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Abstract: In response to the challenge of collecting behavioral data on Amur tigers living in forests, a
remote real-time data collection approach is proposed. In this article, a novel attention mechanism
named CBAM-E is introduced, and CBAM-E as well as the CIoU loss function are incorporated
into the YOLOX object detection algorithm, resulting in a new YOLOX model. The new model
demonstrates significant performance improvements over the original model, with the mAP0.5

detection accuracy metric rising from 97.32 to 98.18%, indicating a boost of 0.86%, and the mAP0.75

metric increasing from 75.10 to 78.70%, marking an enhancement of 3.60%. The enhanced algorithm
is subsequently applied to remote terminal information collection, offering a reference for detection
algorithms in the study of wild behaviors of Amur tigers in forests, biodiversity conservation, and the
collection of related field data about Amur tigers in the wild.
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1. Introduction

With the growing impact of human activities on wildlife, the need for efficient methods
to monitor and understand changes in biodiversity has become more urgent. Traditional
wildlife monitoring and conservation practices require extensive fieldwork and specialized
expertise [1,2], limiting the ability to collect data and consuming valuable human resources.
Traditional methods for tracking forest wildlife, such as collar tracking, acoustic tracking
and sample line methods, are still the main methods used to collect and record information
about animals [3,4]. However, each of these methods has certain disadvantages, so re-
searchers strive to improve them. These challenges hinder researchers from understanding
animal behavior in their natural habitats and lead to the failure to meet the needs of pro-
tecting wildlife diversity. However, the emergence and widespread use of modern science
and technology, such as smart sensors, artificial intelligence and information technology,
has introduced a variety of automated sensors that surpass the spatial and temporal scale
data collection capabilities of humans. This has resulted in reduced monitoring costs and
an important role in wildlife research.

Currently, the key technological innovations for wildlife monitoring and research in
the forest area involve three main aspects: the commercial application of small, low-power
monitoring devices; real-time transmission networks based on wireless communication;
and automatic identification algorithms and models based on artificial intelligence [5,6].
The first two research tools have become mature and, in recent years, artificial intelligence
technology has become a research hot spot in various industries, including wildlife mon-
itoring. New research results are providing advanced tools for wildlife monitoring and
protection, including target detection technology, which is widely used in the field of
wildlife conservation. For example, Torney et al. [7] used the YOLOv3 detection algorithm
to achieve automatic counting of wild animals in images; Alsaadi and Nidhal [8] achieved
the classification and detection of mammals in the presence of light, occlusion, and other
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disturbances using the one-stage target detection algorithm SSD and classification algo-
rithm MobileNetv1; Patrizia Tassinari and Marco Bovo et al. [9] identified cows in real
time and detected their location and movements by adopting the object detection YOLO
algorithm; Yonghua XIE and Jueze JIANG et al. [10] detected and classified infrared thermal
images of the Amur tigers as well as their food chain (plum deer, horse deer, reindeer, and roe
deer), improving the YOLOv5 algorithm [11].

Object detection, serving as the cornerstone for research tasks such as individual
recognition and re-identification (from labeling to re-labeling), has garnered significant
attention from a multitude of researchers in this field. However, as the accuracy of object
detection algorithms continues to improve, these algorithms have become more complex
and resource-demanding. This trend has hindered detection devices from fully leveraging
their advantages of being lightweight, convenient, and fast. Consequently, this study takes
the example of Amur tiger species detection. Through an analysis of detection algorithms,
we identify anchor-free object detection algorithms suitable for field-edge devices. Further
refinement is applied to the selected algorithms. Without altering the total number of
parameters, the objective is to provide remote terminal devices with a high-precision
detection algorithm focused on species inhabiting forests. This endeavor aims to provide
research support for the study, conservation, and restoration of wildlife behavior among
large forest-dwelling animals by integrating computer vision algorithms with forestry
devices, contributing to the scientific foundation of biodiversity preservation.

2. Materials and Methods
2.1. Introduction of Datasets

This study uses the Amur Tiger Re-identification in the Wild (ATRW) dataset [12]. The
dataset was created by the World Wildlife Fund (WWF), using surveillance cameras and
tripod-mounted DSLRs to capture 8076 high-resolution (1920 × 1080) video clips of 92
large wild northeastern tigers at 10 zoos in China. In this study, the wild northeastern tiger
on object detection part of this data set was selected for the research. The information in
the object detection section of this data set is shown in Table 1.

