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Abstract: Airborne LiDAR has been extensively used for estimating and mapping forest attributes at
various scales. However, most models have been developed separately and independently without
considering the intrinsic mathematical relationships and correlations among the estimates, which
results in the mathematical and biophysical incompatibility of the estimates. In this paper, using the
measurement error model approach, the error-in-variable simultaneous equation (SEq) for airborne
LiDAR-assisted estimations of four forest attributes (stand volume, V; basal area, G; mean stand
height, H; and diameter at breast height, D) for four forest types (Chinese fir, pine, eucalyptus, and
broad-leaved forest) is developed and compared to the independence models (IMs). The results
indicated that both the SEqs and IMs performed well, and the rRMSEs of the SEqs were slightly
larger than those of the IMs, while the increases in rRMSE were less than 2% for the SEqs. There
were statistically significant differences (α = 0.05) in the means of the estimates between SEqs and
IMs, even though their average differences were less than ±1.0% for most attributes. There were
no statistically significant differences in the mean estimates between SEqs, except for the estimates
of the D and G of the eucalyptus forest. The SEqs with H and G as the endogenous variables (EVs)
to estimate V performed slightly better than other SEqs in the fir, pine, and broad-leaved forests.
The SEq that used D, H, and V as the EVs for estimating G was best in the eucalyptus forests.
The SEq ensures the definite mathematical relationship among the estimates of forest attributes is
maintained, which is consistent with forest measurement principles and therefore facilitates forest
resource management applications, which is an issue that needs to be addressed for airborne LIDAR
forest parameter estimation.

Keywords: independence model; measurement error model approach; mathematical relationship;
area based approach (ABA)

1. Introduction

Forests play an irreplaceable role in the sustainable production of woody and non-
woody products, community development, food security, biodiversity conservation, main-
taining suitable conditions for life, and coping with global climate changes. Therefore,
forest monitoring can help improve the sustainable management, restoration, and reha-
bilitation of degraded forest landscapes [1]. Light detection and ranging (LiDAR) has
revolutionized the capability to accurately measure and depict the three-dimensional (3D)
structures of the forest canopy. As a result, in the last 20 years, airborne LiDAR, an ad-
vanced remote sensing technology, has been widely utilized in estimating forest attributes
at various scales [2–7], including the quadratic mean diameter (QMD), mean height, basal
area, stand volume, stem density and/or stand density index, aboveground biomass, car-
bon storage [8–11], and leaf area index [12]. Since 2002, airborne LiDAR has replaced
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conventional field measurements and has served in operational large-scale forest resource
inventories in the Scandinavian countries [13,14], and Canada [15]. In applications over
large areas, airborne LiDAR forest attribute estimation and mapping were performed using
an area-based approach (ABA) through a two-stage procedure [16,17]. When using LiDAR
variables for forest attribute estimation, forests have generally been stratified by tree species
groups, forest types (e.g., coniferous forests, mixed forests), age classes, site qualities, and
topographic reliefs [13,18–23]. For all attributes of a stratum, separate estimation models
were developed [24–28].

There are rigorous and exact mathematical relationships among stem volume, stem di-
ameter (or basal area), and tree height, between basal area and QMD. In forest mensuration,
these relationships are expressed in terms of an allometric equation. These mathemat-
ical relationships extend to the calculation of stand attributes when the study object is
extended from a single tree to a forest stand. For example, the stand volume is equal
to the multiplication of the basal area and mean height and the form factor (the ratio of
stand volume to the multiplication of basal area and mean height) [29], or calculated by an
allometric equation based on stand basal area and mean height [30]. The stand basal area
can be determined through stem density and QMD [31]. In addition, there is an intrinsic
mathematical relationship between stand carbon density and stand mean height, basal area,
and timber density [11,32,33]. These mathematical relations are weakened in mixed and
non-uniform multi-story forests to various degrees. In contrast, they are directly apparent
in even-aged pure forests. If all forest attributes are estimated independently, parametric or
nonparametric models usually lead to mathematical or biological inconsistencies among the
estimates of forest attributes [34], ignoring the intrinsic mathematical relationships among
forest attributes. Although this issue has long been addressed in the model development
of tree and stand volume [35], stand growth and yield simulation [36–38], site index table
construction [39], biomass estimation models [40–42], and carbon stock estimation [43].
However, it has not been investigated in airborne LiDAR-based forest attribute estimation
until recent years [44,45].

Due to the LiDAR system configuration and plot positioning, there are random or
systematic errors in the LiDAR-derived metrics. Similarly, there are random or systematic
errors in the measured forest attributes of the field plots due to plot sampling, field mea-
surements, and allometric equations. All these errors may increase the residual variance in
LiDAR-based forest attribute estimation [45], which may lead to invalid statistical tests [46].
In both parametric and nonparametric models, errors are constantly inevitable in forest
attribute estimation. When an estimate of a forest attribute containing errors is used as
a predictor variable to estimate another forest attribute, a substantial bias occurs due to
error transfers. An appropriate solution to this problem is to use error-in-variable (EIV)
modeling, which takes the errors into consideration and guarantees compatibility among
the estimates of forest attributes [44]. The EIV model is a model in which both the observa-
tions of the independent and dependent variables contain measurement errors [47] and can
be employed in both linear and nonlinear models. Kinane et al. applied error-in-variable
methods to evaluate multiple vegetation indices derived from Landsat 5 and 7 images,
and then calculated errors associated with their observations and corrected them in the
modeling process [48]. Yang et al. developed a compatible simultaneous equation system
for DBH and height to crown base (HCB) for Picea crassifolia Kom. trees in northwestern
China using LiDAR metrics and field measurement data of the single tree; they discovered
that the effect of errors associated with the regressors on the response variables (DBH
and HCB) could be illustrated by the simultaneous equation system, and guaranteed the
compatibility between the DBH and HCB models at an individual level [45]. Using the
same dataset, Fu et al. developed a compatible simultaneous system for individual tree
DBH and aboveground biomass (AGB) using error-in-variable models. They argued that,
by combining error-in-variable modeling and LiDAR data, the approach could provide
the potential to expand the estimations of both DBH and AGB from individual trees to
stands and improve their estimation [44]. However, there are insufficient studies regarding
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the compatibility estimation of the airborne LIDAR forest attributes. Therefore, additional
systematic and in-depth studies are needed for different forest types, different mathematical
relationships among forest attributes (different allometric equations for calculating forest
attributes), and the inconsistency of independent estimation.

