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Abstract: Wildland fires, a natural calamity, pose a significant threat to both human lives and the
environment while causing extensive economic damage. As the use of Unmanned Aerial Vehicles
(UAVs) with computer vision in disaster management continues to grow, there is a rising need for
effective wildfire classification and localization. We propose a multi-stream hybrid deep learning
model with a dual-stream attention mechanism for classifying wildfires from aerial and territorial
images. Our proposed method incorporates a pre-trained EfficientNetB7 and customized Attention
Connected Network (ACNet). This approach demonstrates exceptional classification performance
on two widely recognized benchmark datasets. Bayesian optimization is employed for the purpose
of refining and optimizing the hyperparameters of the model. The proposed model attains 97.45%,
98.20%, 97.10%, and 97.12% as accuracy, precision, recall, and F1-score, respectively, on the FLAME
dataset. Moreover, while evaluated on the DeepFire dataset, the model achieves accuracy, precision,
recall, and F1-scores of 95.97%, 95.19%, 96.01%, and 95.54%, respectively. The proposed method
achieved a TNR of 95.5% and a TPR of 99.3% on the FLAME dataset, as well as a TNR of 94.47%
and a TPR of 96.82% on the DeepFire dataset. This performance surpasses numerous state-of-the-
art methods. To demonstrate the interpretability of our model, we incorporated the GRAD-CAM
technique, which enables us to precisely identify the fire location within the feature map. This
finding illustrates the efficacy of the model in accurately categorizing wildfires, even in areas with
less fire activity.

Keywords: forest fire classification; EfficientNetB7; attention mechanisms; localization; Bayesian
optimization; computer vision; efficient channel attention; squeeze and excitation networks

1. Introduction

In recent years, wildfires have been a growing concern around the world. These wild-
land fires have devastated vast areas of forest and other plants, forcing tens of thousands
of people to evacuate their homes and causing irreparable damage to the ecology. The
increasing frequency of forest fires can be attributed to a variety of factors, such as climate
change, drought, and human activities. Consequently, governments are confronted with
substantial management expenses on an annual basis in order to address this pressing issue.
Forest fires have become more severe and frequent in many parts of the world, including
Australia, California, the Amazon rainforest, and the Mediterranean region [1]. Despite
efforts to regulate and minimize them, forest fires continue to be a huge problem for gov-
ernments, environmental groups, and people all over the world. Thus, the implementation
of efficient forest fire monitoring holds significant importance in protecting forest resources
and ensuring the well-being of human life and property [2].
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Recent forest fire data confirms a long-standing concern: the increasing prevalence of
forest fires, now consuming almost double the amount of tree cover as two decades ago.
In 2021, which marked one of the worst years for forest fires since the beginning of the
century, 9.3 million hectares of tree cover were lost worldwide—equivalent to more than
a third of all tree cover loss for that year [3]. Over the past three years, statistics reveal a
concerning trend in the scale and intensity of wildfires. In 2021, despite the relatively low
number of fires, a significant area of 7.1 M acres was consumed, resulting in a relatively
high average of 121.56 acres burned per fire in the US. Similarly, in 2022, while the number
of fires remained relatively low, the burned area increased to 7.5 M acres, with an average
of 113.72 acres burned per fire. The data for January to April 2023 indicate a continuation
of this worrisome trend in the US, with a relatively low number of fires but a substantial
average of 30.24 acres burned per fire [4]. Canada has also experienced a total of 5738 fires
this year, resulting in the scorching of 13.7 million hectares (equivalent to 33.9 million
acres) [5]. Moreover, recurring environmental problems in Southeast Asia include wildfires,
notably linked to land and forest fires, mainly affecting nations such as Indonesia and
Malaysia. The devastating 1997–1998 forest fires devoured roughly 8 million hectares
of land, leading to an estimated economic loss of approximately USD 4.47 billion, with
Indonesia bearing the largest share of this burden [6]. In 2019, intense forest fires in the
Indonesian regions of Sumatra and Kalimantan burned over 930,000 hectares, leading to
evacuations and the deployment of over 9000 personnel to combat the flames [7]. These
figures underscore the urgent need for proactive measures to mitigate and prevent the
devastating impact of forest fires on our environment and communities.

Various fire detection sensors, including those measuring smoke, temperature, gas,
flame, etc., face limitations such as restricted coverage, delayed response, and challenges
with public accessibility. The advancements in image processing and computer vision
technology have made substantial contributions to the timely identification, surveillance,
and control of forest wildfires. Consequently, the conventional methods for traditional
fire detection, like flame-smoke sensors, are being substituted by vision-based models.
These models offer numerous advantages over traditional sensors, including greater accu-
racy, reduced susceptibility to errors, environmental robustness, lower cost, and broader
coverage [8].

Thoroughly observing fires can be achieved through the integration of data obtained
from many sources, including infrared cameras, thermal sensors, and visible-light cameras.
The utilization of image processing, computer vision, and deep learning techniques enables
the fusion of these data streams, thereby increasing the precision of fire detection and
analysis. Researchers have attempted to offer numerous unique strategies based on com-
puter vision and image processing over the years to set up the most accurate, efficient, and
optimized fire detection system conceivable. The color analysis method is commonly used
to identify fire based on its color. This approach involves transforming the image into a
different color space, such as YCbCr [9,10]. In this color space, the Y component represents
the luma (brightness) or luminance, while the Cb and Cr components represent the blue
and red components, respectively. While feature-based strategies have performed well in
fire detection tasks, machine learning (ML) techniques [11,12] have surpassed them. Sup-
port Vector Machine (SVM), Markov models [13], Instance-Based Learning classifiers [14],
and Bayesian classifiers [15] are popular fire classification algorithms that are specifically
designed to predict the likelihood of a wildfire occurrence within an input image.