Table 1. Specifications of the ATRW Amur Tiger Dataset.

Dataset The Amur Tiger

Image specifications 1920 × 1080
Number of images 4434

Training set and validation set 2762
Test set 1672

Number of GT Bounding Boxes 9496
Labeling Format PASCAL VOC

Among them, the training and validation sets in the data set will be assigned 2762
images according to 9:1. The following shows the sample photos of the Amur tiger taken by
DSLR and surveillance cameras, as shown in Figure 1.
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2.2. Preparation of Datasets

In order to enrich the ATRW dataset and train the model better for the performance of
the detection algorithm, we adopted three ways of pre-processing the dataset.

(1) Mosaic image enhancement [13]; Mosaic is to splice multiple images and is input
to the network for training. In this study, 4 images are spliced for data enhancement. (2)
Mixup data enhancement [14]: two images are merged according to a certain transparency,
and the whole training process is trained which uses only the fused new image. (3) Image
proportional scaling: all the images of the Northeast Tiger data set are scaled from 1920 ×
1080 in length and width to 640 × 640 correspondingly.

2.3. Detection Scheme

The remote monitoring of Amur tigers in forest environments using infrared trap
cameras offers distinctive advantages. These cameras possess exceptional concealment
and compact dimensions, rendering them inconspicuous within the forest setting and
minimizing disruption to the natural behavior of wildlife. Furthermore, certain infrared
trap cameras are equipped with wireless communication technology, enabling automated
data collection, prolonged operation, and remote transmission of images and data. This
capability empowers researchers to conduct real-time monitoring and analysis without the
need for on-site presence, enhancing efficiency and minimizing disturbance to the habitat.

Therefore, in order to facilitate the pragmatic implementation of the algorithmic model
for monitoring and data acquisition pertaining to the Amur tiger, a comprehensive detection
strategy is introduced. Specifically, this scheme involves the strategic deployment of in-
frared trap cameras in regions frequently traversed by the Amur tiger [15], including forests,
commonly frequented water sources, and well-trodden pathways. These infrared cameras
are equipped with a 1/3 FULL HD 3CMOS impact sensor, featuring a shutter trigger speed
ranging from 0.5 to 0.6 s and a maximum trigger distance of 15 m. They are meticulously
positioned to ensure optimal coverage and establish a seamless 4G communication interface
with the designated remote terminal server.

This connectivity mechanism facilitates instantaneous data transfer, enabling real-
time transmission of captured visual data. Upon the detection of any presence within the
designated areas, the infrared cameras diligently discern the presence of an Amur tiger.
Subsequently, the associated terminal device identifies the detected entity and promptly
initiates the collection of pertinent visual data for further analysis and archival. The
detection flow chart and scheme diagram are illustrated in Figure 2.
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2.4. Introduction of Anchor-Free Algorithm

Current target detection algorithms are classified into two main categories: anchor-
based algorithms and anchor-free algorithms. Anchor-free algorithms can detect the central
region and boundary information of an object directly without the need to cluster training
data with multiple anchor parameters of width and height, as required by anchor-based
algorithms. They are widely used for target detection in complex environments. Moreover,
in the post-processing task of target detection, anchor-based algorithms pre-assign multiple
anchor frames, and the processing delay is proportional to the overall number of anchor
frames, demanding high hardware performance from detection terminals. Therefore, to
ensure the detection speed and real-time performance of the detection device, this study
utilizes an anchor-free frame detection algorithm.

Anchor-free algorithms are categorized into two main ideas at present: (1) keypoint
detection method: first detect the upper left and lower right corners of the object, and
then form a detection box by combining the two detected corner points; (2) center-based
detection method: directly detect the central region and boundary information of the object
and decouple the classification and regression into two sub-networks.