This study focused on even-aged pure stands of four forest types in a large subtropical
study area. A system of compatible prediction models for mean height, mean diameter,
basal area, and stand volume was established using the error-in-variable simultaneous
equations approach, which maintained the intrinsic mathematical relationships among the
estimates of forest attributes. The specific objectives are: (1) to investigate the differences in
estimates between the simultaneous equation (SEq) and independence model (IM); and
(2) to investigate the differences in estimates among different SEqs and to select the best
SEq. We hope that this study will help to improve the consistency in the estimation of
forest attributes.

2. Materials and Methods
2.1. Study Site

The study area covered the entire Guangxi Zhuang Autonomous Region
(104◦28′–112◦04′ E, 20◦54′–26◦24′ N) in southern China, with an area of 237.6 × 103 km2

(Figure 1). In this study, airborne LiDAR data acquisition and field plot measurements were
performed over three years in three regions based on financial allocations: the Nanning
region (with an area of 22.1 × 103 km2), the eastern region (128.4 × 103 km2), and the
western region (87.1 × 103 km2).
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of field plots in three regions in study area; (c) locations of field plots.

Various landforms, such as mountains, hills, platforms, and plains, are distributed
alternately in the study area, accounting for 62.1%, 14.5%, 9.1%, and 14.3% of the total land
area, respectively. The topography is high in the northwest and low in the southeast, and
the study area appears to be tilted from north and northwest to south and southeast. It
is surrounded by mountains and plateaus; the central and southern parts are hilly with
platforms and plains, forming the shape of a basin, which is known as the “Guangxi basin”.
The highest elevation above sea level is 2145 m. The Tropic of Cancer crosses the central
part of the study area, while the southern part borders a tropical ocean, and the study area



Forests 2023, 14, 65 4 of 19

is in the subtropical monsoon climate zone. In 2016, the mean annual temperature around
the study area was 17.6–23.8 ◦C, and the mean annual temperature of the whole region was
21.4 ◦C. The total annual rainfall ranges from 723.9 to 2983.8 mm, with a region-wide mean
annual rainfall of 1647.7 mm, including a region-wide average rainfall of 1234.4 mm during
the flood season (April–September), accounting for 75% of the total annual rainfall.

From south to north, the study area comprises the northern tropics, southern sub-
tropics, and central subtropics, and the representative forest vegetation is the seasonal
rainforests, monsoon broad-leaved evergreen forests, and typical evergreen broad-leaved
forests, respectively. The coniferous and bamboo forests are scattered in each vegetation
zone. The Karst landscapes are widely distributed in the study area, with natural forests
mainly including limestone (Rocky Mountain) monsoon forests, limestone mixed evergreen
and deciduous broad-leaved forests, and limestone deciduous broad-leaved forests.

According to the 5th Forest Management Inventory of Guangxi (2017–2020), the forest
area in the study area was 11,741.0 × 103 ha, accounting for 49.4% of the total land area,
of which the Chinese fir (Cunninghamia lanceolata) planted forests, pine forests, eucalyptus
plantations, and broad-leaved forests accounted for 16.5%, 17.5%, 24.8%, and 41.2% of
the total forest area, respectively. The pine forests are mainly natural Pinus massoniana
forests, with a few natural stands of P. yunnanensis var. tenuifolia and a small area of
planted P. massoniana and P. elliottii forests. Industrial Eucalyptus spp. plantations are
intensively managed plantations with a short rotation (5–8 years). The broad-leaved forests
are multi-storied mixed forests composed of numerous tree species.

2.2. Field Plot Data

The field plots in the Nanning, eastern, and western regions were measured from
October 2016 to January 2017, November 2018 to May 2019, and August 2019 to January
2020, respectively. The forests in the study area were categorized into four types: Chinese
fir, pine, eucalyptus, and broad-leaved forest. The field plots were installed in the forest
resources database in 2015 using ArcGIS Desktop v10.2 (ESRI, Redlands, CA, USA) based
on the representativeness of the forest attributes, such as the mean height and stand volume.
Approximately 100 plots were installed for each forest type in each region. The plots were
distributed in clusters. The minimum spatial interval between the sample plots was 500 m
(200 m in the Nanning region). There were 107 clusters of plots, each with 5–30 field plots
(Figure 1). A hand-held dual-frequency differential global positioning system (GPS) was
used to navigate to the stand on which the plot was located. The rectangular plot size was
30 × 20 m, all set in a north–south orientation, and was subdivided into four subplots each
with a size of 15 × 10 m. The boundaries of the plot and subplots were measured and
set using a compass and a handheld laser rangefinder and marked by nylon ropes. The
Trimble GNSS (Global Navigation Satellite System) receiver with a real-time kinematic
(RTK) positioning method was employed to position the northwestern and southeastern
corners of the plot. Two RTK-GNSS instruments were used as the base stations, which
were located in a nearby open field. Using the post-correction approach, the positioning
accuracy was better than 1 m.

All live trees in each subplot with a DBH (1.3 m above the ground) greater than or
equal to 5.0 cm were measured using a steel tape and identified by species or species groups.
Three trees of average height and the tallest tree were selected to measure tree height with a
Haglöf Vertex IV hypsometer. The calculation attributes of the subplots included the mean
square diameter, mean height, basal area, stand volume, and stem density. The provincial
species-specific allometric equations based on the basal area and mean height [49] were
used to calculate the stand volumes. This study focused on the compatible models for
estimating the stand attributes of pure forests. A stand is generally assumed to be a pure
forest stand if the stems of the dominant species account for 80% of the total stem number.
As the species (species group)-specific allometric equations were used to calculate the stand
volume, we specified in this study that a forest stand was a pure forest stand only if the
stand volume of the dominant species accounted for 95% of the total volume. The following
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methods were used to calculate the stand attributes of the field plots: The basal areas (G) of
the four subplots were summed to obtain the basal area of the plots; the mean diameter (D)
and mean height (H) of the plots were obtained from the weighted average of the basal
areas of the subplots. The species (group)-specific allometric equations for calculating the
stand volume (V) are as follows [49]:

VFir = G× H × (0.4523 +
1.3133
H + 2

) (1)

VPine = G× H × (0.3645 +
1.9427
H + 2

) (2)

VEucalyptus = 0.9767× G× D−0.06843 × H0.8140 (3)

VBroadleaf = G× H × (0.4049 +
3.3787
H + 20

) (4)

Since the stand volumes of the broad-leaved forests were calculated using the same
allometric equation and were not divided into stand layers during the field measurement,
all mixed broad-leaved stands were treated as pure forests. There were 782 pure forest field
plots in the study area; the basic statistics of these plots are shown in Table 1.

