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1 Department of Forestry, Faculty of Forestry, University of Belgrade, 11030 Belgrade, Serbia
2 Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology,

Mendel University in Brno, 613 00 Brno, Czech Republic
3 General Directorate of the State Forests, 02-124 Warsaw, Poland
4 Department of Geomatics, Forest Research Institute, 05-090 Sękocin Stary, Poland
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Abstract: In recent years, forest fires have become an important issue in Central Europe. To model the
probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire
data and several types of predictors were collected or generated, including topographic, vegetation,
climatic, and anthropogenic features. The main objectives of this study were to determine the
importance of the predictors of forest fire occurrence and to map the probability of forest fire
occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model
forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were
applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables
was performed using the H2O platform permutation method. The most important variables were
the presence of coniferous forest and the distance to agricultural land according to the GBM and RF
methods, respectively. Model validation was conducted using receiver operating characteristic (ROC)
analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were
83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended
for the mapping of forest fire occurrence in the study area.

Keywords: forest fire; ignition probability; random forest; gradient boosted machine

1. Introduction

At the global scale, forests are threatened by various abiotic and biotic agents. Among
them, fire remains one of the most destructive factors with long-term impacts on forest
ecosystems [1,2]. During the last two decades, fires have substantially impacted forest
regions in Amazonia, North America, Siberia, Australia, and Africa [3]. In Europe, the
Mediterranean region and the Balkan Peninsula have the highest incidences of forest fires
and burnt areas [4]. In addition, Central European countries have experienced a substantial
number of forest fires. Almost 8500 hectares of forest and forest land in Poland were
completely decimated during the 2020 fire season [5]. During the fire season in 2022,
extreme fire events occurred in the Bohemian Switzerland National Park, resulting in more
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than 1400 hectares of forest in the Czech Republic being burnt (https://effis.jrc.ec.europa.
eu/apps/effis_current_situation/index.html, accessed on 21 September 2022). At present,
there is no safety zone for forest fires in Europe. Therefore, effective forest fire assessment
systems are warranted for all parts of Europe, especially given the substantial costs of forest
fire suppression [6]. This need was recognized in Poland in the early 1980s, resulting in the
development of the first fire risk classification for state forests [7]. This was then followed
by revision of the classification criteria in 1992 [8]. Currently, forest fire risk categories
(KZPL) are determined according to the Regulation of the Minister of Environment of
2006, which details the principles of forest fire prevention (https://isap.sejm.gov.pl/isap.
nsf/DocDetails.xsp?id=WDU20060580405, accessed on 16 August 2022). Forest fire risk
categories are revised during the development of forest management plans for specific
forest districts every 10 years. This is undertaken by the Forest Research Institute, and the
categories are determined based on the occurrence of fires; forest stand factors, including
stand age, tree species, and forest habitat type; climatic conditions; and anthropogenic
factors, such as population density. There are three categories of fire risk used in this
context; namely, high, moderate, and low risk. The results from this categorization are
used as the basis for all further planning of directional tasks in the field of fire protection.
They also determine the needs in terms of technical infrastructure and the forest area that
must be made available for firefighting operations. Forest fire occurrence using the Polish
Forest Research Institute method is determined for selected forecast zones encompassing
a group comprising several forest districts. The degree of risk is determined based on
direct measurements of litter moisture, air temperature, and relative humidity at a height
of 0.5 m above the ground, as well as the sum of precipitation within the preceding 24 h.
Measurements were taken at 9:00 a.m. and 1:00 p.m. from 1 March to 30 September.
Forest fire occurrence was predicted up to 24 h in advance [9]. The degree of risk for a
given day is used to determine the level of readiness of the forest fire protection system.
Similar variables describing fuel conditions, such as rainfall, temperature, wind speed, and
relative humidity, have been used in other studies [10–12]. Vegetation indices have been
widely used to predict fire risk [13–17] in forest fire occurrence modeling due to the strong
influence of human activities on fire ignition [18–21]. Terrain-related factors, such as slope,
elevation, and aspect, are usually derived from a digital elevation model (DEM). They are
often included in the models for fire risk prediction, among other variables [22–25].