The primary challenge of the mentioned strategies lies in identifying relevant attributes
that best describe the topic at present. As an alternative, a self-learning network can be
employed to acquire relevant features autonomously. Deep learning (DL) techniques can
deliver excellent accuracy for fire classification and detection if a sufficiently extensive
dataset is utilized during the training process. The capacity of DL-based fire classifica-
tion and detection algorithms to automatically learn high-level features provides a key
advantage over conventional techniques. In the existing literature, it has been observed
that to detect forest fires, multiple pre-trained DL algorithms have been incorporated such
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as ResNet50, AlexNet, GoogleNet, VGG16, and MobileNetV2 [16–18]. In recent studies, we
have observed the extensive exploration of various attention mechanisms in the context
of image classification and segmentation tasks. Forest fire classification utilizing attention
mechanisms leverages advanced neural network techniques to efficiently identify and
respond to critical patterns and features in imagery, enhancing the accuracy of fire detection
and prevention [19,20]. Accordingly, we introduce an attention-guided multi-stream hybrid
model for forest fire classification. The proposed approach is straightforward, employing
two streams for effective feature extraction. One stream employs the pre-trained Efficient-
NetB7 [21] method, while the other utilizes a custom-built Attention Connected Network
(ACNet). EfficientNet is chosen for its reliable scalability, achieved through uniform scaling
of network dimensions. Specifically, EfficientNetB7 is utilized for its exceptional feature
extraction capabilities from fire images. ACNet, on the other hand, enhances the model’s
ability to capture both low-level and high-level features, offering multiple perspectives
on feature importance and interdependencies. We also employ the Bayesian optimization
(BO) [22] method to optimize the model’s hyperparameters. The objective is to optimize
the key parameters of classifiers through the utilization of BO. Therefore, it is expected
that the accuracy of the model is going to improve. Furthermore, we implement the
GRAD-CAM [23] technique to enhance the model’s interpretability. Our attention-guided
dual-stream hybrid model not only enhances forest fire classification accuracy, but also
holds the potential for real-world applications in forest and wildfire management. By
enabling more precise and interpretable forest fire classification, our approach can play a
pivotal role in early detection of fire, rapid response, and optimized resource allocation,
ultimately contributing to the mitigation and control of forest fires. The major contributions
of this study can be summarized as follows:

• We introduce a novel dual stream attention guided network for the classification of
forest fires.

• In the first stream, we use EfficientNetB7 as a feature extractor to efficiently extract
high-level features from images.

• In the second stream, we incorporate the newly proposed attention connected module,
comprising a fusion of both Efficient Channel Attention and Squeeze-and-Excitation
Network modules within the network architecture. This integration not only brought
selective attention, but also featured enhancement, effectively optimizing the model’s
forest fire classification capabilities. Bayesian optimization was employed to fine-tune
hyper-parameters, enhancing the model’s performance.

• Our proposed architecture’s effectiveness is being thoroughly demonstrated on two
widely recognized benchmark datasets. Comprehensive analyses demonstrate its
superiority over several state-of-the-art methods.

• To enhance model interpretability, we integrate the GRAD-CAM technique to un-
derstand which parts of the images were most important in guiding the model’s
decision-making process.

The rest of the paper is organized as follows. The related works Section 2 contains a full
review of previous approaches for detecting forest fires. The Materials and Methods Section 3
provides a full explanation of the proposed model. The result analysis Section 4 gives an
overview of the results obtained. Finally, in Section 6, the paper is brought to a close.

2. Related Works

Several studies have been undertaken in recent years on the topic of forest fire clas-
sification and detection systems. Researchers have explored a wide range of strategies
to devise a precise and efficient approach for wild forest fire classification. The reviewed
models are presented in a categorized format below.

2.1. Pre-Trained and Customized CNN

In the domain of forest fire classification, Convolutional Neural Network (CNN)-
based pre-trained models have gained considerable attention, employing their capacity



Forests 2023, 14, 2080 4 of 24

to comprehend complex features. A. Khan et al. [24] utilized the pre-trained VGG19 for
feature extraction. Incorporating fully connected layers to enhance performance, the model
achieved an impressive accuracy of 95% when evaluated on the DeepFire dataset. In their
recent work, Namburu et al. [25] introduced X-MobileNet, a novel deep learning method
that utilizes the pre-trained mobilenetV2 as a feature extractor, employing pre-trained
weights for all layers to reduce computational expenses. Furthermore, they modified
the classifier to enhance the performance of the model by using Global Average pooling
(GAP). A fusion of pre-trained ImageNet weights with domain-specific modifications,
their approach underscored the importance of feature extraction and classification tasks.
Similarly, in [26], S. Khan et al. used pre-trained mobileNetv2 as the feature extractor
along with additional dense layers. Serving as the backbone of the proposed architecture,
MobileNetv2 proficiently captures relevant features from preprocessed images. This tech-
nique effectively aggregates spatial information and generates a concise fixed-length vector
that facilitates precise fire classification. However, the authors did not mention details
regarding the number of dense layers employed in the classifier, as well as the specific
neuron unit counts within each dense layer. The lack of information could make it difficult
for readers to understand the model. Treneska et al. [27] explored transfer learning on the
FLAME dataset with five pre-trained models—VGG16, VGG19, RestNet50, InceptionV3,
and Xception. While retaining pre-trained weights for the feature extractor, they refined
the classifier with GAP and supplementary dense layers. The ResNet50 model achieved
the highest accuracy score, reaching 88% through fine-tuning. An innovative approach to
deep ensemble learning was introduced by Ghali et al. [28] combining EfficientNet-B5 and
DenseNet-201 models to classify wildfires using aerial images. Combining EfficientNet and
DenseNet can potentially utilize EfficientNet’s scaling advantages with DenseNet’s dense
connectivity for improved feature extraction. The proposed wildfire classification model
achieved an impressive accuracy of 85.12%, surpassing numerous state-of-the-art models
and demonstrating its capability to accurately identify wildfires, including those in smaller
fire areas.

Furthermore, apart from employing pre-trained CNN models, we noticed that multiple
custom CNN models were used for the classification of forest fire. Shamsoshoara et al. [29]
introduced the FLAME dataset that can be utilized in wildfire classification and segmen-
tation. In order to justify the dataset’s applicability in wildfire classification tasks, they
utilized the pre-trained Xception network with additional dense layers. Moreover, they
also tuned the model’s hyperparameter to enhance the performance of the proposed model.
The proposed model achieved an accuracy of 76% on the FLAME dataset. Vani et al. [30]
employed the InceptionV3 based on transfer learning for classifying the fire images. Incep-
tionNetv3 offers improved performance due to its novel inception modules that effectively
capture and process features at multiple scales, which enhance its ability to recognize
complex patterns. To mitigate overfitting, they utilized a single fully connected layer in the
classifier. In their study [31], L. Kurasinski et al. explored how dataset variation influences
model performance, training on two distinct datasets (FLAME and NASA) and conducting
cross-validation on FLAME, NASA, and a GitHub dataset. The primary objective is to gain
insights into how the choice of dataset impacts the performance of the Xception model,
as referenced in [29]. Akagic et al. [32] make a substantial contribution to the field of
wildfire image classification by introducing LightWeight wildFIRE (LW-FIRE). To validate
its name, they employed a shallow CNN architecture to reduce the model’s complexity
and memory requirements during training. A shallow CNN consists of a concise number
of layers, offering faster training and reduced computational complexity. As a result, the
proposed model was more computationally efficient and faster to train, making it suitable
for scenarios where computational resources are limited. According to the authors, LW-
FIRE150, which was evaluated on Corsican Fire DataBase, attaining an accuracy of 97.25%
is the most optimized version of LW-FIRE.

