Factors Influencing the Uptake of Agroforestry Practices among Rural Households: Empirical Evidence from the KwaZulu-Natal Province, South Africa
Abstract
:1. Introduction
2. Theoretical Framework
3. Materials and Methods
3.1. Study Area Description
3.2. Sampling Method
3.3. Data Collection
3.4. Statistical Data Analysis
3.4.1. Principal Component Analysis
3.4.2. Binary Logistic Regression Model
4. Results
4.1. Socio-Economic and Demographic Characteristics of Sampled Households
4.2. Agroforestry Practices Involvement and Willingness to Expand and Adopt
4.3. Principal Component Analysis (PCA) Results
4.4. Binary Logistic Regression Model Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Expected Outcome | References |
---|---|---|
Socio-economic and demographic | ||
Age | Positive | [23,42] |
Experience | Positive | [44] |
Education | Positive | [45,58] |
Extension | Positive | [44,59] |
Gender | Positive | [42] |
Land size | Positive | [29,60] |
Total livestock units | Positive | [61] |
Assets | Positive | [62] |
Group membership | Positive | [44] |
Off-farm income | Positive | [63] |
Knowledge of agroforestry practices * | ||
| Positive | [31] |
| Negative | [31] |
| Positive | [31] |
| Positive | [31] |
| Negative | [31] |
| Positive | [31] |
| Positive | [40] |
Perceptions towards agroforestry practices * | ||
| Negative | [23,54] |
| Positive | [23] |
| Positive | [23,54] |
| Negative | [23] |
| Negative | [23] |
| Negative | [23] |
| Negative | [23] |
| Negative | [23] |
| Positive/negative | [23] |
| Negative | [23] |
| Negative | [23] |
Attitudes towards agroforestry practices: “Planting trees on my agricultural land will…” * | ||
| Positive | [39,64] |
| Positive | [39,64,65] |
| Positive | [39,64] |
| Positive | [39] |
| Positive | [29] |
| Negative | [39,64] |
| Negative | [39,64] |
| Negative | [39] |
| Negative | [39] |
| Positive | [39,66] |
| Positive | [39] |
Appendix B
Question | References |
---|---|
| [23,31] |
| [26] |
| Authors |
| [67] |
| Authors |
| Authors |
References
- Chersich, M.F.; Wright, C.Y. Climate change adaptation in South Africa: A case study on the role of the health sector. Glob. Health 2019, 15, 22. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Lei, H.; Shah, I.A.; Ali, I.; Khan, I.; Muhammad, I.; Huo, X.; Javed, T. Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan. Land Use Policy 2020, 91, 104395. [Google Scholar] [CrossRef]
- Mathews, J.A.; Wentink, G.J.; Kruger, L. Climate-smart agriculture for sustainable agricultural sectors: The case of Mooifontein. Jàmbá J. Disaster Risk Stud. 2018, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Aniah, P.; Kaunza-Nu-Dem, M.K.; Ayembilla, J.A. Smallholder farmers’ livelihood adaptation to climate variability and ecological changes in the savanna agro ecological zone of Ghana. Heliyon 2019, 5, e01492. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, I.; Mushunje, A.; Lewu, B.; Omoruyi, B. Climate-smart agriculture and smallholder farmers income: The case of soil conservation practice adoption at Qamata irrigation scheme South Africa. J. Hum. Ecol. 2020, 69, 81–94. [Google Scholar] [CrossRef]
