.D. Theses, Institute of Forest of Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia, 2007. [Google Scholar]
- Ranius, T.; Kindvall, O.; Kruys, N.; Jonsson, B.G. Modelling Dead Wood in Norway Spruce Stands Subject to Different Management Regimes. For. Ecol. Manag. 2003, 182, 13–29. [Google Scholar] [CrossRef]
- Brais, S.; Sadi, F.; Bergeron, Y.; Grenier, Y. Coarse Woody Debris Dynamics in a Post-Fire Jack Pine Chronosequence and Its Relation with Site Productivity. For. Ecol. Manag. 2005, 220, 216–226. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.H. Stand Structural Dynamics of North American Boreal Forests. Crit. Rev. Plant Sci. 2006, 25, 115–137. [Google Scholar] [CrossRef]
- Tarasov, M.E. Estimation of Coarse Woody Debris Decomposition Rate in the Forest of Leningrad Region. Proc. St. Petersburg For. Res. Inst. 2000, 1, 31–45. [Google Scholar]
- Tarasov, M.E.; Birdsey, R.A. Decay Rate and Potential Storage of Coarse Woody Debris in the Leningrad Region. Ecol. Bull. 2001, 49, 137–147. [Google Scholar]
- Storaunet, K.O.; Rolstad, J. How Long Do Norway Spruce Snags Stand? Evaluating Four Estimation Methods. Can. J. For. Res. 2004, 34, 376–383. [Google Scholar] [CrossRef]
- Bazhenov, V.F.; Kharuk, V.I.; Vologdin, A.I. Use of Wood of Burned Cedar Stands. In Proceedings of the Materials of Research in Forests of Siberia and Far East; Institute of Forest, Siberian Branch, Russian Academy of Sciences: Krasnoyarsk, Russian, 1963; pp. 319–337. [Google Scholar]
- Krankina, O.N.; Harmon, M.E.; Kukuev, Y.A.; Treyfeld, R.F.; Kashpor, N.N.; Kresnov, V.G.; Skudin, V.M.; Protasov, N.A.; Yatskov, M.; Spycher, G.; et al. Coarse Woody Debris in Forest Regions of Russia. Can. J. For. Res. 2002, 32, 768–778. [Google Scholar] [CrossRef]
- Komin, G.E. Estimation of Mortality of Stands by Dendrochronological Method. Ecology 1970, 2, 104–106. [Google Scholar]
- Stakanov, V.D.; Alexeyev, V.A.; Korotkov, I.A. Methods of estimation of stocks of living biomass and carbon of forests ecosystems. In Carbon in Ecosystems of Forests and Bogs of RUSSIA; Alexeyev, V.A., Birdsay, R.A., Eds.; Institute of Forests SB RAS: Krasnoyarsk, Russian, 1994; pp. 64–66. [Google Scholar]
- Lee, P. Dynamics of Snags in Aspen-Dominated Midboreal Forests. For. Ecol. Manag. 1998, 105, 263–272. [Google Scholar] [CrossRef]
- Aakala, T.; Kuuluvainen, T.; Grandpré, L.D.; Gauthier, S. Trees Dying Standing in the Northeastern Boreal Old-Growth Forests of Quebec: Spatial Patterns, Rates, and Temporal Variation. Can. J. For. Res. 2007, 37, 50–61. [Google Scholar] [CrossRef]
- Shvidenko, A.; Nilsson, S. Dynamics of Russian Forests and the Carbon Budget in 1961–1998: An Assessment Based on Long-Term Forest Inventory Data. Clim. Chang. 2002, 55, 5–37. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Kazanski, C.; Nagel, L.; Flower, C.E.; Curtis, P.S. Coarse Woody Debris and the Carbon Balance of a North Temperate Forest. For. Ecol. Manag. 2007, 244, 60–67. [Google Scholar] [CrossRef]
- Shvidenko, A.; Mukhortova, L.; Kapitsa, E.; Pyzhev, A.; Gordeev, R.; Fedorov, S.; Schepaschenko, D. Dead Wood in the Forests of Northern Eurasian: Field Measurements Database. Zenodo 2022. [Google Scholar] [CrossRef]
- Shorohova, E. Reserves and Ecosystem Functions of Coarse Woody Debris in Taiga Forests; V.L. Komarov Botanical Institute, Russian Academy of Sciences: Saint Petersburg, Russia, 2020. [Google Scholar]
- Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Blyshchyk, V.; Dmitriev, E.; Martynenko, O.; See, L.; Kraxner, F. Improved Estimates of Biomass Expansion Factors for Russian Forests. Forests 2018, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Vanderwel, M.C.; Malcolm, J.R.; Smith, S.M. An Integrated Model for Snag and Downed Woody Debris Decay Class Transitions. For. Ecol. Manag. 2006, 234, 48–59. [Google Scholar] [CrossRef]
- Isaeva, L.N. Physical Properties of Wood of Live Trees at Different Decay Stages. In Wood and Wood Materials; Institute of Forest, Siberian Branch, Russian Academy of Sciences: Krasnoyarsk, Russia, 1974; pp. 28–39. [Google Scholar]
- Isaeva, L.N. Humidity of Wood of Live Trees in Different Regions of Growth. In Wood and Wood Materials; Institute of Forest, Siberian Branch, Russian Academy of Sciences: Krasnoyarsk, Russia, 1974; pp. 18–28. [Google Scholar]
- Shorokhova, E.V.; Shorokhov, A.A. Spruce, Birch and Aspen Coarse Woody Debris Decomposition in Spruce Middle Taiga. Proc. SPbNIILH 1999, 1, 17–23. [Google Scholar]
- Kurbanov, E.A.; Krankina, O.N. Woody Detritus in Temperate Pine Forests of Western Russia. World Resour. Rev. 2000, 12, 741–754. [Google Scholar]
- Mukhortova, L.V.; Vedrova, E.F. Contribution of Coarse Woody Debris to Organic Matter Reserves in Forest Ecosystems of Secondary Successions after Cuttings. For. Sci. 2012, 6, 55–62. [Google Scholar]
- Rozhkov, L.N. Method for Assessment of Carbon Pools in Forests of Belarus. Rep. Belarus State Technol. Univ. 2011, 1, 62–70. [Google Scholar]
- Sandström, F.; Petersson, H.; Kruys, N.; Ståhl, G. Biomass Conversion Factors (Density and Carbon Concentration) by Decay Classes for Dead Wood of Pinus Sylvestris, Picea Abies and Betula Spp. in Boreal Forests of Sweden. For. Ecol. Manag. 2007, 243, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Shorohova, E. Basic density of coarse woody debris of the main forest-forming species by decomposition classes. In Forest Mensuration and Forest Inventory: Regulatory and Reference Materials for the North-West of the Russian Federation; Tetyukhin, S.V., Minaev, V.N., Bogomolova, L.P., Eds.; SPbSFTU: Saint Petersburg, Russia, 2004; p. 159. [Google Scholar]
- Shorohova, E. Decomposition classes of coarse woody debris. In Forest Mensuration and Forest Inventory: Regulatory and Reference Materials for the North-West of the Russian Federation; Tetyukhin, S.V., Minaev, V.N., Bogomolova, L.P., Eds.; SPbSFTU: Saint Petersburg, Russia, 2004; p. 158. [Google Scholar]
- Boulanger, Y.; Sirois, L. Postfire Dynamics of Black Spruce Coarse Woody Debris in Northern Boreal Forest of Quebec. Can. J. For. Res. 2006, 36, 1770–1780. [Google Scholar] [CrossRef] [Green Version]
- Usoltsev, V.A.; Tsepordey, I.S. Geographical Patterns of Changes in the Basic Density of Wood and Bark of Forest-Forming Speies of Eurasia. Sib. J. For. Sci. 2022, 3, 59–68. [Google Scholar] [CrossRef]
- Martin, A.R.; Domke, G.M.; Doraisami, M.; Thomas, S.C. Carbon Fractions in the World’s Dead Wood. Nat. Commun. 2021, 12, 889. [Google Scholar] [CrossRef]
- Thomas, S.C.; Martin, A.R. Carbon Content of Tree Tissues: A Synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; He, F.; Tian, D.; Zou, D.; Yan, Z.; Yang, Y.; Zhou, T.; Huang, K.; Shen, H.; Fang, J. Variations and Determinants of Carbon Content in Plants: A Global Synthesis. Biogeosciences 2018, 15, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.R.; Gezahegn, S.; Thomas, S.C. Variation in Carbon and Nitrogen Concentration among Major Woody Tissue Types in Temperate Trees. Can. J. For. Res. 2015, 45, 744–757. [Google Scholar] [CrossRef]
- Gao, B.; Taylor, A.R.; Chen, H.Y.H.; Wang, J. Variation in Total and Volatile Carbon Concentration among the Major Tree Species of the Boreal Forest. For. Ecol. Manag. 2016, 375, 191–199. [Google Scholar] [CrossRef]