YOLOX Algorithm

The YOLOX algorithm [16] represents a significant advancement within the YOLO
series, as it introduces the utilization of an anchor-free approach for genuine object detection.
The YOLOX algorithm is divided into YOLOX-nano, YOLOX-tiny, YOLOX-s, YOLOX-m,
YOLOX-l, and YOLOX-x in terms of the width and depth of the network. These six
models of networks are only differentiated in terms of depth and width, and their network
structures are identical. Therefore, in this paper, we only use YOLOX-s as the base structure
of this network, and the YOLOX-s network structure diagram, as shown in Figure 3.
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As shown in Figure 3, the YOLOX model employs the Focus structure in its feature
extraction part, which reduces the width and height information of the image. The model’s
feature extraction network uses CSPDarknet-53 as the backbone feature extraction network,
which first extracts three effective feature layers in the CSPDarknet-53 from the input image.
These effective features are then fed into the enhanced feature extraction network in the
feature fusion layer, which combines feature information from different scales. The Feature
Pyramid Network (FPN) structure [17] used by YOLOX in the feature fusion part is capable
of fusing the feature maps of three dimensions output from the feature extraction part, and
has a certain focus on each output, improving detection accuracy on targets of different
scales. In the prediction part, unlike previous YOLOX series models, the YOLOX model
uses a decoupled prediction head structure, which slightly increases the computational
complexity but greatly improves the model’s detection accuracy.
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Lastly, YOLOX uses the GIoU bounding box regression loss function. Although the
GIoU loss function in YOLOX proves efficacious, its refinement could be pursued by
incorporating a more comprehensive geometric perspective of the bounding box. This
augmentation has the potential to further elevate the precision of the detection model. Its
equation is as follows:

GIoU loss = 1− GIoU = 1−
(

IoU − |C1|
|C|

)
(1)

where IoU is the intersection-to-merge ratio, C is the minimum outer rectangle, and C1 is
the difference between C and the merge between the true and predicted boxes.

2.5. Algorithm Improvement

Through qualitative analysis of the YOLOX model, a follow-up improvement scheme
is developed to improve the accuracy of the model. (1) The CBAM-E attention mechanism
was incorporated in the middle of the backbone and neck; (2) the GIOU loss was replaced
by CIoU loss.

2.5.1. Enhanced Convolutional Block Attention Module

The attention mechanism learns features by “weighting” the features in the feature
map, allowing the network to focus more on useful features. The Convolutional Block At-
tention Module (CBAM) mechanism [18] is a new channel and spatial attention mechanism.
The CBAM is divided into two parts: the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM). CAM captures correlations between different channels within
the dataset. In forest environments, Amur tigers may be obstructed by trees or low light
conditions, leading to some image channels containing relevant information while others
have more noise. CAM helps the network automatically select and highlight channels
containing crucial information about tigers. Meanwhile, SAM captures feature relationships
at different spatial locations. In forests, the tiger’s location can be influenced by factors
such as trees and terrain, resulting in significant feature differences at different positions.
SAM helps the network focus on specific areas where tigers are located, thereby enhancing
detection accuracy.

Although the CBAM attention mechanism has achieved remarkable success in image
processing, it may face challenges when dealing with Amur tigers in forest settings due
to their diverse poses and varying camera angles of trap cameras. This could lead to
performance degradation or excessive computational complexity. Therefore, our study
aims to find a more effective way to improve object detection performance.

Compared to fully connected layers, 1 × 1 convolutional layers can still achieve
parameter sharing, increase the model’s non-linear capabilities, and reduce the risk of
overfitting. Furthermore, 1 × 1 convolutional layers operate on each pixel, preserving
spatial information in the image and enabling pointwise feature transformations, which
are valuable for constructing multi-channel feature representations.

With the motivation to enhance model performance, we have redesigned a novel
attention mechanism called the Enhanced Convolutional Block Attention Module (CBAM-
E), as illustrated in Figure 4. This improvement is expected to reduce model complexity,
improve computational efficiency, and deliver superior performance in object detection
tasks. It is anticipated that this enhancement will enable our model to excel in addressing
challenges such as low light conditions and target obstructions, which are common when
monitoring Amur tigers in forest environments.
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2.5.2. CIoU Loss Function

To address the shortcomings of IoU loss and GIoU loss concerning localization and
prediction, CIoU loss [19] considers more geometric factors of the prediction box and the

real box and solves this problem by introducing a penalty term
ρ2(b,bgt)

c2 . The CIoU loss
equation is shown below:

CIoU loss = 1− IoU +
ρ2(b,bgt)

c2 + αv

v = 4
π2

(
arctan wgt

hgt − arctan w
h

)2

α = v
(1−IoU)+v

(2)

where b and bgt denote the centroids of the real box and the prediction box, respectively,
bgt denotes the Euclidean distance between the two points, and c denotes the diagonal
distance of the smallest outer rectangle of the real box and the prediction box.