- Adeagbo, O.; Ojo, T.; Adetoro, A. Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in South-west, Nigeria. Heliyon 2021, 7, e06231. [Google Scholar] [CrossRef]
- Campbell, B.M.; Vermeulen, S.J.; Aggarwal, P.K.; Corner-Dolloff, C.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J.; Rosenstock, T.; Sebastian, L.; Thornton, P.K. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef]
- Talanow, K.; Topp, E.N.; Loos, J.; Martín-López, B. Farmers’ perceptions of climate change and adaptation strategies in South Africa’s Western Cape. J. Rural Stud. 2021, 81, 203–219. [Google Scholar] [CrossRef]
- Hossain, M.S.; Qian, L.; Arshad, M.; Shahid, S.; Fahad, S.; Akhter, J. Climate change and crop farming in Bangladesh: An analysis of economic impacts. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 424–440. [Google Scholar] [CrossRef]
- Newell, P.; Taylor, O.; Naess, L.O.; Thompson, J.; Mahmoud, H.; Ndaki, P.; Rurangwa, R.; Teshome, A. Climate smart agriculture? Governing the sustainable development goals in Sub-Saharan Africa. Front. Sustain. Food Syst. 2019, 3, 55. [Google Scholar] [CrossRef]
- Ntinyari, W.; Gweyi-Onyango, J.P. Greenhouse gases emissions in agricultural systems and climate change effects in Sub-Saharan Africa. In African Handbook of Climate Change Adaptation; Springer: Berlin, Germany, 2021; pp. 1081–1105. [Google Scholar]
- Nyang’au, J.O.; Mohamed, J.H.; Mango, N.; Makate, C.; Wangeci, A.N. Smallholder farmers’ perception of climate change and adoption of climate smart agriculture practices in Masaba South Sub-county, Kisii, Kenya. Heliyon 2021, 7, e06789. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. The dynamics of climate change adaptation in Sub-Saharan Africa: A review of climate-smart agriculture among small-scale farmers. Climate 2019, 7, 132. [Google Scholar] [CrossRef]
- Adesipo, A.; Fadeyi, O.; Kuca, K.; Krejcar, O.; Maresova, P.; Selamat, A.; Adenola, M. Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors 2020, 20, 5977. [Google Scholar] [CrossRef]
- Senyolo, M.P.; Long, T.B.; Omta, O. Enhancing the adoption of climate-smart technologies using public-private partnerships: Lessons from the WEMA case in South Africa. Int. Food Agribus. Manag. Rev. 2021, 24, 755–776. [Google Scholar] [CrossRef]
- Mthethwa, K.N.; Ngidi, M.S.C.; Ojo, T.O.; Hlatshwayo, S.I. The determinants of adoption and intensity of climate-smart agricultural practices among smallholder maize farmers. Sustainability 2022, 14, 16926. [Google Scholar] [CrossRef]
- Mango, N.; Makate, C.; Tamene, L.; Mponela, P.; Ndengu, G. Adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle, Southern Africa. Land 2018, 7, 49. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Mainstreaming climate-smart agriculture in small-scale farming systems: A holistic nonparametric applicability assessment in South Africa. Agriculture 2020, 10, 52. [Google Scholar] [CrossRef]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef]
- Newaj, R.; Chavan, S.; Prasad, R. Climate-smart agriculture with special reference to agroforestry. Indian J. Agrofor. 2015, 17, 96–108. [Google Scholar]
