Effects of Chemical Soil Characteristics, Air Temperature and Precipitation on Pinus pinea Growth in Southern Inland Portugal
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stand Structure
3.2. Chemical Soil Characteristics
3.3. Air Temperature and Rainfall
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Agrimi, M.; Ciancio, O. Le Pin Pignon (Pinus pinea L.); FAO: Rome, Italy, 1993. [Google Scholar]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2019, 12, 662–666. [Google Scholar]
- Mutke, S.; Calama, R.; Gonza, S.C.; Montero, G.; Gordo, F.J.; Bono, D.; Gil, L. Mediterranean Stone Pine: Botany and Horticulture; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 153–201. [Google Scholar]
- Ferreira, A.G.; Gonçalves, A.C.; Pinheiro, A.C.A.; Gomes, C.P.; Ilhéu, M.; Neves, N.; Ribeiro, N.A.; Santos, P. Plano Específico de Ordenamento Florestal para o Alentejo; Universidade de Évora: Évora, Portugal, 2001. [Google Scholar]
- Cutini, A.; Chianucci, F.; Manetti Maria, C. Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. iForest Biogeosci. For. 2013, 6, 331–335. [Google Scholar] [CrossRef]
- Akyol, A.; Örücü, Ö.K.; Arslan, E.S. Habitat suitability mapping of stone pine (Pinus pinea L.) under the effects of climate change. Biologia 2020, 75, 2175–2187. [Google Scholar]
- IFN6. 6.° Inventário Florestal Nacional; IFN: Lisbon, Portugal, 2019; p. 26. [Google Scholar]
- Natalini, F.; Correia, A.C.; Vázquez-Piqué, J.; Alejano, R. Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Ann. For. Sci. 2015, 72, 1023–1033. [Google Scholar]
- Saraiva, I. Opinhão; Litexa Editora Lda.: Lisboa, Portugal, 1997. [Google Scholar]
- IPMA. Instituto Português do Mar e da Atmosfera. 2021. Available online: https://www.ipma.pt/pt/index.html (accessed on 15 July 2021).
- Castagneri, D.; Battipaglia, G.; von Arx, G.; Pacheco, A.; Carrer, M. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol. 2018, 38, 1098–1109. [Google Scholar] [PubMed]
- Mechergui, K.; Saleh Altamimi, A.; Jaouadi, W.; Naghmouchi, S. Climate change impacts on spatial distribution, tree-ring growth, and water use of stone pine (Pinus pinea L.) forests in the Mediterranean region and silvicultural practices to limit those impacts. iForest 2021, 14, 104–112. [Google Scholar] [CrossRef]
- Piraino, S. Assessing Pinus pinea L. resilience to three consecutive droughts in central-western Italian Peninsula. iForest 2020, 13, 246–250. [Google Scholar] [CrossRef]
- Vergarechea, M.; Calama, R.; Pretzsch, H.; Alday, J.G.; del Río, M. Short- and long-term growth response to climate in mixed and monospecific forests of Pinus pinea and Pinus pinaster. Eur. J. For. Res. 2021, 140, 387–402. [Google Scholar]
- Novak, K.; de Luis, M.; Čufar, K.; Raventós, J. Frequency and variability of missing tree rings along the stems of Pinus halepensis and Pinus pinea from a semiarid site in SE Spain. J. Arid Environ. 2011, 75, 494–498. [Google Scholar] [CrossRef]