A good bounding box loss function should include three critical geometric factors:
overlap area, centroid distance, and aspect ratio. The CIoU loss not only takes into account
the geometric factors of the aspect ratio but also considers the consistency of the bounding
box’s width-to-height ratio. In the equation, α represents the parameter used to balance the
proportions, while v describes the parameter that captures the consistency of the aspect
ratio between the real box and the prediction box.

2.6. Model Evaluation Metrics

In this study, the metric mean of Average Precision (mAP), which measures the
accuracy of the model, is used in order to facilitate the evaluation of the performance
of the model, and two thresholds of mAP0.5 and mAP0.75 are used to assess the model.
The higher the threshold value is, the more stringent the performance requirement of the
model. Meanwhile, the total number of parameters of the model is added as the evaluation
criterion of the model in order to be able to deploy the algorithm to the hardware to provide
feasibility, which is used to measure the size of the model.

3. Results
3.1. Training the YOLOX Model

In this experiment, the hardware environment consisted of an Intel i5 12400f CPU and
NVIDIA GeForce RTX 3060 GPU, and the software environment was Python 3.10 with
the Windows 10 operating system. YOLOX network models were adopted to evaluate
and analyze the ATRW dataset separately, which used a learning rate decay with an initial
learning rate of 0.01, and after 300 iterations, the training results were obtained, as shown
in Table 2.



Forests 2023, 14, 2000 7 of 13

Table 2. Training results of YOLOX algorithm.

Model mAP0.5(%) mAP0.75(%) Total Params (Million)

YOLOX 97.32 75.10 8.938
YOLOX_CBAM 97.84 76.33 8.938

YOLOX_CBAM-E 98.05 78.37 8.938

As shown in Table 2, after CBAM was introduced into YOLOX, mAP0.5 of the model
increased by 0.52% from 97.32 to 97.84%. mAP0.75 increased by 1.23% from 75.10% to 76.33%.
This confirms our earlier analysis that the incorporation of CBAM, particularly spatial
attention, allows the model to better comprehend and focus on the position and contextual
information of the targets. For large animals like the Amur tiger, the spatial attention
mechanism aids in capturing the target’s location, posture, and surrounding environment,
especially in forested and low-light conditions, thereby enhancing the detection accuracy.

Subsequently, after introducing CBAM-E into YOLOX, the mAP0.5 reached 98.05%,
while mAP0.75 reached 78.37%. Compared to YOLOX and YOLOX_CBAM, this represents
an improvement of 0.73% and 0.21% in mAP0.5. Furthermore, mAP0.75 improved by 3.27%
and 2.04% over YOLOX and YOLOX_CBAM. These results demonstrate that the refined
CBAM, after improvement, can dynamically adjust channel and spatial weights of feature
maps, making it better suited for the Amur tiger detection task in forested environments.
This performance enhancement is particularly pronounced when using higher accuracy
thresholds (mAP0.75). Moreover, the introduction of attention mechanisms had almost no
impact on the model’s total parameters.

3.2. Training the YOLOX Improvement Model

After the introduction of the CBAM-E module, the performance of the model has been
significantly improved. Therefore, CIoU loss is further introduced to design the ablation
experiment of the overall improvement of the model and verify the improved performance
of the model. The experimental results are presented in Table 3.

Table 3. Ablation verification experiments of the YOLOX algorithm.

YOLOX CBAM-E CIoU mAP0.5(%) mAP0.75(%)

X X 97.91 77.60
X X 98.05 78.37
X X X 98.18 78.70

The final improvement is to replace the original GIoU loss function of the bounding
box of the model with the CIoU loss function. As shown in Table 3, the improved YOLOX
model exhibited an increase in mAP0.5 from 98.05 to 98.18%, representing a gain of 0.13%.
Similarly, mAP0.75 increased from 78.37 to 78.70%, indicating an improvement of 0.33%.
This improvement can be attributed to the use of CIoU, which considers the complete
intersection between bounding boxes more comprehensively compared to GIoU. This
results in a more precise measurement of the matching degree between predicted and
actual bounding boxes. In the Amur tiger dataset, factors such as tree obstruction and low
light conditions can lead to blurry or partially visible object boundaries. CIoU handles
these situations better, providing a more accurate matching metric. Additionally, CIoU is
less sensitive to scale variations, which is crucial in the wild, where tigers may be captured
at varying distances and angles, leading to significant scale changes. CIoU adapts better to
these scale variations, ensuring consistent performance.