- Mwase, W.; Sefasi, A.; Njoloma, J.; Nyoka, B.I.; Manduwa, D.; Nyaika, J. Factors affecting adoption of agroforestry and evergreen agriculture in Southern Africa. Environ. Nat. Resour. Res. 2015, 5, 148–157. [Google Scholar] [CrossRef]
- Tokede, A.; Banjo, A.; Ahmad, A.; Akanni, O.; Olumide-Ojo, O. Perception of farmers on agroforestry systems adoption in Akinyele Local Government Area, Ibadan, Oyo State, Nigeria. J. Res. For. Wildl. Environ. 2020, 12, 235–242. [Google Scholar]
- Barasa, P.M.; Botai, C.M.; Botai, J.O.; Mabhaudhi, T. A review of climate-smart agriculture research and applications in Africa. Agronomy 2021, 11, 1255. [Google Scholar] [CrossRef]
- Riyadh, Z.; Rahman, M.; Saha, S.; Ahamed, T.; Current, D. Adaptation of agroforestry as a climate smart agriculture technology in Bangladesh. Int. J. Agric. Res. Innov. Technol. 2021, 11, 49–59. [Google Scholar] [CrossRef]
- Nair, P.R. Classification of agroforestry systems. Agrofor. Syst. 1985, 3, 97–128. [Google Scholar] [CrossRef]
- Köthke, M.; Ahimbisibwe, V.; Lippe, M. The evidence base on the environmental, economic and social outcomes of agroforestry is patchy—An evidence review map. Front. Environ. Sci. 2022, 10, 925477. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015, 13, 40–54. [Google Scholar] [CrossRef]
- Ahmad, S.; Xu, H.; Ekanayake, E. Socioeconomic determinants and perceptions of smallholder farmers towards agroforestry adoption in northern irrigated plain, Pakistan. Land 2023, 12, 813. [Google Scholar] [CrossRef]
- Cahyono, E.D.; Fairuzzana, S.; Willianto, D.; Pradesti, E.; McNamara, N.P.; Rowe, R.L.; Noordwijk, M.V. Agroforestry innovation through planned farmer behavior: Trimming in pine-coffee systems. Land 2020, 9, 363. [Google Scholar] [CrossRef]
- Tokede, A.; Banjo, A.; Ahmad, A.; Fatoki, O.; Akanni, O. Farmers’ knowledge and attitude towards the adoption of agroforestry practices in Akinyele Local Government Area, Ibadan, Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 1775–1780. [Google Scholar] [CrossRef]
- Amare, D.; Darr, D. Farmers’ intentions toward sustained agroforestry adoption: An application of the theory of planned behavior. J. Sustain. For. 2022, 42, 869–886. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Rezaei, R.; Mianaji, S.; Ganjloo, A. Factors affecting farmers’ intention to engage in on-farm food safety practices in Iran: Extending the theory of planned behavior. J. Rural Stud. 2018, 60, 152–166. [Google Scholar] [CrossRef]
- Mncube, L.N.; Ngidi, M.S.C.; Ojo, T.O.; Nyam, Y.S. Addressing food insecurity in Richmond area of KwaZulu-Natal, South Africa: The role of cash transfers. Sci. Afr. 2023, 19, e01485. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the climate in 2019. Bull. Am. Meteorol. Soc. 2020, 101, S1–S429. [Google Scholar] [CrossRef]
- Gujarati, D.N.; Porter, D.C. Basic Econometrics, 5th ed.; McGraw-Hill: Singapore, 2009. [Google Scholar]
- Chipfupa, U.; Tagwi, A.; Wale, E. Psychological capital and climate change adaptation: Empirical evidence from smallholder farmers in South Africa. Jàmbá J. Disaster Risk Stud. 2021, 13, 1061. [Google Scholar] [CrossRef]
- Zubair, M.; Garforth, C. Farm level tree planting in Pakistan: The role of farmers’ perceptions and attitudes. Agrofor. Syst. 2006, 66, 217–229. [Google Scholar] [CrossRef]