ResNet50 has served as the foundation for numerous models, with each variant and
adaptation incorporating unique modifications and improvements. It offers improved
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training efficiency and accuracy by resolving vanishing gradient problems through residual
connections. ForestResNet [33], a classification model based on the ResNet50 architecture
with cross-entropy loss, was introduced for identifying fire. Through transfer learning, they
improved the model’s performance, attaining an accuracy of 92% on their proposed dataset.

In recent studies, multiple image processing techniques have been used alongside
pre-trained and customized CNN models to amplify classification tasks by extracting
relevant features, reducing noise, and improving data representation. Wang et al. [34] used
a unique technique that involves segmenting the potential flame region using color features
and applying AND operation between the segmented image and the original image. For
classification, a CNN model inspired by AlexNet with adaptive pooling was developed
to preserve local image information. Dutta et al. [35] in their proposed method combined
separable CNN with various image processing techniques such as multi-channel binary
thresholding, segmentation, and HSV color space filters were utilized to handle smoke and
fog in fire images and accurately classify fires. Moreover, L2 regularization was used to
address the over-fitting problem.

2.2. Attention-Based Model

In the field of forest fire classification, there has been limited exploration of the Atten-
tion mechanism. Guan et al. [19] proposed the Dual Semantic Attention (DSA) module,
which utilizes the attention mechanism for convolutional kernels and enhances the model’s
ability to capture the relevant semantic information during the convolutional operations.
This module dynamically selects and combines feature maps from various convolution
kernel scales. The authors improved the resnet50 architecture by integrating the DSA mod-
ule into the residual block, labeling it as the DSA-Residual module. Li et al. [20] proposed
the Attention-Based Prototypical Network for forest fire smoke detection. This approach
combines few-shot learning and attention mechanisms to effectively extract features and
minimize false alarms in suspected smoke regions. To address limited smoke images and
mitigate over-fitting, a meta-learning module is introduced, comparing class prototypes of
support images with features from query images for accurate detection.

Table 1 presents a comprehensive overview of the advantages and shortcomings of
existing forest fire classification models, highlighting the diverse strengths and limitations.

Table 1. Strength and shortcomings of different methodology of wildfire classification.

Authors Methods Strength Shortcomings

Z. Guan et al. (2022) [19] ResNet50 with DSA
Integration of an attention

mechanism enables the extraction
of more useful information.

ResNet50 requires huge
computational resources that are
not suitable for mobile devices

and embedded systems

A. Namburu et al. (2023) [25]

X-MobileNet (pre-trained
MobileNet with customized
output layer, utilizing global

average pooling)

MobileNet architecture uses
depth-wise separable convolution,
which is computationally efficient.

GAP may sacrifice fine-grained
spatial details crucial for accurate

fire classification.

S. Khan et al. (2022) [26] Pretrained MobileNetV2 Useful in resource-constrained
environment.

Limited evaluation on the
ForestFire dataset, lacking

performance assessment on other
datasets

S. Treneska et al. (2021) [27] Pretrained ResNet50 with GAP in
classifier

Efficient memory usage and rapid
prediction time, highly suitable

for real-time applications.

A fixed 5-epoch fine-tuning
duration may not be optimal for

all models and datasets.
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Table 1. Cont.

Authors Methods Strength Shortcomings

R. Ghali et al. (2022) [28] Ensemble model (EfficientNet-B5,
DensNet201)

Ability to accurately detect and
segment wildfires, even in small

fire areas.

Computational resources required
to train the model are high as two
distinct models used for feature

extraction.

A. Shamsoshoara et al. (2021) [29] Xception
Depth-wise separable

convolutions, which are
computationally efficient.

76% accuracy is insufficient for
real-life fire classification tasks.

K. Vani et al. (2019) [30] InceptionV3 with addition dense
layers in classifier

Efficient computational
performance.

Small utilized dataset and
evaluation on a limited number of

datasets.

Y. Wang et al. (2019) [34] AlexNet with adaptive pooling Adaptive pooling helps preserve
local information in the images.

Reliance on color features might
be sensitive to variations in

lighting conditions.

S. Dutta et al. (2021) [35] FT-ResNet50 Focal Loss technique significantly
enhanced models learning ability.

Performance does not meet
current standards.

3. Materials and Methods
3.1. Datasets

In this paper, we used two distinct public datasets: the FLAME dataset (Fire Lumi-
nosity Airborne-based Machine Learning Evaluation) [29] and the DeepFire dataset [24].
The FLAME dataset consists of 39,375 images, with 25,018 representing fire and 14,357
representing non-fire images, all utilized for training. We split these images, dedicating
80% for training (31,500 images) and 20% for validation (7875 images). Furthermore, the
dataset contains 8617 images for testing. The model was evaluated on randomly chosen
3000 images from the test set. Additionally, the DeepFire dataset was used, which consists
of 1520 diverse wildfire images for training, which are subdivided into “fire” and “no-fire”
folders, each containing 760 images. We first split the training images into a training set
and a test set with a 80–20 split. The test set had 304 images and the training set had
1216 images. Then, we further split the training set into a validation set and a training set
with an 80–20 split. The training set had 972 images and the validation set had 244 images.
The validation set helps to identify overfitting by providing a way to measure the model’s
performance on data that it has not seen before.

3.2. Parameters of the Experiment

The proposed model is trained using two datasets: FLAME and DeepFire. The loss
function employed for both datasets is Binary Cross-entropy. The optimizer used for the
FLAME dataset is AdamW, while for the DeepFire dataset, Adam optimizer is utilized. The
learning rate (LR) for both datasets is set to 1× 10−5. The training process is carried out
for 50 epochs, with a batch size of 16. Early stopping is utilized to prevent overfitting by
stopping the training process once the model’s performance on a validation set starts to
decrease. The input size for the model is 224× 224 pixels, ensuring that the input images
are standardized to this resolution during training.

3.3. Model Architecture

Our proposed method is a two-stream hybrid model designed for forest fire classifica-
tion, as depicted in Figure 1. It leverages two streams to effectively extract features from
the input images of wildfires or forest fires.
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Figure 1. Architecture of the proposed two-stream model.