Most systems used in Europe for forest fire risk assessment—nationally [26] or at the
continental level [27]—are based on meteorological data and are employed to determine
whether the conditions for the occurrence of forest fires are present. Therefore, anthro-
pogenic impacts are excluded from the risk assessment despite being the main cause of
forest fires in Europe [27]. Anthropogenic impacts can be assessed through the effects of
population density and specific behavior related to fire ignition, such as pastoral or agricul-
tural burning, on the occurrence of forest fires. Other anthropogenic features, such as the
proximity of an area to roads, railways, settlements, and agricultural land, can substantially
contribute to forest fires. Therefore, anthropogenic features need to be incorporated into ex-
isting models used for forest fire risk assessment in addition to meteorological, topographic,
and vegetation indices.

Various methods have been applied to evaluate the contributions of specific predictors
to the modeling and mapping of the probability of the occurrence of forest fires. Logistic
regression (LR) was the dominant method used during the 1990s and 2000s when dealing
with binary outcomes, such as the presence or absence of fire [28–30]. Development of
GIS technology allowed the wide use of the analytic hierarchy process (AHP) for forest
fire risk mapping [31–33]. Later, machine learning (ML) methods developed in the context
of artificial intelligence prevailed in wildfire science, with more than 300 articles being
published on this topic since the 1990s [34]. Among the various ML methods, the random
forest (RF) algorithm, which belongs to the decision tree branch of ML [35], has been
demonstrated to be one of the most accurate [36–39]. However, in recent years, the gradient
boosted machine (GBM) algorithm has emerged as a prominent method in forest fire

https://effis.jrc.ec.europa.eu/apps/effis_current_situation/index.html
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modeling, with almost equal performance to the RF algorithm [40,41]. The accuracy of
these models varies from 60% to 86.7% [42–45] for LR through to 77.2% to 79.3% for the
AHP [46–48], 82.5% to 98.9% for the RF model [45,49,50] and 84.2% to 88.9% in the GBM
model [41,51].

The main objectives of this study were to: (i) determine the importance of the various
meteorological, topographic, vegetation, and anthropogenic predictors for forest fire occur-
rence in the Lower Silesian Voivodeship of Poland using an approach based on machine
learning methods; (ii) map the probability of forest fire occurrence for the study area based
on developed models. To the best of our knowledge, this is the first study that has used
machine learning methods to predict the probability of occurrence of forest fires in Poland
by combining traditional and widely used variables.

2. Materials and Methods
2.1. Study Area

The Lower Silesian Voivodeship is located in the southwestern part of Poland on the
border with the Czech Republic and Germany (Figure 1). Forest covers 29% of the study
area. The forest of the Lower Silesian Voivodeship is managed by the Regional Directorate
of State Forests (RDLP) in Wroclaw, which is one of the 17 regional directorates of State
Forests. The total area managed by the Wroclaw RDLP is approximately 560,000 ha, of
which 542,000 ha is forest area and the remaining area is non-forest land, such as agricultural
land, wastelands, and water bodies. The spatial diversity of forest areas in the Wroclaw
RDLP area has led to the identification of two large, compact forest complexes. The first is
located in the northwestern part of the RDLP, which is known as the Lower Silesian Forest,
and the second southern part includes the forests in the Sudeten Mountains. Forests are
found in small, fragmented complexes in the remaining areas (Figure 2b). The elevation
ranges from 30 m asl up to 1603 m asl (Figure 2a) at the highest peak in the Sudeten
Mountains [52]. The mean annual temperature ranges from 4 ◦C in the mountains to 9.4 ◦C
in the lowlands, whilst the total annual precipitation ranges from 500 mm in the lowlands
to 1300 mm in the mountains [53].

Figure 1. Study area: the Lower Silesian Voivodeship of Poland.
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Figure 2. Altitude (a); selected CORINE land cover classes (b); and training, testing, and validation
datasets (c) in the study area.
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Owing to substantial geographical, soil, and climatic differences in the Wroclaw
RDLP area, there are distinct lowland (58%), upland (14%), and mountain (28%) habitats
(Figure 2a). The forest structure is dominated by coniferous and mixed coniferous forests,
which occupy 44% of the area, followed by mixed forests (35%) and deciduous forests
(21%) (Figure 2b). Coniferous species constitute 72% of the area for all stands [54]. The
main forest-forming species include pine (Pinus sp.) and larch (Larix sp.), comprising
approximately 50% of all stands, as well as spruce (Picea sp.) (25%), oak (Quercus sp.),
ash (Fraxinus sp.), maple (Acer sp.) (13%), birch (Betula sp.) and hornbeam (Carpinus sp.)
(5%), beech (Fagus sylvatica L.) (5%), and alder (Alnus sp.) (3%) [54]. The age structure is
dominated by stands aged 20–60 years [54].