In summary, CIoU offers advantages in object detection, including higher matching
accuracy, insensitivity to scale variations, and a smoother optimization curve compared
to GIoU. These qualities enhance the detection performance, particularly in challenging
scenarios like the ATRW dataset, yielding more precise results. Therefore, in practical
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applications, employing the CIoU loss function can enhance the performance of object
detection models on specialized datasets.

According to Table 3, whether CBAM-E and CIoU are introduced individually into
YOLOX or together, there is an observable performance improvement in the model. This
confirms the effectiveness of the YOLOX enhancements. The improved YOLOX model
is capable of handling object detection tasks in complex environments, especially when
detecting large objects in forested areas. The modified YOLOX model structure is depicted
in Figure 5.
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3.3. Contrast Experiment

After improvements, YOLOX has demonstrated a significant enhancement in its
detection performance. To showcase the model’s superiority compared to other models,
comparative experiments were designed. Horizontal comparisons were conducted with
the anchor-based YOLOv5s algorithm, while vertical comparisons were made with the
anchor-free CenterNet algorithm [20]. Each experiment underwent 300 epochs, and the
experimental results are presented in Table 4.

Table 4. Horizontal and vertical contrast experiments of the YOLOX algorithm.

Model mAP0.5(%) mAP0.75(%)

The improved YOLOX 98.18 78.70
CenterNet 96.71 61.55
YOLOv5s 97.68 76.63

As shown in Table 4, the improved YOLOX model has been subjected to rigorous
comparative experiments, contrasting it horizontally with the anchor-based YOLOv5s
algorithm and vertically with the anchor-free CenterNet algorithm. These experiments
yielded notably higher mAP0.5 and mAP0.75 values compared to both of these algorithms.
This outcome can be attributed to several factors: (1) enhanced attention mechanisms: the
introduction of CBAM-E attention mechanisms in YOLOX allows the model to focus on
relevant features and regions of interest effectively. This is particularly advantageous in
scenarios with obscured targets, such as in forested environments, where East Siberian tigers
are often partially hidden by vegetation. The attention mechanisms help the model better
understand and highlight important information. (2) Adaptation to real-world scenarios:
the East Siberian tiger dataset is challenging due to the animals’ diverse poses, variable
distances, and occlusion by environmental elements. YOLOX, especially with CBAM-E
and CIoU, has shown superior adaptability to these real-world conditions, improving the
detection accuracy.
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3.4. Model Test

This section aims to test the improved model and analyze its detection results to
observe the detection results on the test set. Compared with the performance of the
model before the improvement, the performance of the improved model has been greatly
improved in mAP. Some of the model detection results on the test set are shown in
Figures 6 and 7.
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In real-world wildlife monitoring scenarios, it is common for subjects of interest, such
as the Amur tiger, to be partially visible at the edges of the camera’s field of view due
to their unpredictable movements within dense vegetation. To address this challenging
situation, our algorithm, which combines the YOLOX model with the CBAM-E attention
mechanism, exhibits a remarkable capability. Through a comprehensive evaluation of
a dataset collected from a natural reserve with high vegetation density, we specifically
designed scenarios mimicking subjects partially entering the camera frame. Our results,
as presented in Figure 8, indicate that the algorithm consistently and accurately detects
these partially visible subjects. The confidence scores generated by the algorithm reflect the
degree of subject visibility, providing valuable insights into the detection reliability.
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3.5. Analysis of the Experimental Results

Based on the obtained detection results, it can be observed that the improved YOLOX
model, regardless of whether the Amur tiger is in open areas near water sources or in
dimly lit forests, is able to detect all Amur tigers. Through a comparison of the detection
performance before and after the improvements, the enhanced algorithm exhibits higher
confidence in detecting Amur tigers, particularly in scenarios involving multiple tiger
gatherings or under conditions with light interference. Moreover, the generated bounding
boxes of the improved algorithm better conform to the contours of Amur tigers compared
to the previous version, eliminating instances where the generated bounding box overlaps
with the detected Amur tigers.
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4. Discussion