- Munthali, M.G.; Mng’omba, S.; Chisale, H.; Njoloma, J.; Nyoka, B.I.; Sato, G. Farmers’ knowledge, attitudes and perceptions towards timber out-grower schemes in selected districts of Malawi. South. For. J. For. Sci. 2019, 81, 367–375. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bandi, M.M.; Mahimba, M.B.; Mbe Mpie, P.M.; M’vubu, A.R.N.; Khasa, D.P. Adoption of agroforestry practices in and around the Luki Biosphere Reserve in the Democratic Republic of the Congo. Sustainability 2022, 14, 9841. [Google Scholar] [CrossRef]
- Sanou, L.; Savadogo, P.; Ezebilo, E.E.; Thiombiano, A. Drivers of farmers’ decisions to adopt agroforestry: Evidence from the Sudanian savanna zone, Burkina Faso. Renew. Agric. Food Syst. 2019, 34, 116–133. [Google Scholar] [CrossRef]
- Awe, F.; Oguntoye, T.; Olatunji, B. Determinants of farmers’ adoption of agroforestry technology in Ibarapa Area of Oyo State, Nigeria. J. Agric. Food Sci. 2021, 19, 189–200. [Google Scholar] [CrossRef]
- Jahan, H.; Rahman, M.W.; Islam, M.S.; Rezwan-Al-Ramim, A.; Tuhin, M.M.-U.-J.; Hossain, M.E. Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environ. Chall. 2022, 7, 100509. [Google Scholar] [CrossRef]
- Liliane, M.; Ezekiel, N.; Gathuru, G. Socio-economic and institutional factors affecting smallholder farmers to adopt agroforestry practices in the southern province of Rwanda. Int. J. Agric. Sci. Food Technol. 2020, 6, 68–74. [Google Scholar]
- Sankalpa, J.; Wijesuriya, W.; Ishani, P. Do rubber-based agroforestry practices build resilience upon poverty incidence? A case study from Moneragala district in Sri Lanka. Agrofor. Syst. 2020, 94, 1795–1808. [Google Scholar] [CrossRef]
- Zerihun, M.F. Institutional analysis of adoption of agroforestry practices in the eastern cape province of South Africa. South. Afr. J. Environ. Educ. 2020, 36, 37–55. [Google Scholar] [CrossRef]
- Klieštik, T.; Kočišová, K.; Mišanková, M. Logit and probit model used for prediction of financial health of company. Procedia Econ. Financ. 2015, 23, 850–855. [Google Scholar] [CrossRef]
- Peng, C.-Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat. Theory Methods 1980, 9, 1043–1069. [Google Scholar] [CrossRef]
- El-Habil, A.; El-Jazzar, M. A comparative study between linear discriminant analysis and multinomial logistic regression. Najah Univ. J. Res. B (Humanit.) 2013, 28, 1525–1548. [Google Scholar] [CrossRef]
- Abdulqader, Q.M. Applying the binary logistic regression analysis on the medical data. Sci. J. Univ. Zakho 2017, 5, 330–334. [Google Scholar] [CrossRef]
- Saha, S.; Sharmin, A.; Biswas, R.; Ashaduzzaman, M. Farmers’ perception and adoption of agroforestry practices in Faridpur district of Bangladesh. Int. J. Environ. Agric. Biotechnol. 2018, 3, 1987–1994. [Google Scholar] [CrossRef]
- Kinyili, B.M. Potential of agroforestry in sustainable fuelwood supply in Kenya. J. Energy Nat. Resour. 2022, 11, 1–6. [Google Scholar] [CrossRef]
- Cele, L.; Wale, E. Determinants of smallholders’ entrepreneurial drive, willingness and ability to expand farming operations in KwaZulu-Natal. Dev. Pract. 2020, 30, 1028–1042. [Google Scholar] [CrossRef]