2.2. Data Collection
2.2.1. Dependent Variable

Data on forest fire events were obtained from the Polish State Forest Information
System (SILP) for the period from January 2010 to December 2020. All the fire events
were identified using their coordinates during the period analyzed and were mapped to
1 × 1 km grid cells.

2.2.2. Independent Variables (Predictors)

Predictors were grouped into four main categories; namely, topography, vegetation,
anthropogenic factors, and climate. Specific variables within the categories were selected
based on previous studies on forest fire occurrence [28,45,55–61].

Topographic features, such as elevation, slope, aspect, the topographic wetness index
(TWI), and solar radiation (SR), were derived from Shuttle Radar Topography Mission
(SRTM) data with an average accuracy at the state level of precision of 6.2 m [62]. Average
values for the elevation (E), dominant aspect (A), TWI, and SR were calculated for each
polygon in a 1 × 1 km grid using ArcGIS software 10.2 (ESRI, Redlands, CA, USA).

Vegetation and land-cover data were obtained from the CORINE 2018 database
(https://land.copernicus.eu/pan-european/corine-land-cover/clc2018, accessed on 20
December 2021). The vector layer was intersected with the polygon grid data. Objects in
this vector layer were filtered for the following CORINE 2018 land-cover classes (CLC):
broad-leaved forest (BF), coniferous forest (CF), mixed forest (MF), natural grassland
(NG), moors and heathland (MH), transitional woodland–shrub (TWS), and sparsely
vegetated areas (SVAs) (Figure 2b). By intersecting the polygon grid data with the
polygon CLC layer filtered in this way, a new polygon layer with a table of attributes
containing a polygon grid object ID, a CLC class ID with its description, and the area of
the CLC class that fell into the respective grid polygon was generated.

Forest stand description data, such as the type of ground cover, habitat, and dominant
tree species, were obtained from the Forest Data Bank (https://www.bdl.lasy.gov.pl/portal/
mapy-en, accessed on 20 January 2022) and processed in the same way as the CORINE
2018 land-cover data.

Bioclimatic variables, precipitation during the fire season (PrecSe), and precipitation in
the driest quarter (PrecDQ) were downloaded as GeoTiff files with a spatial resolution of 30 s
(~1 km2) from the WorldClim portal (https://www.worldclim.org/data/worldclim21.html,
accessed on 18 February 2022). Mean values for rainfall (Rain_13) and forest cover humidity
(FCH_13), measured at 1 p.m., were calculated based on data collected from March to
September (2010–2020) at permanent measurement locations across the study area. The
period of the year (March to September) and the time span (2010–2020) correspond to the
main fire season and the fire event dataset, respectively. The coordinates of the measurement
locations and the values for rainfall (Rain_13) and forest cover humidity (FCH_13) for each
day in the observed period were then converted into a spatial point layer with points
representing measurement locations and a table of attributes with values for Rain_13 and
FCH_13. This layer was then used for interpolation using the ordinary Kriging method [63],
resulting in raster layers with pixels representing the values for rainfall (Rain_13) and the

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://www.bdl.lasy.gov.pl/portal/mapy-en
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forest cover humidity (FCH_13). Therefore, we were able to calculate the zonal statistics for
the rainfall (Rain_13) and the forest cover humidity (FCH_13) for each polygon in the grid
layer using the raster layers that represented the observed period.

Anthropogenic features, such as layers for roads, populated places, railroads, and
agricultural land, were used to calculate the distance from each object in a 1 × 1 km grid
to the nearest object on the respective layer. Therefore, the attribute table for the point
and polygon grid layer generated was extended with the distances to the nearest building
(DisBld), road (DisRo_B and DisRo_C), railway (DisRa), and agricultural land (DisAgL)
(https://www.openstreetmap.org, accessed on 20 January 2022). The local road density
(LRoD), regional road density (RRoD), and path density (PathD) in the grid were extracted
from the same source and mapped to each cell in the grid. Socioeconomic data, such as the
total number of inhabitants (TotIn), population density (PopD), population density in cities
(PopD_C), unemployment rate (UR), mean salary (MS), tourist accommodation (TouAcc),
and number of illegal landfills (NoIL), were extracted from the Statistics Poland Local Data
Bank (https://bdl.stat.gov.pl/bdl/start, accessed on 20 December 2021) and mapped to
each cell in the grid.