In this study, we focused on the Amur tiger as our research subject. Addressing the
context of Amur tigers within forest ecosystems, we devised a remote monitoring and data
collection system by combining infrared trap cameras with terminal servers. Furthermore,
we introduced a novel attention mechanism, CBAM-E, and incorporated it along with the
CIoU loss function to develop a new YOLOX algorithm. The new algorithm improves
the detection accuracy of the model without increasing the total number of parameters.
The mAP0.5 is 98.18%, and the mAP0.75 is 78.70%. Amur tigers are large wild animals that
typically inhabit forest environments, often concealed by trees and vegetation. They are also
active under low light or weak nighttime lighting conditions. These unique characteristics
demand that the object detection model accurately captures information about Amur tigers.

In the past, the collection and organization of wildlife-related data relied heavily on
manual efforts, resulting in significant time consumption when extracting the desired
information from massive image datasets. However, in recent years, researchers have
developed efficient image recognition and detection models based on artificial intelligence
technology. These models, coupled with forestry devices such as infrared trap cameras
and drones, have been increasingly employed in automatic species identification and
rapid assessment of animal images. This has greatly enhanced the efficiency of collecting
animal-related data and shortened the research cycle for studying animals. Amur tigers
are large wild animals that typically inhabit forest environments, often concealed by trees
and vegetation. They are also active under low light or weak nighttime lighting conditions.
These unique characteristics demand that the object detection model accurately captures
information about Amur tigers. In studies related to the Amur tiger, some researchers [21]
have achieved automatic individual recognition of Amur tigers using deep neural networks,
achieving an average accuracy rate of 92.37% for identifying facial and body stripe patterns
on the left and right sides. Other studies [10] have employed infrared thermal imaging
to capture images of Amur tigers and their food chain, and through improvements to the
YOLOv5 algorithm, achieved a recognition accuracy of 93.2%. Similarly, utilizing the
ATRW dataset, researchers [22] conducted species detection studies on Amur tigers using
the SSDlite algorithm, achieving a detection accuracy of 95.5%. In comparison, the metrics
of this study surpassed those by 2.68%. The enhanced YOLOX algorithm demonstrates
robust performance under challenging conditions, such as low illumination, the presence
of clustered and occluded targets, and obstruction by trees and vegetation.

Despite the growing emphasis on Amur tiger conservation efforts and the increasing
tiger population, their overall numbers remain relatively low compared to other wildlife
species. Consequently, publicly available datasets for Amur tigers are not as extensive as
those for other animals. However, our dataset, comprising 4434 images, each featuring
multiple Amur tigers, provides a foundational resource for initial research and algorithm
analysis focused on large-scale wildlife like the Amur tiger. By demonstrating the feasibility
of algorithm development with a smaller dataset of Amur tigers, we believe that similar
endeavors involving larger datasets for other wildlife species can proceed more smoothly.
In addition, we plan to collect image data related to the Amur tiger in various scenarios,
including high vegetation, partially obscured subjects, and other conditions. This initiative
aims to enrich the open dataset and provide valuable data contributions for future research
on large wild animals, such as the Amur tiger.

5. Conclusions

The accurate and intelligent monitoring of large wild animals is crucial in the field
of animal conservation. In this study, we propose an improved YOLOX algorithm that
enables the development of a lightweight model for deployment on detection terminal
devices. By integrating artificial intelligence with intelligent sensing devices, this model
offers a research direction for the remote collection of image information related to Amur
tigers. This approach enhances our understanding of the species’ ecological and behavioral
patterns, providing a scientific basis for Amur tiger conservation.
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In future research, expanding the Amur tiger detection dataset will further enhance the
model’s detection performance. Additionally, integrating network information technology
and “3S” technologies will optimize the detection capabilities of detection devices, enabling
cloud storage and visual analysis. This will contribute to improving the accuracy of intel-
ligent identification regarding species, individuals, and behaviors, while also enhancing
the efficiency of handling large-scale data. Ultimately, these advancements will provide
comprehensive technological support for the establishment of natural conservation systems
in forest areas dedicated to the protection of large wild animals.
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