3.3.1. Pretrained EfficientNetB7

The first stream, pre-trained EfficientNetB7 [21] utilizes the transfer of knowledge from
a CNN-based model pre-trained on a large ImageNet dataset. This architecture excels in
tasks like image classification and object detection due to its efficiency in feature extraction
and impressive performance. The practice of utilizing a pre-trained model to address a new
problem can be referred to as transfer learning. Transfer learning offers several advantages,
with its primary benefits encompassing the reduction of training time, enhancement of
neural network performance, and the alleviation of data requirements [36]. CNNs are
commonly up-scaled to enhance their accuracy when performing classification tasks on
various benchmark datasets. However, the process of scaling convolutional models is
often carried out randomly. Some models are scaled in terms of depth, while others are
scaled in terms of width. The process of random scaling requires manual adjustment
and demands a significant amount of time. In contrast, EfficientNet employs a technique
known as the “compound coefficient” to scale models in a straightforward yet efficient
manner. The main advantage of the EfficientNet method is its reliable scalability. Using
the compound coefficient technique, EfficientNet uniformly scales all the dimensions of
the network (width, depth, and resolution) using a constant ratio. The proposed model
incorporates EfficientNetB7 as a feature extractor due to its remarkable ability to extract
relevant and discriminative features from fire images.

The EfficientNetB7 model has 33 layers and employs the compound coefficient method to
adjust model depth, resolution, and width. The implementation of this particular method leads
to enhanced performance outcomes, but the associated computational costs remain relatively
low. The inverted bottleneck block (MBConv), which is depicted in Figure 2, previously
introduced in MobileNetV2, serves as the fundamental component in EfficientNet. The
utilization of Depth-wise Separable Convolution is observed in these blocks. The initial step
involves expanding the channels through a point-wise convolution (conv 1× 1). Subsequently,
a 3 × 3 depth-wise convolution is employed to significantly lower the parameter count.
Finally, a 1× 1 convolution is utilized to further decrease the number of channels, enabling
the incorporation of the block’s initial and final stages. EfficientNet applies the Squeeze and
Excitation (SE) block alongside the MBConv block, resulting in the network dynamically
assigning a high weight to the most important channels, thus generating effective features for
the wildfire or forest-fire classification task on hand.
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Figure 2. Inverted bottleneck block.

The incorporated EfficientNetB7 architecture was initially fine-tuned on the target
datasets: FLAME and DeepFire. The base models were kept frozen (i.e., the parameters
of the base model were unchanged). We further fine-tuned this model on forest fire
datasets by unfreezing the final convolutional layer. In this specific case, the optimization
process focused solely on the final convolutional layer and the classification layer, while
the backbone network served the purpose of a pre-trained feature extractor. The collected
features are then fed into a 3× 3 convolutional block, followed by batch normalization.
The use of this technique facilitates the enhancement of the training process for the specific
stream and the overall network. This reduction in internal covariate shifts contributes to
the stabilization of the training procedure. Consequently, the application of this technique
enables faster and more efficient convergence of the network. After the convolutional
layers, GAP is performed to derive a fixed-length feature vector, where each feature map
contributes a single value computed as the mean of its values. This pooling operation
reduces spatial dimensions while preserving channel information.

3.3.2. Attention Connected Network

As for the second stream of the proposed model, we utilize a customized Attention
Connected Network (ACNet). The input fire image undergoes resizing and re-scaling in
the pre-processing step before being passed through convolutional layers with varying
numbers of filters and a 3× 3 kernel size. An Attention Connected Module (ACM), which
is depicted in Figure 3, batch normalization, and 2× 2 max pooling operations are applied
after each convolutional layer. This process is repeated three more times, resulting in a
decrease in image dimensions due to max pooling. The filter sizes used are 32, 64, 128,
and 256 maintaining a consistent kernel size. The output of the fourth max pooling layer
is flattened and concatenated with the output of the GAP layer from the EfficientNetB7
backbone-based first stream of the model.

The proposed method takes RGB aerial images as input and utilizes both streams
(i.e., the EfficientNetB7-backbone and ACNet) to extract re-weighted feature maps. After
concatenating the feature maps, they are passed through a fully connected dense layer with
512 neurons, using ReLU activation. A dropout layer with a rate of 0.4 is applied to prevent
the network from overfitting and to maintain generalizability. Finally, a sigmoid function is
used for the final classification, determining whether the input image belongs to the Fire or
No-Fire class.

To optimize the model’s performance, hyperparameters such as the filter size in the
convolutional layers, the number of neurons in the dense layer, kernel size in the Efficient
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Channel Attention (ECA) block, the learning rate, and the dropout rate are optimized
using the BO technique. By leveraging probabilistic models and acquisition functions,
this method efficiently explores and exploits the hyperparameter space to find optimal
configurations. In contrast to the existing literature, we employ optimization techniques to
enhance the parameter-tuning process of the models.

Figure 3. Attention connected module.

3.3.3. Attention Connected Module

The Attention Connected Module (ACM) employs an attention-based dual-stream
architecture, where the Efficient Channel Attention (ECA) block is applied in one stream
and the Squeeze-and-Excitation (SE) block is applied in the other stream. BO was utilized
to determine the kernel size of 5 for the ECA mechanism. The reduction ratio was set to
16 for the SE block. The outputs of both streams are then concatenated together. Here,
the SE block enhances representational power by re-calibrating feature maps to prioritize
informative features, while the ECA block selectively weights channels to focus on relevant
information. These components collectively improve the ACM’s ability to capture essential
information, leading to enhanced performance in various tasks. In addition, this combined
attention can enhance the model’s generalization ability in capturing both low-level and
high-level features from the forest fire images. It can provide multiple perspectives on
feature importance and interdependencies. It helps the model to adapt diverse input
patterns and improves the performance of unseen data.

Squeeze and Excitation Block

The Squeeze and Excitation (SE) [37] module is a key component in DL models. It
enhances the representational power of the model by adaptively re-calibrating the channel-
wise feature responses. By selectively highlighting informative features while reducing the
influence of less relevant ones, the SE module helps improve the discriminative capabilities
of the model. Its ability to capture channel-wise dependencies and optimize feature
representations makes it serve as an effective tool for improving the performance of DNN.
It improves the model’s resilience to noise and disturbances by enabling it to prioritize
essential features while disregarding less significant ones.
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The SE block initially utilizes GAP operation for each channel in an independent
manner. Subsequently, two FC layers are employed, incorporating non-linearity. Finally, a
Sigmoid function is applied to construct channel weights. The purpose of the two FC layers
is to capture non-linear cross-channel interaction. This involves reducing dimensionality in
order to control the complexity of the model [38].