- Campelo, F.; Nabais, C.; Freitas, H.; Gutiérrez, E. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann. For. Sci. 2007, 64, 229–238. [Google Scholar]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest Carbon Management: A Review of Silvicultural Practices and Management Strategies Across Boreal, Temperate and Tropical Forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar]
- Albaugh, T.J.; Albaugh, J.M.; Fox, T.R.; Allen, H.L.; Rubilar, R.A.; Trichet, P.; Loustau, D.; Linder, S. Tamm Review: Light use efficiency and carbon storage in nutrient and water experiments on major forest plantation species. For. Ecol. Manag. 2016, 376, 333–342. [Google Scholar]
- Zhang, J.; Fiddler, G.O.; Young, D.H.; Shestak, C.; Carlson, R. Allometry of tree biomass and carbon partitioning in ponderosa pine plantations grown under diverse conditions. For. Ecol. Manag. 2021, 497, 119526. [Google Scholar]
- Shannon, V.L.; Vanguelova, E.I.; Morison, J.I.L.; Shaw, L.J.; Clark, J.M. The contribution of deadwood to soil carbon dynamics in contrasting temperate forest ecosystems. Eur. J. For. Res. 2022, 141, 241–252. [Google Scholar]
- Lebourgeois, F.; Gomez, N.; Pinto, P.; Mérian, P. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For. Ecol. Manag. 2013, 303, 61–71. [Google Scholar]
- Lévesque, M.; Walthert, L.; Weber, P. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 2016, 104, 377–387. [Google Scholar]
- Ren, J.; Fang, S.; Lin, G.; Lin, F.; Yuan, Z.; Ye, J.; Wang, X.; Hao, Z.; Fortunel, C. Tree growth response to soil nutrients and neighborhood crowding varies between mycorrhizal types in an old-growth temperate forest. Oecologia 2021, 197, 523–535. [Google Scholar]
- Avery, T.E.; Burkhart, H.E. Measurements; Macgraw-Hill, Inc.: New York, NY, USA, 1994. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; IUSS Working Group WRB: Capri, Italy, 2015; p. 192. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- SROA. Carta dos Solos de Portugal (Esc. 1:50.000), Vol. I: Classificação e Caracterização Morfológica dos Solos; Serviço de Reconhecimento e de Ordenamento Agrário, Secretaria de Estado da Agricultura: Lisboa, Portugal, 1970. [Google Scholar]
- Póvoas, I.; Barral, M.F. Métodos de Análises de Solos; Instituto de Investigação Científica Tropical: Lisboa, Portugal, 1992; p. 61. [Google Scholar]
- Climate Data. Climate Data. 2020. Available online: https://en.climate-data.org/europe/portugal/estremoz/estremoz-6954/ (accessed on 15 July 2021).
- LQARS. Manual de Fertilização das Culturas, 2nd ed.; LQARS: Lisboa, Portugal, 2006; p. 282. [Google Scholar]
- Smith, D.M.; Larson, B.C.; Kelty, M.J.; Ashton, P.M.S. The Practice of Silviculture. Applied Forest Ecology; John Wiley & Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Schütz, J.P. Sylviculture 1. Principes d’Éducation des Forêts; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 1990. [Google Scholar]