Following GIS analysis, Boolean values (yes/no) were assigned to the elements of
the grid using the Spatial Join tool. “Yes” values were assigned to the elements where
forest fires had historically occurred, and “no” values were assigned to those for which
they had not. Each cell with at least one historical record of a fire event from 2010 to
2020 was classified as a fire cell and coded as “1” (one). In total, 1680 cells from the Lower
Silesian Voivodeship were selected as fire cells and labeled with “1” for further analysis.
The remaining 17,588 cells in the study area without fire events for the period reviewed
were labeled with “0”.

After data acquisition, a database was created for the study area, and the next steps
were undertaken as detailed in the workflow chart (Figure 3).

Figure 3. Data processing workflow.

2.3. Variable Selection

The multicollinearity of the variables was assessed in two parts. In the first part,
explanatory variables were checked for multicollinearity using the variance inflation factor
(VIF) and tolerance [64]. Only variables with a VIF ≤ 10 and tolerance lower than 1 were
considered for further analysis (Table A1). The second part was performed in four steps
following the method proposed by Kuhn et al. [65]. Firstly, Spearman’s rho correlation
matrix was calculated for all the remaining variables. Pairs of variables with a correlation
coefficient higher than 0.7 were identified and removed in the second and third steps,

https://www.openstreetmap.org
https://bdl.stat.gov.pl/bdl/start
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respectively. Finally, the correlation matrix was recalculated until no two variables had a
correlation coefficient greater than 0.7 (Figure A1).

2.4. Model Training, Validation, and Testing

Prior to the creation of the models, data samples were randomly divided into training,
validation, and test subsamples including 70%, 15%, and 15% of the fire and non-fire cells,
respectively (Figure 2c). The H2O driverless artificial intelligence (DAI) platform was used
to create both the GBM and RF models. This platform automates some of the most difficult
machine-learning processes, such as feature engineering, model validation, model tuning, and
model selection [66]. Given that the main DAI settings ranged from 1 to 10 in both models, the
time, accuracy, and interpretability were set to 10. This setting allowed the platform to create
a model without time limitations and with high accuracy and interpretability. It also made
it possible to avoid the need for feature engineering. Models were created using a training
dataset. The validation dataset was then used to tune the model pipeline, and the test dataset
was used to test the model pipeline and create test predictions.

Model testing and validation were evaluated using receiver operating characteristic
(ROC) analysis of the test and validation datasets. Area under curve (AUC) values between
0.5 and 0.7 indicated low precision, values between 0.7 and 0.8 indicated acceptable pre-
cision, values between 0.8 and 0.9 indicated excellent precision, and values higher than
0.9 indicated outstanding model precision [67].

Model evaluation was conducted using a confusion matrix for the entire dataset of the
study area. For binary classification, a 2 × 2 matrix with rows representing the actual classes
and columns indicating the predicted classes were used for model metrics. Based on this
matrix, the following parameters were obtained: true positive (TP) indicated the number of
positive samples correctly predicted as positive, true negative (TN) indicated the number of
negative samples correctly predicted as negative, false positive (FP) indicated the number
of negative samples incorrectly predicted as positive, and false negative (FN) indicated the
number of positive samples incorrectly predicted as negative. From these four values, the
accuracy (Acc) and precision (Prec) were calculated according to the following formulas:

Acc = (TP + TN)/(TP + FP + TN + FN) (1)

Prec = (TP)/(TP + FP) (2)

Finally, the predictive capacities of the models produced were compared using the
distribution of fire cells in the study area across classes for the probability of forest fire
occurrence. To designate each cell as fire or non-fire, the cutoff point was determined.
For the GBM and RF models selected, the optimal cutoff point was determined using the
sensitivity equal-specificity method [68] with the easyROC web tool [69]. The probability
estimated for each cell was then compared to the optimal cutoff point. If the probability for
one cell estimated by the obtained models was higher than the optimal cutoff point, that
cell was then classified as a fire cell. In contrast, if the probability estimated was lower than
the optimal cutoff point, a particular cell was then classified as a non-fire cell. Cutoff values
were applied within the selected models to the dataset for the study area.

An additional model evaluation was conducted by comparing the fire event distri-
bution among probability classes [45,60] and combinations of probability and vegetation
classes to estimate the effect of land cover on ignition.