Here, a series of convolutional transformations convert the provided image, as input
with the dimension of (W ′, H′, C′), then mapped to the feature map U. The SE block
operates by squeezing the feature maps of a CNN into a lower-dimensional space, followed
by applying an excitation function to re-weight the feature maps. This enables CNN
to concentrate on the crucial features in an image, effectively ignoring the less relevant
ones. The squeeze operation is accomplished by creating channel-wise statistics using
GAP. The squeeze transform, denoted as Fsq, converts feature mappings U into global
one-dimensional feature vectors, and it generates a statistic z ∈ RC by compressing U with
spatial dimensions H ×W, which can be expressed as follows.

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

An excitation operation is introduced to capture dependencies between channels to uti-
lize the information gathered through the squeeze operation. Using the self-gating method
with dual FC-layers, the excitation operation was developed for performing evaluation
of weight on all channels for adaptive featured recalibrations. FC layers are employed
to capture interdependence among channels and generate weights for each channel. The
application of a Sigmoid activation function allows for acquiring weights within the in-
terval of 0 to 1, which is used to signify the relative significance of each channel. The
channel weights that have been obtained are multiplied with the original feature map in an
element-wise manner, enabling the network to selectively enhance or reduce the influence
of certain channels.

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z) (2)

Here, δ means ReLU, W1 ∈ R c
r×c, W2 ∈ Rc× c

r and r represents a ratio of dimensionality
reduction. The final outcome of the block is attained by adjusting the transformation’s
output through rescaling using the activations where Fscale refers to channel-wise multipli-
cation between the feature map.

Efficient Channel Attention

ECA-Net [38], also known as Efficient Channel Attention Network, significantly im-
proves the performance of CNNs by introducing the “Efficient Channel Attention” module.
This module enables CNNs to efficiently capture interactions between channels by utilizing
fast 1D convolution. The size of the convolutional kernel can be dynamically determined
through a non-linear mapping of the channel dimension. This approach improves efficiency
without sacrificing the dimensionality reduction characteristic of Squeeze and Excitation
(SE) networks. It achieves this by adaptively re-calibrating feature responses through the
application of GAP and fully connected layers. In the context of an input feature map X
with shape (C, H, W), where C represents the number of channels, H represents the height,
and W represents the width, a GAP operation is applied to the input feature map. This
computes the average value for each channel, resulting in a channel-wise statistic with
shape (C, 1, 1), where,

Z(X) =
1

WH

W,H

∑
i=1,j=1

Xij (3)

denotes a channel-wise GAP. After that, the determination of the convolution kernel size
K is based on the channel dimension C. This adaptive process ensures that the network
performs a fast one-dimensional convolution operation of size K. Subsequently, a Sigmoid
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function is applied to learn channel attention, enabling the network to selectively emphasize
important channels.

The convolution kernel size K plays a crucial role in determining the local cross-
channel interaction coverage and is closely linked to the channel dimension C. Typically,
the channel dimension is set to an integer power of 2, establishing a mapping relationship
between K and C, which can be described as follows:

C = φ(K) = 2γ∗K−b (4)

The adaptive local convolution kernel size K is calculated using the following ap-
proach:

K = ϕ(C) = ψ

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

(5)

where |t|odd denotes the nearest odd number t.
However, the authors did not provide a clear justification for the adaptive kernel size

function ψ(C), particularly regarding the underlying justification for the default values of
γ and b. Additionally, the authors have not provided an explanation for their choice to set
the kernel size to the default value of 3, rather than utilizing the adaptive function. As a
result, we integrated BO to determine the kernel size in the ECA block, with a search space
of K = 3 and K = 5. BO determined that K = 5 provided the optimal solution for our model
and the integrated datasets.

The attention mechanism plays a vital role in focusing on important information. The
ECA mechanism, as an efficient attention method with fewer parameters and superior
performance, further enhances attention by emphasizing different feature representations
and generating attention weights between channels. Incorporating the ECA mechanism
enhances attention capability, leading to improved performance in various tasks. In our
fire image classification task, we employed a combination of SE-Net and ECA-Net to
tackle the challenge posed by highly diverse pixel values in fire-affected areas within the
image datasets used. This approach was selected to ensure the production of dependable
and efficient feature maps across all network channels. The SE block was particularly
designed to capture intricate channel dependencies by integrating FC layers and bringing
in adaptiveness and non-linear interactions. Moreover, the ECA-Net technique prioritizes
the modeling of channel interactions by utilizing a 1D convolutional layer that imposes a
lower computational cost.

3.3.4. Bayesian Optimization:

Bayesian optimization (BO) [22] is a technique that seeks to find the best possible
solution for an objective function, g(x), by incorporating prior knowledge and updating
it based on observed data. This approach combines prior beliefs about the function with
information gained from evaluations of g(x) to refine the approximation of g(x) and im-
prove its accuracy. In addition, BO uses an acquisition function to guide the search process
by selecting sampling points where there is a higher probability of finding improvements
over the current best observation. As an example, suppose we have the objective function
g(x) and the estimated improvement (EI) based on the posterior distribution function Q. In
this case, the expression for EI(x, Q) can be defined as follows:

EI(x, Q) = EQ[max(0, µQ(xbest)− g(x))] (6)

where xbest is the location of the lowest posterior mean and µQ(xbest) is the lowest value of
the posterior mean.

In our research, we have integrated the BO algorithm to optimize various parameters,
including the number of filters in the convolution block, kernel sizes, the number of neurons
in the dense block, learning rates, and the dropout rate.
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4. Result Analysis

This section focuses on evaluating the performance of the proposed model for classify-
ing fire in various forest fire datasets. The proposed approach’s performance was assessed,
providing insights into its effectiveness in accurately classifying forest fire-related images
on both FLAME and DeepFire datasets. The evaluation was conducted using the Kaggle
virtual environment, utilizing a P100 GPU.

4.1. Hyper-Parameter Selection

Optimized hyperparameters can lead to significant improvements in the model’s
performance on both training and unseen data. By utilizing Bayesian optimization, we
selected the optimized hyperparameters for our model. An overview of the model learning
settings is shown in Table 2.

Table 2. Overview of model learning settings.

Dataset Loss Optimizer LR Epochs Batch Size Input Size

FLAME Binary Cross-entropy AdamW 1× 10−5 50 16 224× 224
DeepFire Binary Cross-entropy Adam 1× 10−5 50 16 224× 224

The ACNet in the proposed model is composed of four convolutional layers, each
with varying numbers of filters, which are shown in Table 3. During the process of
hyperparameter tuning using BO, we defined the filter size ranges for the convolution
layers as follows: minimum values to 16, 32, 68, and 128, while the maximum values were
set to 32, 68, 128, and 268, respectively, step sizes were 4, 8, 20, and 28. After extensive
exploration and optimization, we determined that selecting 32, 64, 128, and 256 as the filter
size values provided the best results for our objective. We experimented with kernel sizes
3, 5, and 7 in every convolution layer and 3, 5 in ECA block using BO and determined
that a kernel size of 3 generates better results for convolution layer and a kernel size of 5
generates better results for ECA block. Each convolutional layer is subsequently followed
by a max pooling operation with a pool size of 2.