Table 1. Summary statistics of the field plot data. CV is the coefficient of variation.

Forest Type Sample Size
Stem Density
(Stems ha−1)

Diameter at Breast
Height (D) Stand Height (H) Basal Area (G) Stand Volume (V)

Mean
(cm) CV (%) Mean

(m) CV(%) Mean
(m2ha−1) CV (%) Mean

(m3ha−1) CV (%)

Fir 139 683–6883 11.8 26.2 10.65 27.76 33.32 30.20 205.67 46.73
Pine 170 350–3967 19.5 28.0 14.32 27.26 28.57 32.30 206.91 47.95

Eucalyptus 267 517–3350 11.2 21.4 16.10 20.63 17.14 33.87 141.14 44.58
Broad-leaved 206 233–4800 13.6 34.5 10.49 27.25 19.27 40.62 110.13 58.88

2.3. LiDAR Data

LiDAR data were collected by several contractors from October 2016 to April 2017,
October 2018 to October 2019, and August 2019 to January 2020 in Nanning, eastern, and
western regions. The Riegl VQ−1560 and Riegl VQ−1560i laser scanning systems (Riegl
Laser Measurement Systems GmbH: Horn, Austria) were applied to collect LiDAR data
in all three regions with identical standards. The pulse repetition frequency of the laser
scanner was 1000 kHz, the scan frequency was 146 Hz, and the maximum scan zenith
angle was ±30◦. The beam divergence was 0.50 mrad with an average footprint size of
approximately 0.5 m. The relative aircraft flight altitude was approximately 2500 m, the
flight speed was 200–240 km h−1, the swath width was 1.3–2.2 km, and the overlap between
adjacent swathes was 21%–25%. The final average point density was ≥2.0 points m−2. The
point clouds were geo-referenced to a projection system of the China Geodetic Coordinate
System 2000 (CGCS2000).

Before being delivered to the end-users, the raw data were preprocessed by the
contractors using TerraScan software (TerraSolid, Ltd., Helsinki, Finland). The echo signals
were classified as ground returns or nonground returns using the adaptive triangulation
network (TIN) filter algorithm. A digital terrain model (DTM) with grid cells of 2 m was
generated using the ground returns. Then, we eliminate the effect of topography and obtain
the DTM-normalized LiDAR point clouds using the DTM.

LiDAR-derived metrics were extracted using all the echoes of the normalized point
clouds, including the mean (Hmean), standard deviation (Hstdev), and coefficient of varia-
tion (Hcv) of the point cloud distribution, the 95th height percentile (hp95); canopy closure
(CC), and the 50th and 75th density percentiles (dp50 and dp75). In addition, to characterize
the canopy vertical heterogeneity and understory vegetation within the stand, the leaf area
density (LAD) profiles and vertical foliage profile (VFP)-related metrics were extracted
from the LiDAR point clouds, which include the mean (LADmean), standard deviation
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(LADstdev), and coefficient of variation (LADcv) of LAD following Bouvier et al. [28], and
the mean (VFPmean), standard deviation (VFPstdev), and coefficient of variation (VFPcv)
of VFP following Harding et al. [50]. The LiDAR-derived metrics used in this study are
shown in Table 2.

Table 2. List of LiDAR-derived metrics used in the establishment of the prediction model.

Acronym Explanation of Metric Structural Aspect Predictor (Px)

H Mean stand height (m) Target variable -
D Diameter at breast height (cm) Target variable -
V Stand volume (m3 ha−1) Target variable -
G Basal area (m2 ha−1) Target variable -
Hmean Mean height of point clouds (m) Canopy height Phm
hp95 95th height percentile Canopy height Phm
Hstdev Standard difference of point height distribution (m) Canopy height Ph
Hcv Coefficient of variation of point height distribution Canopy height Ph
CC Canopy cover Canopy density Pdm
dp50 50th density percentile Canopy density Pd
dp75 75th density percentile Canopy density Pd
LADmean Mean of vertical leaf area density (LAD) profile Vertical heterogeneity Pv
LADstdev Standard difference of vertical LAD profile Vertical heterogeneity Pv
LADcv Coefficient of variation of vertical LAD profile Vertical heterogeneity Pv
VFPmean Mean of vertical foliage profile (VFP) Vertical heterogeneity Pv
VFPstdev Standard difference of VFP Vertical heterogeneity Pv
VFPcv Coefficient of variation of VFP Vertical heterogeneity Pv

2.4. Independence Model

Forest attributes are closely related to the 3D structures of their canopies. The LiDAR
point clouds can accurately depict the 3D structures of forest canopies [26,36,51]. The above
13 variables can be divided into three groups: height, density, and vertical structure variable
groups. Then, the independent model (IM) of forest attribute estimation can be separately
established by the multiplicative power model, and the model structure formulation is as
follows [52]:

ˆ
y = a0Pa1 Ha2 Sa3 + ε (5)

where
ˆ
y is the estimate of the stand attribute (V, H, G, and D); P, H, and S are a group of

LiDAR-derived variables depicting the canopy structure aspect of the density, height, and
vertical structure, respectively, with each group containing 1–2 variables; and a0, a1, · · · , an
are the parameters of the model.

To achieve a robust model for forest attribute estimation with good explanatory power,
high accuracy, and conformity with the principles of forest mensuration and ecology, a
multiplicative power model based on Equation (5) was constructed using a rule-based
exhaustive combination method. One or two variables in each variable group were selected
and include in Equation (5). A model formulation comprising 2–5 variables was obtained
for a specific parameter of a specific forest type. The selection and combination of variables
were performed according to the following rules:

(1) The variable combination scheme: 1–2 height variables + 1–2 density variables +/1
vertical structure variable.