2.5. Evaluation of Variable Importance

Evaluation of the importance of the variables was performed using the H2O DAI
platform permutation method. This explains the extent to which the performance of a
model changes if the variable values are permuted. If the variable has low predictive
power, shuffling its values should have a limited effect on model performance. However, if
the variable is highly predictive, shuffling its values will reduce the model performance.
The difference between the performance of the model before and after permutation of a
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variable indicates the absolute importance of the permutation of that specific variable. For
the calculation of the permutation importance, each variable was shuffled once.

2.6. Mapping the Probability of Forest Fire Occurrence

The probability of forest fire occurrence calculated by the GBM and RF models for
fire cells and non-fire cells was used to map the probability of forest fire occurrence in
the Wroclaw RDLP area using ArcGIS 10.2. The produced map was classified into five
categories—very low (0.01–0.40), low (0.21–0.65), medium (0.66–0.85), high (0.86–0.95),
and very high (0.96–1.00) probabilities of forest fire occurrence —based on the percentile
method proposed by Romero et al. [70].

3. Results
3.1. Contributions of Variables to Forest Fire Occurence

From the 37 explanatory variables that met the conditions of having a VIF ≤ 10 and
Spearman’s rho correlation coefficient values lower than 0.7, 22 and 35 were included in
the GBM and RF models, respectively (Table 1). The highest impact on the probability
of fire in the GBM model had a relative contribution from coniferous forest (CF), as well
as birch, aspen, poplar, willow, and goat willow as the dominant tree species (Spec_2);
distance to agricultural land (DisAgL); leaf litter ground floor (Cov_1); and distance to
roads (DisRo C). Regional road density (RRoD) had the lowest impact in the GBM model.
In the RF model, the highest impact on the probability of fire was associated with distance
to agricultural land (DisAgL), whilst the lowest impact on forest fire occurrence had relative
contributions from heavily weedy ground floor (Cov_6) and transitional woodland–shrub
(TWS) (Table 1).

3.2. Model Evaluation

The predictive capacity of the model was tested using classification ROC analysis. The
AUCs of the ROC plots for the GBM and RF models were 84.7% and 82.3, respectively, for
the testing data (Figure 4). For the validation data, the AUCs of the GBM and RF models
were 83.3% and 81.3%, respectively.

Figure 4. ROC analysis with GBM and RF models for validation (a) and test (b) datasets.
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Table 1. Explanatory variable importance evaluation based on Gini impurity for RF and GBM models.

Variable Description Code Unit GBM Relative
Importance

RF Relative
Importance

Vegetation

Coniferous forest CF m2 1.000 0.416
Mixed forest MF m2 0.222

Transitional woodland–shrub TWS m2 0.009
Leaf litter ground floor Cov_1 m2 0.627 0.325

Heavily turfed ground floor Cov_5 m2 0.388 0.866
Heavily weedy ground floor Cov_6 m2 0.007

Herbaceous ground floor Cov_8 m2 0.314
Fresh broadleaved and mixed

broadleaved sites Hab_4 m2 0.297 0.331

Oaks, including red oak, common oak
and pedunculate oak, black locust, bird

cherry, hornbeam, sorb, ash, maple,
sycamore, elm, linden, black walnut

Spec_2 m2 0.448 0.222

Birch, aspen, poplar, willow, goat
willow Spec_4 m2 0.711 0.104

Alder, gray alder Spec_6 m2

Norway spruce Spec_7 m2 0.350 0.486

Anthropogenic

Distance to Buildings DisBld m 0.478 0.022
Distance to Road B level DisRo_B m 0.494 0.032
Distance to road C level DisRo_C m 0.558 0.247

Distance to rail DisRa m 0.536 0.395
Distance to agricultural land DisAgL m 0.686 1.000

Total inhabitants TotIn N 0.037
Population density PopD N/km2 0.251

Population density in cities PopD_C N/km2 0.050
Unemployment rate UR % 0.347 0.278

Mean salary MS PLN 0.191
Tourists’ accommodation TouAcc N/1000 0.317

Number of illegal landfills NoIL N/km2 0.162
Local road density in grid LRoD km/km2 0.380 0.161

Regional road density in grid RRoD km/km2 0.244 0.063
Path density in grid PathD km/km2 0.091