Table 3. Attention connected network block optimization parameters.

No.

Convolutional Layer

No. of Filters
Kernel Size

Max Pooling Kernel Size in ECA

Max Min Step (Pool Size)

1st 32 16 4 3, 5, 7 2 3, 5
2nd 64 32 8 3, 5, 7 2 3, 5
3rd 128 64 20 3, 5, 7 2 3, 5
4th 256 128 28 3, 5, 7 2 3, 5

The dense block consists of two fully connected layers. In the initial dense layer, BO
was utilized to determine the optimal number of neuron units. The search space for the
dense layer was defined, ranging from a minimum of 128 units to a maximum of 512 units,
in increments of 64 units as described in Table 4. BO demonstrated that utilizing 512 units
provided the most optimal outcomes. For the final dense layer, we utilized the Sigmoid
activation function to accurately classify the Fire and No-fire classes. The search space has
been defined for BO regarding dropout rates, with a maximum dropout rate set at 0.4, a
minimum rate of 0.25, and a step size of 0.05 shown in Table 5. Subsequently, BO provided
the optimal dropout rate, which turned out to be 0.4. These values reflect the range of
dropout rates employed in the model, allowing for regularization and reducing over-
fitting by randomly dropping out a fraction of input units. Additionally, the learning rate
provides information about the learning rate used in the model’s optimization process. This
parameter represents the rate at which the model updates its internal parameters during
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training. The Table 6 states that two learning rates were considered in the proposed model
which are 1× 10−4 and 1× 10−5. This indicates that the model was trained using both
learning rates, likely to explore the impact of different rates on the model’s performance
and convergence. After optimization using BO, a learning rate of 1× 10−5 resulted in the
most optimal outcomes and showed the best results for our objective. The search space for
BO encompassed four optimizers: Adam, AdamW, SGD, and RMSprop as presented in
Table 7. BO’s analysis disclosed that AdamW provided superior outcomes for the FLAME
dataset, whereas for the DeepFire dataset, Adam was found to be the more effective choice.

Table 4. Dense block optimization parameters.

Dense Layer
Units

Max Min Step

1st 512 128 64

Table 5. Dropout rate optimization parameters.

Parameter
Units

Max Min Step

Dropout 0.4 0.25 0.05

Table 6. Learning rate optimization parameters.

Parameter Units

Learning Rate 1× 10−4, 1× 10−5

Table 7. Optimizer optimization parameters.

Parameter Name

Optimizer Adam, AdamW, SGD, RMSprop

All the parameters shown in the previous tables were determined using BO which
is a technique that combines probabilistic models and acquisition functions to efficiently
search for optimal hyperparameters. This approach enables the model to adaptively and
systematically explore the hyperparameter space, resulting in optimal parameter settings
for enhanced model performance.

4.2. Comparative Evaluation of the Proposed Approach

The performance of the proposed architecture in accurately identifying forest fires
was assessed using multiple metrics, including prediction accuracy, false positive rate,
false negative rate, true negative rate, precision, recall, and F1 score. These metrics offer a
thorough evaluation of the model’s efficiency in classifying forest fires.

4.2.1. Analysis of Training and Testing Performance on Proposed Approach

The proposed model underwent training and testing on both the FLAME and DeepFire
datasets, with a total of 50 epochs for each dataset. Figure 4a illustrates that using the
FLAME dataset, the model demonstrated an impressive accuracy of 97.45%. The initial
weights are initialized in a way that makes the model strongly biased towards the training
data, it may quickly fit the training data during the first epoch, leading to a significant gap
between training and validation performance, which is depicted in Figure 4a,b. In contrast,
Figure 4c demonstrates that the model achieved a slightly lower accuracy of 95.97% using
the DeepFire dataset. However, the accuracy graph itself might not immediately convey
the exact accuracy value, it visually emphasizes the high level of accuracy attained by
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the model when working with the FLAME and DeepFire dataset. Randomness and noise
in the training process can also impact early epoch performance, which is demonstrated
in Figure 4c,d. At the start, the model’s weights are initialized randomly, and this initial
configuration can influence how quickly it learns to generalize well. Some random initial-
ization may lead to faster convergence and better generalization in later epochs. These
figures illustrate the trajectory of the model’s loss curve. As training progresses, it gradually
converges toward a better solution. It helps the model to improve the performance on both
training and validation sets.

(a)

(b)

(c)
Figure 4. Cont.
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(d)
Figure 4. Training vs. validation accuracy and loss curve for proposed architecture on FLAME dataset
(a,b) and DeepFire dataset (c,d).

4.2.2. Performance Metrics

Different metrics are used to assess the performance of classification models by mea-
suring different aspects of their predictive accuracy. Evaluating the performance of a model
relies heavily on the metric of prediction accuracy in classifying a given problem. When
employing a DNN approach, the primary goal is to attain a high level of prediction accuracy
while simultaneously reducing the error rate. The equations below can be used to define
the prediction accuracy and error rate.

PredictionAccuracy =
TP + TN

TP + TN + FP + FN
(7)

In the context of classification, TN (True Negative) refers to the correctly classified
no-fire image number, while TP (True Positive) indicates the count of fire images accurately
classified using the method. A false positive (FP) occurs when an image belonging to the
no-fire class is incorrectly classified as fire, while a false negative (FN) happens when a fire
image is mistakenly classified as no-fire.

Precision and recall are fundamental metrics for evaluating the performance of a
classification model in a formal context. Precision quantifies the accuracy of positive
predictions made by a model or classifier. It measures the proportion of true positive
predictions (correctly identified positives) out of the total predicted positives. In other
words, precision assesses the model’s reliability and precision when predicting positive
outcomes. On the other hand, recall, also known as sensitivity or true positive rate,
measures the model’s effectiveness in capturing positive instances by calculating the ratio
of correctly predicted positive instances to the total actual positive instances. Also, the
F1 score is an evaluation metric that effectively combines precision and recall to offer a
well-rounded measure of a classification model’s performance. By taking the harmonic
mean of precision and recall, it provides a balanced measure.