(2) The model must comprise at least one primary height variable (Hmean or hp95)
and one primary density variable (CC). When two height variables are selected,
one primary and one secondary height variable (Hstdev or Hcv) can be included.
When two density variables are selected, one secondary density variable is selected in
addition to the CC.

(3) Each variable in the group of vertical structure variables can appear in the model separately.
(4) When the model comprises two variables, Equation (5) consists of one primary height

variable and one primary density variable. When the model comprises three variables,
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Equation (5) consists of one primary height variable, one primary density variable, and
one vertical structure variable. When the model comprises four variables, Equation (5)
consists of one primary height variable, one secondary height variable, one primary
density variable, and one vertical structure variable. When the model comprises
five variables, Equation (5) consists of one primary height variable, one secondary
height variable, one primary density variable, one secondary density variable, and
one vertical structure variable.

Eighty-six model formulations were obtained using the above rule-based exhaustive
combination approach, which was applicable to all forest attribute estimations of all forest
types. To achieve the best forest type-specific model formulation for specific forest attribute
estimation, each model formulation was subjected to fifty iterations of model calibration
and validation using the field plot dataset of that forest type. For each iteration (using the
Gauss–Newton algorithm), the model was calibrated using 80% of the samples selected
randomly from the dataset and validated using the remaining 20%. After all 50 repeats had
been completed, the mean rRMSE and mean R2 of that model formulation were calculated.
Repeating the above procedures, we achieved the best model formulation with the smallest
rRMSE and the largest R2 after traversing all 86 models.

All plots of the same forest type were used to calibrate the best model formulation,
which was validated by a 10-fold cross-validation method to obtain the best model for the
independent estimation of forest attributes.

2.5. Error-in-Variable Simultaneous Equations

From Equations (1)–(4), a forest attribute can be calculated with other attributes. In
other words, there is an intrinsic mathematical relationship among the forest attributes.
When they are estimated independently, the mathematical relationship among the estimates
may not satisfy Equations (1)–(4) because of estimation errors. LiDAR variables can be
used as exogenous variables to estimate two of the three stand attributes mentioned above
(for the eucalyptus forests, three of the four attributes were estimated). The two (or three)
attribute estimates can be used as endogenous variables to estimate the remaining stand
attribute using Equations (1)–(4). As estimation errors exist in the forest attributes, the
error-in-variable method (EIV) [47,53] was used to establish the simultaneous equations
(SEq) for estimating the above forest attributes. The vector form of the multiple nonlinear
error-in-variable SEq is:

f (yi, xi, c) = 0
Yi = yi + ei i = 1, 2, · · · , n
E(ei) = 0, cov(ei) = σ2ψ

(6)

where xi is the measurement value of the q-dimensional error-out-variable; yi is the mea-
surement value of the p-dimensional error-in-variable; f is the m-dimensional function; Yi
is the unknown true value of yi; the covariance matrix of the error is denoted as Φ = σ2Ψ,
Ψ is the error structure matrix of ei, and σ2 is the estimation error.

For the fir, pine, and broad-leaved forests, three SEqs were established, and for the
eucalyptus forests, four SEqs were established. As an example, SEqs of the fir forests were
as follows.

ˆ
H = a0

n
∏
i=1

xai
i + εH

ˆ
G = b0

m
∏
j=1

y
bj
j + εG

ˆ
V = b0

m
∏
j=1

y
bj
j × a0

n
∏
i=1

xai
i ×

(
0.4523 + 1.3133/(a0

n
∏
i=1

xai
i + 2)

)
+ εV

(7)
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l
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n
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n
∏
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xai
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)
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ˆ
V = c0

l
∏

k=1
zck

i + εV

ˆ
G = b0

m
∏
j=1

y
bj
j + εG

ˆ
H′ = c0

l
∏

k=1
zck

i /b0
m
∏
j=1

y
bj
j + εH′

(9)

Note: H and G are endogenous variables in SEquation (7); V and H are endogenous
variables in SEquation (8); and V and G are endogenous variables in SEquation (9).

The terms xi(i = 1, 2, · · · , n), yj(j = 1, 2, · · · , m), and zk(k = 1, 2, · · · , l) are the
LiDAR-variables used to construct the prediction models of H, G, and V, respectively;
the variables are the same as those used to in Equation (5); n, m and l are the number
of LiDAR-variables; a0, a1, · · · , an, b0, b1, · · · , bm, and c0, c1, · · · , cl are the estimates of the

model parameters;
ˆ

H
′
= 0.4523

ˆ
H × (

ˆ
H + 3.9036)/(

ˆ
H + 2), once

ˆ
H′ has been calculated

via SEquation. (9),
ˆ

H can be calculated; εH , εG, εV and εH′ are the residual errors of H, G, V,
and H′, respectively, and they all are assumed to obey a normal distribution with a mean
of 0. SEquations (7)–(9) ensure that the mathematical relationships defined by Equation (1)
are satisfied among the estimates of the fir forest attributes. The SEqs for the remaining
forest types can be established by referring to the above method.

The parameter estimations of the SEq were performed using the nlssystemfit (nonlinear
equation system estimation) function of R software version 3.6.1 [54]. The validating
methods of the equations were the same as those described in Section 2.4.

3. Result
3.1. Performance of the Independence Model

Generally, the best independence models for all forest attribute estimations of all four
forest types performed well. For the fir, pine, and eucalyptus forests, the rRMSEs of the
stand volume (V) and mean height (H) prediction models were approximately 20% and 10%,
respectively, and the rRMSE of the basal area (G) prediction models ranged from 15.77% to
19.71%. However, for the broad-leaved forests with a complex structure, the performances
of all IMs were slightly worse, with the rRMSE of the V, H, and G prediction models being
31.41%, 15.74%, and 27.22%, respectively (Table 3). Overall, compared to the reported
studies [13,21,24,28,55], and considering the large area and structural heterogeneity in this
study area, we considered the performances of the IMs excellent.

A paired t-test was performed on
ˆ

V IMi and VCi, and the results indicated that there

were no statistically significant differences (α = 0.05) between the mean
ˆ

V IMi and the mean
VCi in the fir, pine, and broad-leaved forests, but there was statistically significant difference
(α = 0.05) in the eucalyptus forests.