- Moronge, J.; Nyamweya, J.M. Some socio-economic drivers of agroforestry adoption in Temiyotta Location, Nakuru County, Kenya. J. Sustain. Environ. Peace 2019, 2, 9–14. [Google Scholar]
- Gebru, B.M.; Wang, S.W.; Kim, S.J.; Lee, W.-K. Socio-ecological niche and factors affecting agroforestry practice adoption in different agroecologies of southern Tigray, Ethiopia. Sustainability 2019, 11, 3729. [Google Scholar] [CrossRef]
- Dhakal, A.; Cockfield, G.; Maraseni, T.N. Deriving an index of adoption rate and assessing factors affecting adoption of an agroforestry-based farming system in Dhanusha District, Nepal. Agrofor. Syst. 2015, 89, 645–661. [Google Scholar] [CrossRef]
- Mugure, A.; Oino, P.G.; Sorre, B.M. Land ownership and its impact on adoption of agroforestry practices among rural households in Kenya: A case of Busia county. Int. J. Innov. Appl. Stud. 2013, 4, 552–559. [Google Scholar]
- Jara-Rojas, R.; Russy, S.; Roco, L.; Fleming-Muñoz, D.; Engler, A. Factors affecting the adoption of agroforestry practices: Insights from silvopastoral systems of Colombia. Forests 2020, 11, 648. [Google Scholar] [CrossRef]
- Jerneck, A.; Olsson, L. Food first! Theorising assets and actors in agroforestry: Risk evaders, opportunity seekers and ‘the food imperative’ in sub-Saharan Africa. Int. J. Agric. Sustain. 2014, 12, 1–22. [Google Scholar] [CrossRef]
- Sheikh, R.; Islam, M.A.; Sharmin, A.; Biswas, R.; Kumar, J. Sustainable agroforestry practice in Jessore district of Bangladesh. Eur. J. Agric. Food Sci. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Sileshi, G.W.; Nieuwenhuis, M. Tree planting by smallholder farmers in Malawi: Using the theory of planned behaviour to examine the relationship between attitudes and behaviour. J. Environ. Psychol. 2015, 43, 1–12. [Google Scholar] [CrossRef]
- Anastase, G.M.; Nahayo, L. Impact assessment of agroforestry practices on community socio-economic livelihoods in Rwanda. Int. J. Environ. Agric. Res. 2020, 6, 59. [Google Scholar]
- Kaba, J.S.; Otu-Nyanteh, A.; Abunyewa, A.A. The role of shade trees in influencing farmers’ adoption of cocoa agroforestry systems: Insight from semi-deciduous rain forest agroecological zone of Ghana. NJAS Wagening. J. Life Sci. 2020, 92, 100332. [Google Scholar] [CrossRef]
- Mahmood, M.I.; Zubair, M. Farmer’s perception of and factors influencing agroforestry practices in the Indus River Basin, Pakistan. Small Scale For. 2020, 19, 107–122. [Google Scholar] [CrossRef]
Variable | Description | Mean | SD | % |
---|---|---|---|---|
Continuous variables | ||||
Age | Household head age (Years) | 61.83 | 14.05 | - |
Experience | Household head farming experience (Years) | 19.99 | 15.36 | - |
Education | Household head education level (Years of schooling) | 5.48 | 4.90 | - |
Land size | Land size household has access to (Hectares) | 1.33 | 1.22 | - |
Total livestock units | Tropical livestock units | 1.75 | 3.05 | - |
Assets | Log of the total value of physical assets | 9.49 | 1.33 | - |
Off-farm income | Log of the annual income from non-farm activities | 10.88 | 0.86 | - |
Dummy variables | ||||
Group membership | Membership in groups (1 = Yes; 0 = otherwise) | - | - | 92.5 |