Topographic

Distance to water DisW m 0.502
Aspect A Degrees 0.156

Elevation E m 0.421 0.332
Average solar radiation A_SR W/m2 0.523 0.220

Topographic wetness index TWI 0.425 0.111

Climatic

Precipitation season PrecSe 0.444 0.464
Precipitation in driest quarter PrecDQ 0.383 0.237

Mean value of rainfall at 1 p.m.
calculated on the basis of data from

March to September (2010–2020)
Rain_13 0.412 0.345

Mean value of forest moisture humidity
at 1 p.m. calculated on the basis of data
from March to September (2010–2020)

FCH_13 0.343 0.202

3.3. Spatial Modeling of the Probability of Fire Occurrence

Zones with a very high probability for forest fire occurrence were situated in the
northern and southwestern parts of the study area in both models and covered 6.4% (GBM)
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and 7.4% (RF) of the study area. Zones with a very low probability for forest fire occurrence
were situated in the central and southeastern parts of the study area and covered 29.1%
(GBM) and 24.3% (RF) of the forested area (Figure 5).

Figure 5. Maps of forest fire probability based on percentages with the (a) GBM model and (b) RF model.

3.4. Model Validation

The GBM model performed better for the very low, low, and moderate risk classes
than the RF model in terms of identifying lower forest fire incidences. The GBM model
performed better for the high and very high risk classes, identifying higher incidences
of forest fires than the RF model (Table 2). When the aggregated incidence for the three
highest classes (moderate, high, and very high) was compared between the models, there
was a very slight difference between the GBM and RF models (93% vs. 86%). In contrast,
the GBM model classified only 6.7% of forest fire events in the two lowest classes (low and
very low), whereas the RF model classified 13.7% of forest fire events in the same group of
classes in the study area.
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Table 2. Forest fire distribution across different probability classes based on GBM and RF models for
the study area.

Forest Fire Probability
Percentile

Forest Fire
Probability Class GBM RF

0–40 Very low 13 35
41–65 Low 100 196
66–85 Moderate 224 460
86–95 High 550 487

96–100 Very high 793 502

Both models highlighted the contribution of coniferous forests to fire incidence, whilst
only the RF model showed moderate importance for mixed forests and the marginal effect
of transitional woodland and shrubs on fire incidence (Figure 6). In the GBM model, the
incidence of forest fire was concentrated in the high and very high risk zones with fire-prone
vegetation types, while in the RF model, the fire incidence spread into the moderate risk zone.

Figure 6. Forest fire distribution across vegetation and occurrence probability classes defined by the
(a) GBM and (b) RF models.

The predictive capacity of the models was assessed using classification tables com-
paring the observed and predicted values for the study area dataset after model tuning



Forests 2023, 14, 46 12 of 20

with the cutoff method. According to the overall classification, the GBM and RF models
correctly classified 85.2% and 77.8% of cases, respectively, when the models were applied
to the entire dataset (Table 3). The AUCs of the ROC plots for the GBM and RF models
were 93.7% and 86.8%, respectively. The ROC analysis demonstrated the high levels of
precision of the GBM and RF models, respectively (Figure 7).

Table 3. Classification tables for the study area dataset based on GBM and RF models after appli-
cation of cutoff values based on the sensitivity equal-specificity method, along with accuracy and
precision values.

Model Cutoff Predicted Acc Prec

0 1 (%) (%)

GBM 0.1326 Observed 0 14,987 2600 85.22 85.25

1 248 1433

RF 0.1357 Observed 0 13,685 3902 77.81 77.81

1 373 1308

Figure 7. ROC analyses of the GBM and RF models for all fire data in the study area.

4. Discussion

Assessing the probability of the occurrence of forest fires and its drivers is of the
highest importance for all endangered regions. In this study, the impacts of vegetation,
anthropogenic, topographic, and climatic factors on forest fire ignition were evaluated
using a ML approach. The GBM model used 22 variables to predict the probability of the
occurrence of forest fires, making it more applicable for smaller datasets [71,72] compared
to the RF model, which included 35 variables. Vegetation features, such as coniferous forest
(CF), were found to be the most significant factor contributing to the probability of the
occurrence of forest fires in the GBM model. This can be explained by the dominance of
coniferous (mostly pine) forests in the study area [54], which are highly prone to forest
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fires [73,74]. Anthropogenic features, such as distance to agricultural land (DisAgL), were
the second most important contributing variable in the GBM model, but they were the most
important according to the RF model. Such a high ranking for this variable in both models
is consistent with the findings of a previous study [45] that highlighted the wildland–urban
interface as the main driving factor for forest fire ignition [75–77]. The importance given by
the GBM model to other anthropogenic features, such as distances to buildings, roads, and
railways, confirmed the role of the wildland–urban interface (WUI) in forest fire ignition.
The distance to railways had a higher level of importance than the distance to roads in the
GBM model. In the RF model, the opposite relationship was recorded. Railways have often
been related to accidental or negligent fires. Together with road density, railways strongly
affect the probability of fires by increasing the numbers of residents and visitors [20]. A
similar study in China showed a positive effect from railway density on fire ignition, while
road density had a negative impact on fire ignition [21]. In contrast, research by Pinto
et al. [19] found a positive effect from road density on fire incidence.