- Vospernik, S.; Monserud, R.A.; Sterba, H. Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine? For. Ecol. Manag. 2010, 260, 1735–1753. [Google Scholar] [CrossRef]
- Wonn, H.T.; O’Hara, K.L. Height:Diameter Ratios and Stability Relationships for Four Northern Rocky Mountain Tree Species. West. J. Appl. For. 2001, 16, 87–94. [Google Scholar]
- Pommerening, A. Basic Tree Variables, Forestry Summary Characteristics and Biodiversity Measures; Swedish University of Agricultural Sciences (SLU): Umea, Sweden, 2007. [Google Scholar]
- Boudru, M. Forêt et Sylviculture. Le Traitement des Forêts; Presses Agronomiques de Gembloux: Gembloux, Belgium, 1989. [Google Scholar]
- Marcelo, M.E.; Correia, A.; Silva, C.S. Soil fertility status of stone pine (Pinus pinea) stands in Portugal. In Incredible. Innovation Networks for Cork, Resin & Edibles, FACTSHEET 20407; European Union: Luxembourg, 2020. [Google Scholar]
- Marcelo, M.E.; Carrasquinho, I.; Jordão, P.; Mano, R.; Calouro, F.; Gaspar, M.; Gomes, J.P.A.; Martins, S.; Silva, C.S.; Amaral, M.R.; et al. Características físicas e químicas de solos ocupados com pinheiro-manso. Revista Rural 2020, 2020, 24–27. [Google Scholar]
- Smethurst, P.; Knowles, A.; Churchill, K.; Wilkinson, A.; Lyons, A. Soil and foliar chemistry associated with potassium deficiency in Pinus radiata. Can. J. For. Res. 2007, 37, 1093–1105. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils; Pearson Education: Boston, MA, USA, 2017. [Google Scholar]
Variable | Plot | |||
---|---|---|---|---|
DEV01 | DTC01 | DTC02 | DME01 | |
Central coordinates | 38°44′42″ N 7°41′21″ W | 38°30′31″ N 7°53′55″ W | 38°30′35″ N 7°53′57″ W | 37°42′42″ N 7°49′0″ W |
Mean elevation (m) | 384 | 237 | 238 | 153 |
Slope gradient | Sloping (5%–10%) | Nearly level (0.5%–1.0%) | Nearly level (0.5%–1.0%) | Nearly level (0.5%–1.0%) |
Composition | Mixed (with Quercus suber) | Pure | Pure | Pure |
Structure | Even aged | Even aged | Even aged | Even aged |
Mean age (years) | ≈30 | ≈30 | ≈30 | ≈30 |
Plot area (m2) | 1600 | 1550 | 1500 | 1912 |
Soil map units * | Pgn(d,p) + Egn (7; 3) | Pmg + Pg (6; 4) | Pmg | Px(d) + Ex |
RSG corresponding to soil map units (WRB) ** | Regosols/Cambisols + Leptosols | Luvisols + Regosols/Cambisols | Luvisols | Luvisols + Leptosols |
WRB soils ** | Leptic Regosol (Loamic) | Eutric Luvisol (Loamic) | Eutric Regosols (Loamic) | Leptic Regosol (Loamic) |
Parent material | Gneisses or similar rocks | Quartz diorites or granite | Quartz diorites | Schist or grauwackes |
Climate (Cl. Köppen) | Csa | Csa | Csa | |
Weather stations (location) | Estremoz | Évora | Mértola | |
Weather stations (Coordinates) | 38°52′ N 7°31′ W | 38°32′ N 7°53′ W | 38°45′ N 7°33′ W | |
Weather stations (elevation) | 366 m | 246 m | 190 m | |
Mean annual temperature | 15.8 °C | 15.9 °C | 16.6 °C | |
Mean annual precipitation | 611 mm | 509 mm | 476 mm |