Forests 2023, 14, 65 9 of 19

Table 3. The parameter estimates of the best independence models and simultaneous equations of varied forest types and their goodness-of-fit statistics.

Forest
Type

Model
Type Attribute

Variables and Their Parameter Estimates Fitting Statistic Validation
Statistic

a0 Hmean hp95 Hstdev Hcv CC dp50 dp75 LADmean LADstdev LADcv VFPmean VFPstdev VFPcv R2 RMSE(%) R2 RMSE(%)

Fir IM V 5.0365 1.2623 −0.3574 1.2661 0.03870 0.867 15.96 0.858 15.99
H 1.4389 0.7897 0.02164 0.2902 0.08133 0.05820 0.858 10.07 0.850 10.08
G 8.1460 0.7273 −0.1939 0.9878 0.03551 0.692 15.86 0.673 15.77

SEq_G V 4.1305 1.2945 −0.3923 0.9746 0.04636 0.863 16.21 0.853 16.22
H 1.3651 0.8040 0.005625 0.18520 0.06160 0.06417 0.856 10.14 0.847 10.14
G 0.689 15.93 0.671 15.80

SEq_V V 0.864 16.14 0.854 16.16
H 1.4038 0.8016 0.01272 0.19910 0.06775 0.04897 0.857 10.12 0.848 10.13
G 6.9021 0.7962 −0.2401 0.8014 0.04387 0.685 16.03 0.666 15.90

SEq_H V 4.1094 1.2942 −0.3979 0.9664 0.04423 0.863 16.22 0.853 16.23
H 0.840 10.70 0.829 10.74
G 7.0148 0.7866 −0.2254 0.8740 0.04492 0.686 16.00 0.667 15.87

Pine IM V 6.1982 1.4577 0.4028 −0.06050 0.825 19.30 0.824 19.01
H 0.7293 1.0751 −0.01010 0.1209 0.895 8.69 0.889 8.73
G 6.6866 0.7472 −0.04336 0.2011 0.3149 −0.1095 0.702 17.25 0.700 17.01

SEq_G V 5.9387 1.4838 0.6551 −0.04736 0.821 19.50 0.821 19.14
H 0.7407 1.0697 0.007975 0.1112 0.894 8.70 0.889 8.74
G 0.675 18.02 0.673 17.73

SEq_V V 0.833 18.85 0.832 18.53
H 0.7596 1.0588 −0.01068 0.07242 0.893 8.77 0.887 8.80
G 7.0295 0.7428 −0.03240 0.3490 0.3502 −0.1117 0.697 17.39 0.696 17.10

SEq_H V 6.1386 1.4617 0.6392 −0.03340 0.822 19.47 0.822 19.11
H 0.893 8.77 0.888 8.78
G 4.8815 0.8090 −0.08092 0.5478 0.1012 −0.01289 0.689 17.63 0.688 17.33

Eucalyptus IM V 5.6930 1.3300 −0.01835 0.2280 0.3609 −0.1124 0.777 20.99 0.769 20.92
H 2.0316 0.7329 0.006645 −0.1352 0.08831 −0.01158 0.764 9.95 0.757 9.76
G 2.9668 0.8470 −0.05055 0.2734 0.2742 −0.1500 0.657 19.83 0.650 19.71
D 1.5173 0.7018 0.04169 −0.1269 0.07403 −0.01798 0.694 11.77 0.683 11.62

SEq_G V 4.6363 1.3431 0.007167 −0.003278 0.3653 −0.07611 0.773 21.20 0.765 21.12
H 2.3845 0.6689 0.02462 −0.20860 0.1018 −0.01090 0.761 10.02 0.755 9.85
G 0.655 19.90 0.649 19.77
D 1.8010 0.6344 0.05877 −0.1909 0.08666 −0.01665 0.691 11.83 0.682 11.69

SEq_V V 0.773 21.20 0.765 21.12
H 2.3393 0.6708 0.02836 −0.2194 0.1019 −0.001516 0.759 10.05 0.753 9.89
G 2.4802 0.8435 −0.01378 0.1630 0.2884 −0.08184 0.654 19.91 0.648 19.78
D 1.7722 0.6337 0.06019 −0.1975 0.08687 −0.009687 0.690 11.85 0.680 11.73

SEq_H V 4.1199 1.3622 0.01500 0.008849 0.3622 −0.04535 0.773 21.19 0.765 21.11
H 0.759 10.06 0.753 9.90
G 2.3542 0.8584 −0.01386 0.1857 0.2851 −0.07427 0.655 19.90 0.649 19.77
D 1.7558 0.6368 0.05998 −0.2179 0.08665 −0.01231 0.689 11.86 0.680 11.73

SEq_D V 4.9610 1.3252 0.008399 −0.006183 0.3712 −0.08210 0.773 21.20 0.765 21.12
H 2.3575 0.6678 0.02798 −0.2306 0.1033 −0.002148 0.759 10.06 0.753 9.91
G 2.6718 0.8236 −0.01287 0.1580 0.2936 −0.08883 0.654 19.91 0.648 19.78
D 0.671 12.20 0.661 12.11

Broad-
leaved IM V 5.0340 1.2488 0.2287 0.07030 0.678 31.38 0.669 31.41

H 2.2698 0.6531 −0.07921 0.09380 0.620 15.76 0.610 15.74
G 3.7473 0.7143 0.4489 0.06407 0.507 27.21 0.501 27.22

SEq_G V 4.5078 1.2782 0.2167 0.08187 0.677 31.42 0.667 31.45
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Table 3. Cont.