Many of the variables related to ground cover type, habitat, and species composition—
part of an old but highly effective Polish system for fire risk assessment—showed very high
importance in both models. It was highly important to test the ability to implement those
variables in the new methods for fire risk assessment and to compare their contributions
to other widely used variables. However, the reproducibility of the models that use these
variables is limited to Poland due to lack of such data in other countries. Forest floor cover
types had a relatively high impact on forest fire in both models and were ranked third
(e.g., leaf litter ground floor (Cov_1)) and second (e.g., heavily turfed ground floor (Cov_5))
in the GBM and RF models, respectively. Forest floor cover is considered a fine fuel [78]
and is, therefore, strongly influenced by weather conditions [79–81]. It is important for
ignition of initial forest fires [73,82]. Initial fires usually start on the forest floor and may
develop into ground-type forest fires or, eventually, into crown fires. However, this only
occurs if the weather conditions are favorable for the burning process. In contrast, if the
forest floor cover is unsuitable for burning, the initial forest fire will end and there will
be no forest fire [83]. The importance of the weather conditions for fire ignition, which
is emphasized in many studies [81,83–85], was also confirmed in our study, particularly
by the GBM model. Topographic variables showed a relatively high contribution to the
probability of the occurrence of forest fires in our study. Solar radiation, the topographic
wetness index, and elevation were included in the GBM model as variables, while aspect
and distance to water were dropped by the algorithm. In contrast, these two variables
showed the highest contributions to the probability of the occurrence of forest fires among
the topographic features in the RF model. In general, topographic features modify the fuel
and its ability to burn [86–90].

Both models showed excellent performance in the validation and test datasets. How-
ever, the GMB model performed slightly better than the RF model based on the AUC
values. The relationship observed between the performances of the GBM and RF models in
prediction of fire occurrence was consistent with similar studies in other regions [40,51].
The GBM model shifted its performance from being excellent in the validation and test
datasets to outstanding when the obtained model was applied to the study area dataset.
Meanwhile, the RF model maintained the same performance when the model was applied
to the study area dataset as for the validation and test datasets.

The zones with the highest probability for forest fire ignition were located in the
central and northern parts of the study area in both models. The lowest probability
was found for the south and southwestern parts. The dominance of mountains with
climatic conditions less favorable for burning [91] explains the lower probability for the
occurrence of forest fires in the south and southwestern areas. In contrast, the flat areas
in the central and northern parts of the study area exhibit more pronounced drought
periods during summer, explaining the higher fire incidence. Higher temperatures and a
lack of precipitation lead to lower fuel moisture content [92], which makes the fuel and
the area more susceptible to ignition [82,93–95]. Low precipitation has been described
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as a determining factor for ignition [96]. Mapped zones with higher forest fire ignition
probabilities in the central and northern parts of the study area need to be intensively
monitored during the fire season. Such a measure would allow early detection of fires and
rapid response to them once detected, leading to a reduction in the burnt area. Fire-smart
silvicultural measures [97] can be applied in zones with higher probabilities of ignition
to reduce fire risk. Therefore, in addition to growing less flammable tree species [74],
which should be mandatory for afforestation, silvicultural measures, such as pruning
lower branches, need to be implemented to prevent the transfer of surface fire to crowns
in vulnerable zones. At the landscape level, fuel reduction treatments, such as thinning,
prescribed burning, and fuel breaks [78,98,99], can be incorporated into forest management
plans as effective tools to mitigate forest fire risk.