Extension | Agricultural extension (1 = Yes; 0 = otherwise) | - | - | 17.4 |
Gender | Household head gender (1 = Male; 0 = otherwise) | - | - | 42.0 |
Swayimane | Umbumbulu | Richmond | Total | |
---|---|---|---|---|
Households involved in agroforestry (%) | 85.9 | 95.1 | 89.1 | 90.2 |
Agroforestry-type households involved in | ||||
Trees/shrubs and agricultural crops (%) | 34.2 | 10.2 | 5.1 | 15.3 |
Tress/shrubs and livestock (%) | 3.8 | 1.0 | 10.2 | 5.1 |
Trees/shrubs with agricultural crops and livestock (%) | 62.0 | 88.8 | 84.7 | 79.6 |
Households willing to expand agroforestry (%) | 91.1 | 88.8 | 84.7 | 88.0 |
Households willing to adopt agroforestry (%) | 69.2 | 100.0 | 83.3 | 80.0 |
Variables | Principal Components | ||
---|---|---|---|
PCK1—Agroforestry Knowledge | PCK2—Land Utilisation | PCK3—against Animal Grazing | |
Before this interview, I knew about forestry farming | 0.636 | 0.411 | 0.014 |
I have always known about agroforestry practices although I did not know the exact wording | 0.751 | −0.115 | −0.159 |
I have always known and understood what agroforestry practices are | 0.760 | 0.003 | 0.230 |
Agroforestry is against the practice of animal grazing | 0.030 | 0.036 | 0.946 |
Agroforestry maximizes land usage | 0.011 | 0.818 | −0.150 |
Agroforestry guarantees consistent supply to the markets | 0.046 | 0.695 | 0.220 |
Eigenvalue | 1.74 | 1.18 | 1.01 |
% of variance | 28.91 | 19.71 | 16.91 |
Cumulative % of variance | 28.91 | 48.62 | 65.52 |
Variables | Principal Components | |||
---|---|---|---|---|
Agroforestry Practice Is: | PCP1— Expensive and Labour-Intensive | PCP2— Incompatibility to Modern Farm Equipment | PCP3—Profitable | PCP4—Technical |
Difficult to practice | 0.613 | 0.190 | −0.031 | 0.233 |
A common practice in this area | −0.088 | 0.335 | 0.637 | −0.214 |
Can increase farm productivity | 0.003 | −0.124 | 0.651 | 0.277 |
Not properly understood because of its technicality | −0.040 | 0.144 | −0.018 | 0.829 |
Time consuming | 0.673 | −0.036 | 0.119 | 0.086 |
Not profitable | −0.036 | 0.141 | −0.670 | 0.004 |
Expensive to practice | 0.750 | 0.078 | −0.153 | 0.141 |
Labour-intensive | 0.804 | 0.057 | 0.013 | −0.135 |
Cannot be practiced on small piece of land | 0.278 | 0.669 | −0.002 | 0.246 |
Hinders the use of modern farm implements | −0.004 | 0.829 | −0.093 | −0.010 |
Not meant for low-income/smallholder farmers | 0.221 | 0.009 | 0.076 | 0.528 |
Eigenvalue | 2.45 | 1.35 | 1.26 | 1.04 |
% of variance | 22.26 | 12.28 | 11.48 | 09.47 |
Cumulative % of variance | 22.26 | 34.55 | 46.02 | 55.49 |
Variables | Principal Components | ||
---|---|---|---|
Planting Trees on My Land Will: | PCA1— Positive Attitudes | PCA2— Negative Attitudes | PCA3— Environmental Contribution |
Increase household income | 0.600 | −0.241 | 0.247 |
Provide fuelwood and furniture wood | 0.719 | 0.030 | 0.093 |
Control soil erosion | 0.203 | −0.082 | 0.797 |
Control air pollution | 0.062 | 0.182 | 0.837 |
Cause hindrance in agricultural operations | −0.042 | 0.631 | −0.060 |
Cause shade that will reduce the yield of crops | 0.126 | 0.722 | 0.245 |
Incur more cost | 0.193 | 0.678 | −0.212 |
Provide harbor to insects, pests, and diseases | −0.206 | 0.581 | 0.182 |