Forest
Type

Model
Type Attribute

Variables and Their Parameter Estimates Fitting Statistic Validation
Statistic

a0 Hmean hp95 Hstdev Hcv CC dp50 dp75 LADmean LADstdev LADcv VFPmean VFPstdev VFPcv R2 RMSE(%) R2 RMSE(%)

H 2.5117 0.6072 −0.08318 0.01247 0.617 15.82 0.606 15.80
G 0.488 27.71 0.483 27.69

SEq_V V 0.688 30.91 0.678 30.92
H 2.1363 0.6785 −0.07103 0.11390 0.619 15.78 0.609 15.75
G 3.1293 0.7583 0.3296 0.11350 0.496 27.51 0.492 27.46

SEq_H V 4.5103 1.2779 0.2220 0.08284 0.677 31.42 0.667 31.45
H 0.608 16.00 0.598 15.99
G 3.2912 0.7501 0.2817 0.07504 0.503 27.32 0.498 27.30

Note: IM was the independence model; for the fir, pine, and broad-leaved forest, SEq_V was the simultaneous equation in which H and G were endogenous variables to estimate V;
SEq_G was the simultaneous equation in which H and V were endogenous variables to estimate G; SEq_H was the simultaneous equation in which V and G were endogenous variables

to estimate H; the naming of the simultaneous equations for the eucalyptus forest was similar to above. Assuming that
ˆ

H IMi ,
ˆ
GIMi ,

ˆ
DIMi , and

ˆ
V IMi were the estimates of H, G, D, and V

of plot I obtained by the IMs, respectively. By using Equations (1)–(4), we were able to calculate the stand volume (VCi) of plot i. The variations (means) of the difference ( (VCi−
ˆ
V IMi)

(VCi+
ˆ
V IMi)

× 200)

between
ˆ

V IMi and VCi of the fir, pine, eucalyptus, and broad-leaved forests were −12.19%–4.95% (−0.03%), −14.25%–10.9% (−0.58%), −4.43%–8.86% (−0.20%), and −17.41%–8.68%

(−0.27%), respectively. Although the mean differences between
ˆ

V IMi and VCi were insignificant, the variations in the differences were large, and none of the differences were equal to 0.
These results indicated that the independence estimates of H, D, G, and V were incompatible, i.e., they did not satisfy the mathematical relationship defined by Equations (1)–(4).
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3.2. Performance of the Simultaneous Equations

The SEqs performed well for all four forest types. For the fir, pine, and eucalyptus
forests, the variations in rRMSEs of the V, H, G, and D estimation were 16.16%–21.12%,
8.74%–10.74%, 15.80%–19.78%, and 11.69%–12.11%, respectively. For the broad-leaved
forests, the rRMSEs of the V, H, and G estimations of the three SEqs were 30.92%–31.45%,
15.75%–15.99%, and 27.30%–27.369%, respectively (Table 3). The F-test results showed
that the regression effects were statistically significant (α = 0.05) for all 43 equations in all
13 SEqs.

The differences in R2 and rRMSE were extremely small among different SEqs for
the same attribute of the same forest type (Table 3). For example, in the pine forests,
the differences between the largest and smallest values of R2 among the three SEqs for
the V, H, and G estimations were 3.25%, 0.62%, and 3.62%, respectively. The relative
differences between the largest and smallest values of rRMSE were 1.33%, 0.19%, and 3.39%,
respectively. The differences in rRMSEs were less than 2.0% in over 80% of all 43 equations,
with the largest being 5.85%, indicating that all the SEqs performed essentially the same
and any two out of three forest attributes (four for eucalyptus forests) could be used as the
endogenous variables to estimate another attribute in the SEqs without obvious differences
in estimates. In addition, the R2 and rRMSE of the validation dataset for all attributes were
relatively close to those of the calibration dataset for all SEqs, indicating that all the SEqs
were quite robust. Based on the principle of the smallest rRMSE, the SEqs that used H and
G as the endogenous variables to estimate V (SEq_V) in the fir, pine, and broad-leaved
forests performed slightly better than the other two SEqs. In the eucalyptus forests, the SEq
that used D, H, and V as the endogenous variables to estimate G (SEq_G) outperformed
the three other SEqs.

The average differences in the estimates of the same attributes among the different SEqs
were insignificant, not exceeding ±1.0% (Table 3). However, the variations in difference
among the plots remained significant. Taking the fir forest as an example, the differences
in H, G, and V between SEq_V and SEq_G varied between 2.25% and 1.09%, −9.76% and
4.17%, and −10.88% and 5.01%, respectively. Between SEq_V and SEq_H, the variations in
the differences in H, G, and V were −12.69%–6.48%, −0.75%–6.68%, and −10.45%–5.15%,
respectively (Figure 2).
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Figure 2. The plot-level differences in the estimates of H, G, and V between the simultaneous
equations of the fir forest: (a) SEq_V vs. SEq_G, (b) SEq_V vs. SEq_H.

The results of the paired t-test showed that there were no statistically significant
differences (α = 0.05) in the means of the four forest attribute estimates between most of the
SEqs in the fir, pine, and broadleaf forests. In the eucalyptus forests, there were statistically
significant differences (α = 0.05) in the means estimates of D and G between the different
SEqs. However, there were no statistically significant differences (α = 0.05) in H and V
(Table 4).
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Table 4. Results of paired t-test of the mean stand attribute estimates for various forest types between the simultaneous equations.

Forest Type Equation/Model for
Comparison

∆H ∆G ∆V ∆D

Mean
(m)

Mean
(%)

Std.
(m)

Mean
(m2ha−1)

Mean
(%)

Std.
(m2ha−1)

Mean
(m3ha−1)

Mean
(%)

Std.
(m3ha−1)

Mean
(cm)

Mean
(%)

Std.
(cm)

Fir SEq_V vs. SEq_G 0.02 *** 0.16 0.05 0.02 ns −0.05 0.73 0.54 ns 0.09 4.58
SEq_V vs. SEq_H 0.02 ns 0.03 0.33 0.06 *** 0.24 0.19 0.89 * 0.28 4.57
SEq_G vs. SEq_H 0.00 ns −0.12 0.31 0.04 ns 0.29 0.75 0.35 *** 0.19 0.53

Pine SEq_V vs. SEq_D −0.02 * −0.36 0.15 0.08 ns 0.19 1.38 0.47 ns −0.07 10.17
SEq_V vs. SEq_H −0.04 ns −0.38 0.53 0.14 ns 0.00 1.04 0.54 ns −0.29 10.04
SEq_G vs. SEq_H −0.02 ns −0.02 0.53 0.06 ns −0.19 0.85 0.08 ns −0.22 1.28

