Analysis of the Water Leakage Rate from the Cells of Nursery Containers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparing Material for Testing
2.2. A Prototype Test Stand for Testing the Outflow of Liquids through Container Cells
2.3. Measurement Process
- W—increase in liquid weight over time (N∙s−1),
- ws—initial weight of water in the tank for time ts (N),
- we—final weight of water in the container for time te (N),
- ts—start time of water mass measurement in the tank (s),
- te—end time of water mass measurement in the tank (s).
- v—flow rate (m·s−1),
- Q—outflow (m3·s−1),
- A—total flow area perpendicular to the flow (m2),
- Ks—permeability coefficient (m·s−1),
- L—sample length (m),
- L′—the level of water above container (in research L′ = 0.005 m) determined by the outlet from frame (m),
- ΔH—hydraulic height (m), defined as the ratio of the height of the sample L to the sum of L and L′, (-).
3. Results
4. Discussion
5. Conclusions
- A prototype measurement station, designed to determine the outflow of liquid from container cells filled on the Urbinati Ypsylon automated line, successfully identified the maximum velocity of liquid outflow v from a substrate saturated in multiple cells of containers ranging in volume from 0.145 to 0.275 dm3. The velocities ranged from 0.0252 to 0.0344 cm·s−1.
- The observed differences in outflow velocity v were associated with containers of different types, which corresponded to various bulk density values.
- With consistent settings in line efficiency (number of containers per hour) and the vibration intensity of the vibrating table, containers with different cell volumes showed variations in bulk density. This, in turn, influenced the liquid outflow speed from the substrate in the container v.
- Differences in the outflow velocity v within the container, as determined by measurements at the station, can be used to assess the quality of the substrate, the efficiency of the automated line, and the performance of the line operators.
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilderback, T.E. Water Management Is Key in Reducing Nutrient Runoff from Container Nurseries. HortTechnology 2002, 12, 541–544. [Google Scholar] [CrossRef]
- Heiskanen, J. Water status of sphagnum peat and peat–perlite mixture in containers subjected to irrigation regimes. HortScience 1995, 30, 281–284. [Google Scholar] [CrossRef]
- Szabla, K.; Pabian, R. Container Nursery: New Technologies and Techniques in Forestry Nursery; State Forests Information Centre: Warsaw, Poland, 2003; 212p, ISBN 83–88478–43–5. (In Polish) [Google Scholar]
- Kerloch, E.; Michel, J.C. Pore tortuosity and wettability as main characteristics of the evolution of hydraulic properties of organic growing media during cultivation. Vadose Zone J. 2015, 14, 141–147. [Google Scholar] [CrossRef]
- Cabrera, P.I.; Johnson, J.R. Fundamentals of container media management: Part 1. Greenhouse and Nursery Crops Fact Sheets & Bulletins. In Rutgers Fact Sheet FS 812; The State University of New Jersey: New Brunswick, NJ, USA, 2014; p. 3. [Google Scholar]
- De Boodt, M.; Verdonck, O. The Physical Properties of the Substrates in Horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- Fernandes, C.; Corá, J.E. Bulk density and relationship air/water of horticultural substrate. Sci. Agric. 2004, 61, 446–450. [Google Scholar] [CrossRef]
- Paquet, J.M.; Caron, J.; Banton, O. In situ determination of the water desorption characteristics of peat substrates. Can. J. Soil. Sci. 1993, 73, 339–349. [Google Scholar] [CrossRef]