Plot | N (treesha−1) | G (m2ha−1) | CC (%) | dg (cm) | id (cm) | ih (m) | dbhm | hm | rmm (m) | lcm (m) | hdm | crm | cfim | lfim | csrm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DEV01 | 150 | 8.8 | 24.9 | 27.3 | 0.9 | 0.3 | 27.1 | 8.6 | 2.5 | 5.8 | 31.8 | 68.0 | 0.9 | 18.3 | 0.58 |
DTC01 | 129 | 7.9 | 24.3 | 27.9 | 0.9 | 0.3 | 27.7 | 8.0 | 2.6 | 5.5 | 28.8 | 69.1 | 1.0 | 18.9 | 0.66 |
DTC02 | 133 | 8.0 | 24.1 | 27.6 | 0.9 | 0.3 | 27.2 | 8.2 | 2.5 | 5.9 | 30.2 | 72.0 | 0.9 | 18.7 | 0.62 |
DME01 | 61 | 1.9 | 5.6 | 20.0 | 0.7 | 0.2 | 20.0 | 5.0 | 1.8 | 3.3 | 24.9 | 65.6 | 1.1 | 18.0 | 0.73 |
Plot | Depth (cm) | Fine Fraction (<2 mm) | Text Code | SOC | N | C/N | pH (1:2.5) | Exchange Cations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CS | FS | Silt | Clay | H2O | KCl | Ca2+ | Mg2+ | K+ | Na+ | NAC | CEC | NCS | ||||||
(g kg−1) | (g kg−1) | (cmolc kg−1) | (%) | |||||||||||||||
DEV01 | 0–20 | 408 | 266 | 166 | 160 | SL | 7.25 | 0.8 | 9.1 | 5.85 | 4.49 | 2.75 | 0.89 | 0.44 | 0.05 | 4.13 | 8.86 | 46.6 |
DEV01 | 20–50 | 521 | 197 | 132 | 150 | SL | 3.07 | 0.6 | 5.1 | 5.38 | 3.70 | 1.68 | 0.89 | 0.37 | 0.04 | 2.98 | 8.24 | 36.2 |
DTC01 | 0–20 | 460 | 294 | 90 | 156 | SL | 8.18 | 0.9 | 9.1 | 6.12 | 4.43 | 4.41 | 1.98 | 0.21 | 0.08 | 6.68 | 8.77 | 76.2 |
DTC01 | 20–50 | 416 | 236 | 117 | 231 | SCL | 3.94 | 0.5 | 7.9 | 6.42 | 3.97 | 5.22 | 2.29 | 0.51 | 0.11 | 8.13 | 13.06 | 62.3 |
DTC02 | 0–20 | 375 | 366 | 117 | 142 | SL | 7.08 | 0.8 | 8.8 | 5.97 | 4.44 | 4.28 | 1.98 | 0.18 | 0.08 | 6.52 | 10.55 | 61.8 |
DTC02 | 20–50 | 420 | 295 | 112 | 173 | SL | 2.78 | 0.7 | 4.0 | 6.18 | 4.16 | 4.97 | 2.6 | 0.22 | 0.09 | 7.88 | 11.44 | 68.9 |
DME01 | 0–20 | 390 | 184 | 269 | 157 | L | 18.10 | 0.6 | 30.2 | 5.80 | 4.60 | 2.19 | 1.46 | 0.40 | 0.45 | 4.5 | 10.61 | 42.4 |
DME01 | 20–50 | 412 | 151 | 233 | 204 | L | 5.86 | 0.5 | 11.7 | 5.50 | 4.00 | 1.75 | 1.46 | 0.63 | 0.61 | 4.45 | 8.88 | 50.1 |
Plot | Depth (cm) | Macronutrients | Micronutrients | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P2O5 | K2O | Mg | Fe | Mn | Cu | Zn | B | ||||||||||
(mg kg−1/class) | (mg kg−1/class) | ||||||||||||||||
DEV01 | 0–20 | 7.16 | /1 | 118 | /4 | 230 | /5 | 57.0 | /4 | 81.00 | /4 | 0.80 | /3 | 0.70 | /2 | 0.51 | /3 |
DEV01 | 20–50 | 4.96 | /1 | 130 | /4 | 140 | /5 | 55.8 | /4 | 44.40 | /3 | 0.80 | /3 | 0.90 | /2 | 0.58 | /3 |
DTC01 | 0–20 | 13.18 | /1 | 122 | /4 | 200 | /5 | 131.0 | /5 | 72.00 | /4 | 1.90 | /3 | 0.90 | /2 | 0.89 | /3 |
DTC01 | 20–50 | 8.79 | /1 | 74 | /3 | 460 | /5 | 56.0 | /4 | 55.40 | /4 | 1.20 | /3 | 1.70 | /3 | 1.93 | /4 |
DTC02 | 0–20 | 8.88 | /1 | 100 | /4 | 440 | /5 | 106.0 | /5 | 85.00 | /4 | 1.40 | /3 | 0.80 | /2 | 0.34 | /2 |
DTC02 | 20–50 | 7.02 | /1 | 60 | /3 | 340 | /5 | 104.8 | /5 | 75.00 | /4 | 1.10 | /3 | 0.50 | /1 | 0.19 | /1 |
DME01 | 0–20 | 9.50 | /1 | 104 | /4 | 245 | /5 | 185.0 | /5 | 1.63 | /1 | 4.50 | /3 | 0.19 | /1 | 0.70 | /3 |
DME01 | 20–50 | 1.80 | /1 | 54 | /3 | 225 | /5 | 218.0 | /5 | 1.62 | /1 | 4.20 | /3 | 0.11 | /1 | 0.62 | /3 |