Precision =
TP

TP + FP
(8)

Recall = TPR =
TP

TP + FN
(9)

F1score = TPR = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

4.2.3. K-Fold Cross-Validation

The k-fold cross-validation method is extensively employed in the field of ML for
evaluating and validating the performance of a model. It helps in obtaining a more
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accurate understanding of how well the model is likely to perform on unseen data and
aids in making informed decisions about model selection and hyperparameter tuning. This
process entails dividing the dataset into K folds of equal size, where each fold is utilized
alternately as a training set and a validation set. This process is repeated K times, with each
fold being used as the validation set once. The importance of K-fold cross-validation lies in
its ability to provide a more robust and reliable estimate of the model’s performance. It
helps to mitigate issues like overfitting and selection bias by ensuring that the model is
evaluated on multiple different subsets of the data.

In our proposed model, we divided the dataset into four folds of equal size ensuring
a comprehensive evaluation of the model’s performance. By averaging the performance
across the four iterations, we obtain a more representative and generalized assessment
of the model’s effectiveness, as it is evaluated on diverse subsets of the data. All data of
K-fold validation are present in Table 8. After four iterations of K-fold cross-validation
on the FLAME dataset, the model achieved an accuracy of 97.45%, precision of 98.20%,
recall of 97.10%, and an F1-score of 97.12%. Similarly, on the DeepFire dataset, the model
provided an accuracy of 95.97%, precision of 95.19%, recall of 96.01%, and an F1-score of
95.54%. These results demonstrate the strong performance and effectiveness of the model
in accurately classifying and predicting the target variables for both datasets.

Table 8. K-fold.

Dataset K-Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)

FLAME

1st 96.78 99.63 95.50 97.52
2nd 97.29 97.48 97.17 97.29
3rd 97.23 97.14 97.43 97.25
4th 98.53 98.55 98.32 98.42

Mean 97.45 98.20 97.10 97.12

DeepFire

1st 95.39 93.10 97.10 95.03
2nd 96.38 97.80 95.52 96.13
3rd 95.72 94.74 96.65 95.61
4th 96.38 95.13 94.79 95.41

Mean 95.97 95.19 96.01 95.54

4.2.4. Confusion Matrix

The confusion matrix serves as a tool for providing predictive analysis in forest fire
classification, and provides a more comprehensive evaluation of the proposed method’s
performance, offering clarity in situations where accuracy alone may be ambiguous. In
Figure 5, the confusion matrix represents the performance of the proposed model approach
on both datasets. The diagonal elements of the matrix represent the number of correct
predictions, while the off-diagonal elements represent the number of incorrect predictions.
The larger values along the diagonal indicate that the model performed well, with few
misclassifications.

The proposed model was evaluated using four-fold cross validation. This means that
the data were split into four folds, and the model was trained on three folds and tested on
the remaining fold. This process was repeated four times, and the results were averaged to
obtain an estimate of the model’s performance. The average accuracy of the model was
97.45 % on the FLAME dataset and 95.97 % on the DeepFire dataset.
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(a) Fold 1. (b) Fold 2.

(c) Fold 3. (d) Fold 4.

(e) Fold 1. (f) Fold 2.

(g) Fold 3. (h) Fold 4.

Figure 5. Class-wise confusion matrix for proposed architecture on FLAME dataset (a–d) and
DeepFire dataset (e–h).
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4.2.5. ROC-AUC

The performance evaluation of the image classification method also incorporates
additional metrics, namely the False Positive Rate (FPR), False Negative Rate (FNR), True
Positive Rate (TPR), and True Negative Rate (TNR). These metrics provide valuable insights
into the model’s accuracy. The equations below define these metrics:

TNR =
TN

TN + FP
(11)

TPR =
TP

TP + FN
(12)

FPR = 1− TNR (13)

FNR = 1− TPR (14)

The proposed method demonstrated strong performance on two different datasets. On
the FLAME dataset, it achieved a True Negative Rate (TNR) of 95.5% and a True Positive
Rate (TPR) of 99.3%. Additionally, on the DeepFire dataset, the method attained a TNR
of 94.47% and a TPR of 96.82%. These metrics highlight the method’s ability to accurately
classify images.

The Receiver Operating Characteristic (ROC) curve is a graphical representation that
showcases the predictive performance of a binary classifier as the prediction threshold is
adjusted. The ROC curve is obtained by plotting TPR, also known as sensitivity or recall,
against the FPR. The Area Under the Curve (AUC) is a metric that measures class sepa-
rability, indicating the model’s effectiveness in distinguishing between classes. A higher
AUC score signifies superior predictive capabilities of the model. Figure 6 visually depicts
the ROC curve generated by the proposed method. With an AUC value of 1.00, the model
exhibits a perfect ability to correctly discriminate between positive and negative classes.

(a)

(b)
Figure 6. ROC curve on (a) FLAME dataset and (b) DeepFire dataset.

4.2.6. Heatmap Generation

To further facilitate visual interpretation, we utilized a visualization technique known
as guided Gradient-weighted Class Activation Mapping (Grad-CAM) [23], which provides
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heatmaps with high resolution and distinct class discrimination. This technique allows us
to visually interpret our model’s predictions by generating a heat map representing the
class activation map for a given input image.

The class activation map is a two-dimensional grid of feature scores associated with
a specific output class. Each position on the grid indicates the importance of that class
for the corresponding location in the image. When an image containing fire is input into
the detection model, Grad-CAM generates a heat map that visually presents the level of
similarity for each location within the image and the “fire” class. Darker colors on the heat
map indicate a higher degree of similarity. This visualization technique enables us to be
conscious of the specific local regions in the original image that played a significant role in
the detection model’s final classification decision.

In Figure 7, our work demonstrates the efficacy of the coordinated attention module
by showcasing the regions of interest identified by our network. We observed that these
regions closely corresponded to the areas depicting forest smoke and flames in the input
images. This alignment between the identified regions of interest and the visual indicators
of fire provides us with valuable insight into how our model focuses on the relevant areas
when making predictions.

(a) Input image of flame dataset.

(b) Generated heatmap.

(c) Input image of DeepFire dataset.

Figure 7. Cont.
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(d) Generated heatmap.

Figure 7. Showcasing the regions of interest on (a,b) FLAME dataset and (c,d) DeepFire dataset.

5. Discussion

Accurate wildfire classification is crucial, and our proposed dual-stream attention-
guided approach has proven its exceptional performance on widely recognized two public
datasets. It consistently outperforms most of the existing methods, thanks to its ability to
capture both low-level and high-level dependencies within an attention-guided framework.
This confirms its status as a novel wildfire classification solution, valuable for addressing
wildfire classification and management challenges. For future enhancements, we plan to
integrate transformers with larger datasets to boost accuracy and adaptability. We’ll also
work on reducing model parameters for improved efficiency and explore more effective
attention mechanisms for even better classification precision. These improvements align
with our commitment to advancing wildfire classification and real-world applications.