- Mukhortova, L.V. Carbon and Nutrient Release during Decomposition of Coarse Woody Debris in Forest Ecosystems of Central Siberia. Folia For. Ser. A—For. 2012, 54, 71–83. [Google Scholar] [CrossRef]
- Mukhortova, L.; Pashenova, N.; Meteleva, M.; Krivobokov, L.; Guggenberger, G. Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests. Forests 2021, 12, 624. [Google Scholar] [CrossRef]
- Alexeyev, V.A.; Birdsey, R.A. Carbon in Ecosystems of Forests and Peatlands of Russia; Institute for Forest, RAS: Krasnoyarsk, Russia, 1994. [Google Scholar]
- Shvidenko, A.Z.; Schepaschenko, D.G.; Nilsson, S.; Buluy, Y.I. Tables and Models of Growth and Productivity of Forests of Major Forest Forming Species of Northern Eurasia. In Standard and Reference Materials, 2nd ed.; Federal Agency of Forest Management: Moscow, Russia, 2008. [Google Scholar]
- Leskinen, P.; Lindner, M.; Verkerk, P.J.; Nabuurs, G.-J.; Van Brusselen, J.; Kulikova; E.; Hassegava, M.; Lerink, B. (Eds.) Russian Forests and Climate Change. In What Science Can Tell Us; European Forest Institute: Joensuu, Finland, 2020. [Google Scholar]
- Shvidenko, A.; Schepaschenko, D. An Improvement of Methodolgy, Models and Reference Components for Greenhouse Gases Inventory Aiming at Their Aplication in National Reporting of the Russian Federation to the Secretariat of the UNFCCC and Other National Bodies (IMGGAR); IIASA Interim report; IIASA: Laxenburg, Austria, 2019; p. 240. [Google Scholar]
Tree Species | Density of Snags | Density of Logs | ||||||
---|---|---|---|---|---|---|---|---|
NT 1 | MT 1 | ST 1 | TF 1 | NT 1 | MT 1 | ST 1 | TF 1 | |
Pine | 450 | 395 | 382 | 384 | 328 | 268 | 255 | 290 |
Larch | 460 | 440 | 418 | 313 | 325 | 288 | 276 | 205 |
Spruce, Fir | 430 | 398 | 362 | 350 | 380 | 291 | 216 | 264 |
Siberian pine | 340 | 300 | 329 | 367 | 320 | 287 | 206 | 214 |
Oak | 520 | 520 | 510 | 510 | ||||
Stone birch 2 | 505 | 480 | 457 | 445 | 400 | 395 | 380 | 360 |
Other HW 3 | 510 | 490 | 470 | 455 | 450 | 425 | 395 | 380 |
Birch | 505 | 398 | 365 | 453 | 431 | 196 | 177 | 280 |
Aspen | 430 | 368 | 359 | 394 | 380 | 216 | 170 | 252 |
Siberian dwarf pine | 560 | 500 | 440 | 420 | 380 | 365 | 305 | 325 |
CWD Fraction | Our Estimation, m3 ha−1 | NFI-Based Inventory, m3 ha−1 | Difference, % |
---|---|---|---|
Snags | 15.5 | 13.6 | 14 |
Logs | 25.5 | 20.9 | 22 |
Stumps | 3.2 | 1.9 | 68 |
Dry branches of living trees | 2.8 | NA | |
Total CWD | 47.0 | 36.3 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shvidenko, A.; Mukhortova, L.; Kapitsa, E.; Kraxner, F.; See, L.; Pyzhev, A.; Gordeev, R.; Fedorov, S.; Korotkov, V.; Bartalev, S.; et al. A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia. Forests 2023, 14, 45. https://doi.org/10.3390/f14010045
Shvidenko A, Mukhortova L, Kapitsa E, Kraxner F, See L, Pyzhev A, Gordeev R, Fedorov S, Korotkov V, Bartalev S, et al. A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia. Forests. 2023; 14(1):45. https://doi.org/10.3390/f14010045
Chicago/Turabian StyleShvidenko, Anatoly, Liudmila Mukhortova, Ekaterina Kapitsa, Florian Kraxner, Linda See, Anton Pyzhev, Roman Gordeev, Stanislav Fedorov, Vladimir Korotkov, Sergey Bartalev, and et al. 2023. "A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia" Forests 14, no. 1: 45. https://doi.org/10.3390/f14010045
APA StyleShvidenko, A., Mukhortova, L., Kapitsa, E., Kraxner, F., See, L., Pyzhev, A., Gordeev, R., Fedorov, S., Korotkov, V., Bartalev, S., & Schepaschenko, D. (2023). A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia. Forests, 14(1), 45. https://doi.org/10.3390/f14010045