Eucalyptus SEq_V vs. SEq_D 0.01 ns 0.08 0.09 0.00 ns −0.09 0.08 0.00 ns 0.06 0.06 0.03 * −0.02 0.18
SEq_V vs. SEq_H 0.00 ns −0.04 0.09 −0.03 *** −0.09 0.07 0.00 * −0.05 0.04 −0.25 *** −0.12 0.87
SEq_V vs. SEq_D 0.00 ns −0.02 0.03 −0.01 ** −0.10 0.05 −0.03 ns −0.31 0.29 −0.03 ns −0.09 0.49
SEq_G vs. SEq_H −0.01 ns −0.12 0.12 −0.03 *** 0.00 0.12 −0.01 ** −0.11 0.06 −0.28 *** −0.09 0.86
SEq_G vs. SEq_D −0.01 ns −0.10 0.10 −0.01 ns −0.02 0.08 −0.03 ns −0.38 0.30 −0.06 * −0.07 0.41
SEq_H vs. SEq_D 0.00 ns 0.02 0.08 0.02 ** −0.01 0.11 −0.02 ns −0.27 0.26 0.22 ** 0.02 1.18

Broad-leaved SEq_V vs. SEq_D 0.00 ns −0.01 0.17 −0.03 ns −0.26 0.37 −0.16 ns −0.27 3.59
SEq_V vs. SEq_H 0.02 ns 0.18 0.39 −0.07 * −0.55 0.53 −0.30 ns −0.39 3.56
SEq_G vs. SEq_H 0.02 ns 0.19 0.30 −0.04 ns −0.29 0.51 −0.13 *** −0.11 0.15

Note: * Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001; ns, not significant (α > 0.05).
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3.3. Comparison of the Simultaneous Equations and Independence Model

Compared to the IMs, the performances of the SEqs of all four forest types were
slightly worse (Table 3). Although there were a few equations in the SEqs in which the R2

was larger and the rRMSE smaller than those of the IMs, the R2 of most SEqs was smaller
than that of the IMs, and their rRMSE was larger than that of the IMs. The maximum
decrease in R2 was −3.91%, and the maximum increase in rRMSE was 6.55%. Nevertheless,
compared to the R2 and rRMSE of the IMs, over 90% of the equations in all 43 equations of
all 13 SEqs showed that the decreases in R2 and the increases in rRMSE were not greater
than 2%, indicating that the SEqs behaved similarly to the IMs.

Most of the average differences in the estimates between the SEqs and the correspond-
ing IMs were less than ±1.0%, and the maximum average difference did not exceed ±2.0%,
indicating that the estimates of the SEqs were close to those of the IMs. Nevertheless, the
variations in the differences were large. For example, in the pine forests, the variations in the
estimates of H, G, and V between the SEqs with H and G used as the endogenous variables
(SEq_V) and the IMs were −4.40%–1.56%, −19.72%–3.44%, and −23.61%–11.94%, respec-
tively; for the SEq_G, the variations in the estimates of the abovementioned attributes were
−0.18%–2.62%, −11.98%–26.26%, and −4.09%–29.32%, respectively, as shown in Figure 3.
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Figure 3. The plot-level differences of the estimates of H, G, and V between the SEqs and the IMs of
the pine forests: (a) H and G were used as the endogenous variables to estimate V; (b) H and V were
used as the endogenous variables to estimate G.

The results of the paired t-test of the estimates for all forest attributes of all forest types
between the SEqs and the IMs showed that there were statistically significant differences
(α = 0.05) in all attributes, except for the V of the pine forests (Table 5), despite the small
average differences.

Although there were some differences in the estimates of forest attributes between the
SEqs and IMs, and among the SEqs themselves, the estimations of all forest attributes of all
forest types were good for both the IMs and SEqs (Figure 4).
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Table 5. Results of paired t-test of the mean stand attribute estimates for various forest types between the simultaneous equations and independence model.

Forest Type Equation/Model for
Comparison

Sample
Size

∆H ∆G ∆V ∆D

Mean
(m)

Mean
(%)

Std.
(m)

Mean
(m2 ha−1)

Mean
(%)

Std.
(m2ha−1)

Mean
(m3ha−1)

Mean
(%)

Std.
(m3ha−1)

Mean
(cm)

Mean
(%)

Std.
(cm)

Fir SEq_G vs. IM 139 0.01 nc −0.27 0.12 −0.43 *** 1.34 0.95 −1.88 *** 1.16 5.42
SEq_V vs. IM 0.03 *** 0.43 0.10 −0.40 *** −1.39 0.68 −1.34 ** −1.07 7.13
SEq_H vs. IM 0.02 ns −0.39 0.39 −0.46 *** 1.63 0.53 −2.23 *** 1.35 5.46

Pine SEq_G vs. IM 166 −0.04 *** 0.33 0.04 −0.11 ns 0.04 1.26 −0.82 ns 0.87 6.23
SEq_V vs. IM −0.07 *** −0.69 0.13 0.15 ** 0.15 0.64 0.81 ns −0.94 9.35
SEq_H vs. IM −0.01 ns 0.31 0.47 −0.14 ns −0.15 1.05 −0.54 ns 0.65 5.90

Eucalyptus SEq_G vs. IM 267 0.04 ** 0.44 0.21 −0.11 *** −0.54 0.30 −1.12 *** −0.42 4.12 0.04 *** 0.54 0.14
SEq_V vs. IM 0.05 ** 0.52 0.25 −0.12 *** −0.62 0.28 −1.10 *** −0.45 4.09 0.04 *** 0.60 0.17
SEq_H vs. IM 0.05 ** 0.56 0.28 −0.09 *** −0.53 0.26 −0.85 *** −0.33 4.09 0.05 *** 0.65 0.18
SEq_D vs. IM 0.05 ** 0.27 0.27 −0.11 *** −0.26 0.29 −1.07 *** −0.18 4.11 0.07 ** 0.46 0.40

Broad-leaved SEq_G vs. IM 206 −0.03 *** 0.41 0.14 −0.14 * 0.70 0.81 −0.96 *** 1.36 1.51
SEq_V vs. IM −0.03 *** −0.42 0.05 −0.17 ** −0.97 0.77 −1.13 *** −1.64 4.00
SEq_H vs. IM −0.05 ** 0.60 0.37 −0.10 ** 0.41 0.48 −0.83 *** 1.25 1.61

Note: * Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001; ns, not significant (α > 0.05).
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Figure 4. Scatterplots of measured forest attributes vs. LiDAR-predicted 
forest attributes obtained from simultaneous equations and independence models 
(the solid line is the 1:1 line) of four forest types: (a–c) fir forests; (d–f) pine forests; 
(g–j) eucalyptus forests; (k–m) broad-leaved forests. 
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Figure 4. Scatterplots of measured forest attributes vs. LiDAR-predicted forest attributes obtained
from simultaneous equations and independence models (the solid line is the 1:1 line) of four forest
types: (a–c) fir forests; (d–f) pine forests; (g–j) eucalyptus forests; (k–m) broad-leaved forests.