5.1. Performance Comparison with Other CNN Models

In this section, we present a performance comparison of our model with other CNN
and attention-based models. While some models utilize the FLAME dataset, others employ
the DeepFire dataset similar to ours. The comparison reveals that our model demonstrates
the potential for superior performance compared to all the evaluated models, suggesting
its effectiveness in forest fire classification tasks. Table 9 shows all the comparison data
between the proposed and other mentioned CNN-based models. Though precision and
recall serve as important metrics for evaluating all the ML and DL models, the majority of
the reviewed papers did not explicitly mention these metrics. From Table 9, we can observe
that our proposed method outperformed most of the notable existing methods in terms of
all the metrics. However, the proposed method of S. Khan et al. [26] performed slightly
better on the DeepFire dataset. However, the authors’ lack of clarity regarding the model
architecture is a significant limitation of their work. This lack of detail makes it difficult
to understand and replicate their results, which is a major concern as it prevents other
researchers from improving upon their work.

Table 9. Comparisons of the classification result for the proposed and conventional methods in all
the employed datasets (‘-’ denotes not mentioned).

Catagory Methodology Dataset Accuracy
(%)

Precision
(%) Recall (%) F1-Score

(%)

CNN Based

Pretrained VGG19 with customized classifier [24] DeepFire 95.00 94.96 95.72 94.21
FFireNet (Pretrained MobileNetV2 with additional dense layers) [26] DeepFire 98.42 - 97.42 99.47
Pretrained ResNet50 with customized fully connected layers [27] FLAME 88.00 - - -
Ensemble model (EfficientNet-B5 , DenseNet-201) [28] FLAME 85.12 84.77 - -
Xception [29] FLAME 76.23 - - -

Attention Based ResNet50 with DSA ( Dual Semantic Attention ) [19] FLAME 93.65 - - -

Proposed Model - FLAME 97.45 98.20 97.10 97.12
- DeepFire 95.97 95.19 96.01 95.54
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5.2. Ablation Study

To assess the efficacy and interactivity of the components used in the proposed architec-
ture, we conducted a comprehensive ablation study. The results of this study, showcasing
the experimental outcomes, are outlined in Table 10. This ablation study allowed us to
assess the individual contributions of each component and gain insights into their sig-
nificance within the overall architecture. Through comparative analysis with methods
mentioned in Table 10, we see that our architecture outperforms them in terms of overall
performance. To assess the contributions and importance of specific components in our
model, we conducted an ablation study where we systematically removed essential ele-
ments. Our proposed model comprises two important elements: a pre-trained EfficientNet
B7 backbone and a customized ACM that incorporates SE and ECA mechanisms. To eval-
uate the effectiveness of these components, we performed the ablation study using the
FLAME dataset exclusively.

Table 10. Experimental results from the ablation study.

Dataset Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

FLAME

Proposed Architecture w/o pre-trained EfficientNet B7 95.21 94.25 95.23 95.50
Proposed Architecture w/o ACM 94.11 94.32 94.45 94.09
Proposed Architecture w/o ECA in ACM 97.06 97.08 96.11 96.33
Proposed Architecture w/o SE in ACM 96.54 96.68 96.39 96.52
Proposed Architecture 97.45 98.20 97.10 97.12

The stepwise inclusion of each component in the proposed architecture resulted in a
noticeable improvement in classification performance. The model achieved a remarkable
accuracy score of 97.45%, a precision score of 98.20%, and a recall of 97.10% when all
components were present, outperforming other models. Notably, the absence of the pre-
trained backbone led to a lower accuracy of 95.21%, highlighting the substantial impact
of the pre-trained backbone on the overall performance. Similarly, excluding the ACM
resulted in decreased performance, with an accuracy of 94.11%, precision of 94.32%, recall of
94.45%, and an F1-score of 94.09%. This emphasized the crucial role played by the ACM in
enhancing the model’s predictive capabilities. The study revealed that the presence of both
the ECA and SE components within ACM positively influenced the model’s performance.
Upon comparing the proposed model’s performance with the model without the ECA
component in ACM, we observed a decrease of 0.31% in accuracy. In contrast, when
comparing the proposed model with the model without the SE component, there was a
larger decrease of 0.83% in accuracy.

Figure 8 presents the ablation study results using heatmap generation techniques,
which allow us to visualize how the model recognizes and highlights regions of interest.
These results suggest that the absence of the SE component had a more significant impact
on the model’s performance, highlighting its influential role compared to other compo-
nents. According to the findings of the ablation study, it is evident that every component
incorporated in the proposed model carries significant importance.

Figure 8. Cont.
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Figure 8. Qualitative comparison of predictions of regions of interest among proposed model without
different components.

6. Conclusions

In this paper, we present a novel model that incorporates a pre-trained EfficientNetB7,
a customized Attention Guided Network called ACNet, and the BO technique. This model
provides high accuracy for forest fire classification. To enhance the interpretability of this
model, we implemented GRAD-CAM, which allows us to localize the fire within the feature
map. This enables a deeper understanding of the model’s decision-making process and
provides valuable insights for fire detection. Furthermore, k-fold cross-validation was
conducted to rigorously assess the model’s performance. On the FLAME dataset, the model
attained an accuracy of 97.45%, precision of 98.20%, recall of 97.10%, and an F1-score of
97.12%. Similarly, on the DeepFire dataset, the model demonstrated an accuracy of 95.97%,
precision of 95.19%, recall of 96.01%, and an F1-score of 95.54%. The F1-score of the both
dataset indicates that the model achieved a strong balance between precision and recall.
This is a positive sign as it suggests that the model is effective at both correctly identifying
positive cases (fire region) and minimizing false positives. The high accuracy also indicates
overall strong performance. Additionally, the ablation study delves into the contributions
of each individual component, providing a deeper understanding of how they impact the
overall performance of the model. The ablation study showed that our proposed ACM
plays a vital role in the model’s performance. Without the ACM, the model’s F1-score
dropped to 94.09%, which is significantly lower than the model’s F1-score with the ACM.
In other words, the ACM is a key component of the model, and it is essential for achieving
good performance. The numerical results along with interpretation through GRAD-CAM
provides proof of our proposed model’s efficiency in classifying forest fire. In our future
work, we hope to optimize training time for larger network sizes, enabling the training of
more powerful and accurate models. We also intend to enhance preprocessing techniques
to improve classification outcomes, facilitating more effective learning and producing more
precise results. Furthermore, we plan to reduce the model’s computational cost, allowing
for seamless integration into mobile devices.
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