Year | Évora | Estremoz | Mértola | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Quarters | ||||||||||||
1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | |
2014 | 10.6 | 17.8 | 22.1 | 13.2 | 9.7 | 17.3 | 21.8 | 12.5 | 11.0 | 18.1 | 22.9 | 13.6 |
2015 | 9.7 | 19.6 | 22.8 | 14.0 | 8.7 | 19.1 | 22.4 | 13.4 | 9.7 | 19.8 | 23.5 | 14.4 |
2016 | 10.3 | 17.1 | 25.0 | 13.4 | 9.6 | 16.4 | 24.6 | 12.5 | 10.1 | 17.9 | 25.3 | 13.7 |
2017 | 10.5 | 20.0 | 23.7 | 14.5 | 9.6 | 19.4 | 23.3 | 13.5 | 10.3 | 20.2 | 24.2 | 14.5 |
2018 | 9.5 | 16.5 | 24.2 | 13.1 | 8.6 | 16.2 | 23.7 | 11.5 | 9.7 | 16.7 | 24.4 | 13.3 |
2019 | 10.7 | 17.7 | 23.0 | 13.8 | 9.7 | 16.9 | 22.8 | 12.5 | 10.6 | 18.2 | 23.5 | 13.9 |
2020 | 11.5 | 18.0 | 24.3 | 13.3 | 10.7 | 17.4 | 24.2 | 13.4 | 11.6 | 18.6 | 24.7 | 13.7 |
2014–2020 | 10.4 | 18.1 | 23.6 | 13.6 | 9.5 | 17.5 | 23.3 | 12.8 | 10.4 | 18.5 | 24.1 | 13.9 |
Normal | 10.7 | 16.6 | 22.6 | 13.5 | 9.8 | 18.0 | 23.7 | 12.8 | 10.9 | 17.6 | 23.8 | 14.0 |
Year | Évora | Estremoz | Mértola | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Quarters | ||||||||||||
1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | |
2014 | 243 | 144 | 130 | 222 | 354 | 50 | 106 | 232 | 145 | 122 | 60 | 177 |
2015 | 98 | 62 | 11 | 158 | 79 | 79 | 22 | 144 | 45 | 90 | 20 | 149 |
2016 | 174 | 124 | 9 | 176 | 236 | 192 | 11 | 233 | 83 | 127 | 8 | 161 |
2017 | 167 | 53 | 17 | 111 | 162 | 28 | 0 | 121 | 137 | 15 | 4 | 65 |
2018 | 336 | 175 | 6 | 178 | 344 | 133 | 16 | 214 | 206 | 138 | 1 | 170 |
2019 | 85 | 93 | 21 | 257 | 97 | 110 | 16 | 242 | 50 | 60 | 6 | 109 |
2020 | 117 | 174 | 48 | 292 | 131 | 149 | 18 | 172 | 124 | 138 | 7 | 152 |
2014–2020 | 174 | 118 | 35 | 199 | 200 | 101 | 27 | 194 | 113 | 98 | 15 | 140 |
Normal | 188 | 128 | 46 | 249 | 154 | 106 | 36 | 213 | 144 | 101 | 26 | 205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.C.; Alexandre, C.; Andrade, J.; Pires, R. Effects of Chemical Soil Characteristics, Air Temperature and Precipitation on Pinus pinea Growth in Southern Inland Portugal. Forests 2023, 14, 2160. https://doi.org/10.3390/f14112160
Gonçalves AC, Alexandre C, Andrade J, Pires R. Effects of Chemical Soil Characteristics, Air Temperature and Precipitation on Pinus pinea Growth in Southern Inland Portugal. Forests. 2023; 14(11):2160. https://doi.org/10.3390/f14112160
Chicago/Turabian StyleGonçalves, Ana Cristina, Carlos Alexandre, José Andrade, and Rita Pires. 2023. "Effects of Chemical Soil Characteristics, Air Temperature and Precipitation on Pinus pinea Growth in Southern Inland Portugal" Forests 14, no. 11: 2160. https://doi.org/10.3390/f14112160
APA StyleGonçalves, A. C., Alexandre, C., Andrade, J., & Pires, R. (2023). Effects of Chemical Soil Characteristics, Air Temperature and Precipitation on Pinus pinea Growth in Southern Inland Portugal. Forests, 14(11), 2160. https://doi.org/10.3390/f14112160