4. Discussion

In this study, the error-in-variable simultaneous equation approach was used to
construct estimation models of the mean stand height, mean stand diameter, basal area, and
stand volume to achieve compatible estimates of forest attributes using airborne LiDAR
data. The estimation methods were consistent with forest mensuration and ecology, and
the mathematical consistencies were maintained among the estimates of forest attributes.
Therefore, the presented approach is suitable for various estimation applications of the
pure forest attributes and is useful for updating the forest resource database.

The estimation errors of all equations of the simultaneous equations were slightly
larger than those of the independence models (Table 3). For the same attributes, although
the average difference of the estimates between the simultaneous equations and the inde-
pendence models was insignificant, not larger than 2%, there was a significant difference
between their means (Table 5). The possible reasons were that during the iteration of SEq,
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the estimations of the forest attributes (such as
ˆ

H and
ˆ
G in SEquation (7)) using LiDAR

variables as the endogenous variables were affected not only by their own errors but also
by the errors of the attributes estimated using these variables as the endogenous variables

(e.g.,
ˆ

V in SEquation (7)). In other words, the estimation errors of all forest attributes were
treated synthetically during the calibration procedure of the simultaneous equations. Thus,
the equation calibrations were subject to more constraints, which affected the estimation
accuracy of all attributes to some extent.

The rRMSEs of the estimation equations for the same forest attribute were close among
the SEqs (Table 3). There were few statistically significant differences between the estimates
of the same stand attribute among the SEqs of the fir, pine, and broad-leaved forests
(Table 4), indicating that the performances of different SEqs were very similar. There were
statistically significant differences in the estimates of basal area and diameter at breast
height among the simultaneous equations of the eucalyptus forests. The potential reason
was that there were four equations in a SEq for the eucalyptus forest, one more than
for the other forest types; therefore, the model calibration procedures were subjected to
more constraints.

Equations (1)–(4) can be categorized into two classes: Equations (1), (2), and (4) belong
to a class in which H and G are used as predictors to calculate V. Equation (3) belongs to
another class in which V is calculated by H, D, and G. For the fir, pine, and broad-leaved
forests, the SEqs that used H and G as the endogenous variables to estimate V performed
slightly better than other SEqs, while the SEq that used DBH, H, and V as the endogenous
variables for estimating G was the best in the eucalyptus forests (Table 3). The best SEqs
were consistent with the classification of the allometric equations of the V calculations. This
is possibly related to the estimation accuracy of all attributes in independent models. The
estimation accuracy of V was lower than that of H, D, and G in all independent models
for all forest types. Therefore, the best simultaneous equation was the one that estimated
the remaining variables with the variables with the highest estimation accuracy as the
exogenous variables.

A previous study proposed an allometric equation system to estimate stand attributes.
This system estimated the key stand attributes, e.g., the stand volume and Lorey’s mean
height, using LiDAR variables. Then, these two attributes were used directly to calculate G,
QMD, and stand density (N, stems ha−1) using the allometric equations, which achieved
good estimation results while maintaining compatibility among forest attributes [45]. In

this study, we found that the differences between the VC directly calculated with
ˆ

H IM,
ˆ
GIM,

and
ˆ

DIM obtained from the IM based on Equations (1)–(4) and the
ˆ

V IM obtained from the
IM were small. There were no statistically significant differences, except in the eucalyptus

forests. The average difference in VC and the estimate of stand volume (
ˆ

VSE) obtained
from the SEq was also small. However, there were statistically significant differences
in their means in most of the equations. Furthermore, the estimation accuracy of other
attributes strongly depended on the estimation accuracy of these two key attributes, and
the stand volume was not a direct measurement predictor, indicating that the method
also had some limitations. In this study, we found that the SEq using LiDAR variables
as endogenous variables to estimate H and G, and then utilizing these two estimates as
exogenous variables to estimate V, performed the best among several SEqs. Since H and G
are directly measurable attributes in the field, these simultaneous equations can serve to
boost the estimation accuracy.

In this study, we performed the compatible estimation of airborne LiDAR forest
attributes by a multiplicative power model and error-in-variable simultaneous equations
and achieved good results. However, the response of the same variable in different tree
species is inconsistent. For instance, CC is positively correlated with H of fir, while it is
negatively correlated with other tree species (Table 3). Additionally, there are numerous
approaches to establishing prediction models of forest attributes using airborne LiDAR
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data, both parametric and nonparametric. There are various methods for establishing
error-in-variable simultaneous equations. Therefore, more experiments are required to fully
explore the performance of simultaneous equations in airborne LiDAR forest component
attribute estimation.

5. Conclusions

In this paper, simultaneous equations (SEqs) were developed to estimate the mean
stand height, mean diameter at breast height, basal area, and stand volume using airborne
LiDAR data based on the measurement error model approach. The estimates were also
analyzed and compared with the independence models (IMs). The following conclusions
were drawn:

(1) Both IMs and SEqs can achieve good estimation results for all forest parameters of all
forest types. The SEqs performed slightly worse than the IMs; however, the difference
was not obvious.

(2) The SEqs maintain the definite mathematical relationships among various forest at-
tributes, which are consistent with the principle of forest mensuration. The estimation
results are useful for forest resource management.

(3) For the Chinese fir, pine, and broad-leaved forests, the SEqs using the mean stand
height, and basal area as the endogenous variables to estimate stand volume per-
formed slightly better than the other two SEqs. For the eucalyptus forests, the SEqs
with the diameter at breast height, mean stand height, and stand volume as the en-
dogenous variables to estimate basal area (SEq_G) outperformed the other three SEqs.
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