Ciesielski et al. [61] used logistic regression to evaluate the contributions of variables
to forest fire occurrence with weather features excluded as predictors. Kolenek et al. [100]
examined the impact of human activity on the occurrence of fires, emphasizing them to
the detriment of other groups of predictors. In this study, we explored the potential for the
incorporation of traditional variables used in Poland alongside widely used variables in
the prediction of forest fire occurrence using an innovative machine learning technique.
The produced maps can be used by forest professionals for the planning of long-term
measures aiming to decrease fire risk, especially in very vulnerable protected areas [101].
Some structural and non-structural measures that can reduce the risks related to arson can
only be implemented in urban areas if they are situated near forests, which is one of the
limitations of this study focused only on forest fires. Further studies need to focus more on
the assessment of both forested and urban areas to complete the picture of fire risk in the
Lower Silesian Voivodeship of Poland.

5. Conclusions

Regions considered to be resistant to extreme fire events will require effective systems
protecting them against forest fires in the future. The implementation of a machine learning
approach in fire risk assessment may be a potential solution to this problem. The GBM
model identified the coniferous forests, the distance to agricultural land, and leaf litter as
the most important driving factors for the occurrence of fires. The RF model identified the
distance to agricultural land, coniferous forests, and heavily turfed ground as the most
important predictors for the occurrence of forest fires. Both models displayed relatively high
predictive abilities. However, the GBM model was more efficient and may be recommended
for mapping the occurrences of forest fires in the Lower Silesian Voivodeship of Poland.
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Appendix A

Table A1. Independent variables considered for forest fire occurrence models with codes, units,
sources, tolerance and VIF.

Variable Code Unit Source Tolerance VIF

Vegetation

Broad-leaved forest BF m2

CORINE 2018

0.437 2.287
Coniferous forest CF m2 0.407 2.458

Mixed forest MF m2 0.468 2.137
Transitional woodland–shrub TWS m2 0.779 1.284

Leaf litter ground floor Cov_1 m2

Polish State Forest
Information

System (SILP)

0.629 1.589
Heavily turfed ground floor Cov_5 m2 0.568 1.761
Heavily weedy ground floor Cov_6 m2 0.645 1.551

Herbaceous ground floor Cov_8 m2 0.632 1.582
Fresh broadleaved and mixed

broadleaved sites Hab_4 m2 0.713 1.402

Oaks, including red oak, common oak
and pedunculate oak, black locust, bird

cherry, hornbeam, sorb, ash, maple,
sycamore, elm, linden, black walnut

Spec_2 m2 0.485 2.062

Birch, aspen, poplar, willow, goat willow Spec_4 m2 0.688 1.454
Alder, gray alder Spec_6 m2 0.715 1.398
Norway spruce Spec_7 m2 0.277 3.605

Anthropogenic

Distance to buildings DisBld m

OpenStreetMap

0.434 2.306
Distance to road B level DisRo_B m 0.742 1.349
Distance to road C level DisRo_C m 0.625 1.601

Distance to rail DisRa m 0.864 1.157
Distance to agricultural land DisAgL m CORINE 2018 0.442 2.263

Total inhabitants TotIn N

Statistics
PolandDB

0.419 2.385
Population density PopD N/km2 0.189 5.287

Population density in cities PopD_C N/km2 0.232 4.307
Unemployment rate UR % 0.459 2.179

Mean salary MS PLN 0.734 1.362
Tourists’ accommodation TouAcc N/1000 0.624 1.602

Number of illegal landfills NoIL N/km2 0.484 2.065
Local road density in grid LRoD km/km2 0.524 1.907

Regional road density in grid RRoD km/km2 0.656 1.525
Path density in grid PathD km/km2 0.478 2.092

Topographic

Distance to water DisW m OpenStreetMap 0.672 1.488
Aspect A Degrees

DEM
0.895 1.117

Elevation E m 0.183 5.45
Average solar radiation A_SR W/m2 0.779 1.284

Topographic wetness index TWI 0.899 1.112

Climatic

Precipitation during fire season PrecSe WorldClim 0.463 2.159
Precipitation in driest quarter PrecDQ 0.531 1.884

Mean value of rainfall at 1 p.m.
calculated on the basis of data from

March to September (2010–2020)
Rain_13 Meteorological sta-

tions/measurement
points (State

Forests)

0.217 4.603

Mean value of forest moisture humidity
at 1 p.m. calculated on the basis of data
from March to September (2010–2020)

FCH_13 0.236 4.229
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Figure A1. Correlation plot for all preselected variables based on Spearman’s rho coefficient.
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