Provide shade for human beings and animals | 0.671 | 0.050 | 0.188 |
Be a long-time land utilization | 0.618 | 0.094 | −0.106 |
Eigenvalue | 2.22 | 1.81 | 1.25 |
% of variance | 22.18 | 18.07 | 12.48 |
Cumulative % of variance | 22.18 | 40.25 | 52.73 |
Variables | Coef. | Sig. | Std. Err. | Wald | Odds Ratio | Marginal Effect |
---|---|---|---|---|---|---|
Age | 0.055 ** | 0.046 | 0.028 | 3.984 | 1.057 | 0.001 |
Experience | 0.038 * | 0.080 | 0.021 | 3.057 | 1.038 | 0.001 |
Education | 0.122 * | 0.076 | 0.069 | 3.150 | 1.130 | 0.003 |
Extension | −0.779 | 0.325 | 0.790 | 0.971 | 0.459 | −0.023 |
Gender | −0.272 | 0.599 | 0.517 | 0.277 | 0.762 | −0.006 |
Land size | 1.677 *** | 0.000 | 0.437 | 14.744 | 5.351 | 0.038 |
Total livestock units | −0.016 | 0.866 | 0.093 | 0.028 | 0.984 | −0.000 |
Assets | −0.269 | 0.207 | 0.214 | 1.592 | 0.764 | −0.006 |
Group membership | −1.517 | 0.153 | 1.062 | 2.038 | 0.219 | −0.020 |
Off-farm income | 0.456 | 0.178 | 0.339 | 1.811 | 1.577 | 0.010 |
Agroforestry knowledge (PCK1) | 0.548 ** | 0.039 | 0.266 | 4.251 | 1.730 | 0.012 |
Land utilisation (PCK2) | −0.425 | 0.159 | 0.301 | 1.988 | 0.654 | −0.010 |
Against animal grazing (PCK3) | 0.369 | 0.211 | 0.295 | 1.563 | 1.447 | 0.008 |
Expensive and labour-intensive (PCP1) | −0.020 | 0.949 | 0.307 | 0.004 | 0.980 | −0.000 |
Incompatibility to modern farm equipment (PCP2) | 0.134 | 0.650 | 0.295 | 0.206 | 1.143 | 0.003 |
Profitable (PCP3) | 0.934 *** | 0.002 | 0.306 | 9.333 | 2.544 | 0.021 |
Technical (PCP4) | −0.452 | 0.140 | 0.307 | 2.173 | 0.636 | −0.010 |
Positive attitudes (PCA1) | 0.633 ** | 0.021 | 0.275 | 5.311 | 1.883 | 0.014 |
Negative attitudes (PCA2) | 0.409 | 0.179 | 0.305 | 1.804 | 1.506 | 0.010 |
Environmental contribution (PCA3) | −0.013 | 0.957 | 0.246 | 0.003 | 0.987 | −0.000 |
Constant | −4.045 | 0.212 | 3.242 | 1.556 | 0.018 | |
Multicollinearity test | 1.31 | |||||
Number of cases correctly classified | 91.80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaca, F.N.; Ngidi, M.S.C.; Chipfupa, U.; Ojo, T.O.; Managa, L.R. Factors Influencing the Uptake of Agroforestry Practices among Rural Households: Empirical Evidence from the KwaZulu-Natal Province, South Africa. Forests 2023, 14, 2056. https://doi.org/10.3390/f14102056
Zaca FN, Ngidi MSC, Chipfupa U, Ojo TO, Managa LR. Factors Influencing the Uptake of Agroforestry Practices among Rural Households: Empirical Evidence from the KwaZulu-Natal Province, South Africa. Forests. 2023; 14(10):2056. https://doi.org/10.3390/f14102056
Chicago/Turabian StyleZaca, Fortunate Nosisa, Mjabuliseni Simon Cloapas Ngidi, Unity Chipfupa, Temitope Oluwaseun Ojo, and Lavhelesani Rodney Managa. 2023. "Factors Influencing the Uptake of Agroforestry Practices among Rural Households: Empirical Evidence from the KwaZulu-Natal Province, South Africa" Forests 14, no. 10: 2056. https://doi.org/10.3390/f14102056
APA StyleZaca, F. N., Ngidi, M. S. C., Chipfupa, U., Ojo, T. O., & Managa, L. R. (2023). Factors Influencing the Uptake of Agroforestry Practices among Rural Households: Empirical Evidence from the KwaZulu-Natal Province, South Africa. Forests, 14(10), 2056. https://doi.org/10.3390/f14102056