- Cook, A.; Bilderback, T.; Lorscheider, M. Physical property mesurements in container substrates: A field Quantification strategy. SNA. Res. Conf. 2004, 49, 102–104. [Google Scholar]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S., Jr.; Albano, J.P. Healthy Substrates Need Physicals Too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S.; Banach, J.; Jagiełło-Leńczuk, K.; Dudek, K. Seasonal changes of perlite–peat substrate properties in seedlings grown in different sized container trays. New For. 2021, 52, 271–283. [Google Scholar] [CrossRef]
- Allaire, S.E.; Caron, J.; Duchesne, I.; Parent, L.É.; Rioux, J.A. Air–filled porosity, gas relative diffusivity, and tortuosity: Indices of Prunus ×Cistena sp. growth in peat substrates. J. Amer. Soc. Hort. Sci. 1996, 121, 236–242. [Google Scholar] [CrossRef]
- Strojny, Z. Substrate in container nursery production. Nursery 2003, 4, 61–67. (In Polish) [Google Scholar]
- Mathers, H.M.; Yeager, T.H.; Case, L.T. Improving irrigation water use in container nurseries. HortTechnology 2005, 15, 8–12. [Google Scholar] [CrossRef]
- Evans, M.R.; Gachukia, M.M. Physical properties of sphagnum peat—Based root substrates amended with perlite or parboiled fresh rice hulls. HortTechnology 2007, 17, 312–315. [Google Scholar] [CrossRef]
- Altland, T.E.; Owen, J.O.; Gabriel, M.Z. Influence of Pumice and Plant Roots on Substrate Physical Properties. HortTechnology 2011, 21, 554–557. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S. Patent Office of the Republic of Poland Warsaw. A Station for Measuring the Amount of Liquid Draining from the Substrate, Especially from the Cells of Nursery Containers. P.443675, 2 February 2022. (In Polish). [Google Scholar]
- Voltcraft DL-131G. USB Vibration Logger DL 131G. In Operating Instruction; Version 08/13; Voltcraft: Hirschau, Germany, 2013; p. 2. Available online: https://asset.conrad.com/media10/add/160267/c1/-/pl/000419329ML04/manual-419329-voltcraft-dl-131g-acceleration-data-logger-unit-of-measurement-vibrationacceleration-18-up-to-18-g.pdf (accessed on 10 June 2023).
- Kormanek, M.; Małek, S.; Banach, J. The Influence of Vibration and Moisture Content on the Compactness of the Substrate in Nursery Container Cells Determined with a Multipenetrometer. Forests 2023, 14, 1750. [Google Scholar] [CrossRef]
- Rabiej, M. Statistics with the Program; Helion: Warszawa, Poland, 2012; p. 344. (In Polish) [Google Scholar]
- StatSoft. Electronic Statistics Textbook, Krakow. 2006. Available online: https://www.statsoft.pl/textbook/stathome.html (accessed on 20 September 2023).
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Kormanek, M.; Walczyk, M.; Walczyk, J. The effect of load and number of passes of skidding tractors on compaction of forest soils. Sylwan 2008, 10, 48–55. (In Polish) [Google Scholar] [CrossRef]
- Kormanek, M.; Dvořák, J. Ground Pressure Changes Caused by MHT 8002HV Crawler Harvester Chassis. Crojfe J. For. Eng. 2021, 42, 201–211. [Google Scholar] [CrossRef]
- Kormanek, M.; Dvořák, J. Use of Impact Penetrometer to Determine Changes in Soil Compactness after Entracon Sioux EH30 Timber Harvesting. Crojfe J. For. Eng. 2022, 43, 13. [Google Scholar] [CrossRef]
- Kormanek, M.; Gołąb, J. Analysis of Surface Deformation and Physical and Mechanical Parameters of Soils on Selected Skid Trails in the Gorce National Park. Forests 2021, 12, 797. [Google Scholar] [CrossRef]
- Pająk, K.; Małek, S.; Kormanek, M.; Banach, J. Effect of peat substrate compaction on growth parameters and root system morphology of Scots pine Pinus sylvestris L. seedlings. Sylwan 2022, 166, 2537–2550. [Google Scholar] [CrossRef]
- Pająk, K.; Kormanek, M.; Małek, S.; Banach, J. Effect of Peat-Perlite Substrate Compaction in Hiko V265 Trays on the Growth of Fagus sylvatica L. Seedlings. Sustainability 2022, 14, 4585. [Google Scholar] [CrossRef]
- State Forests Information Center. Report on the Condition of Forests in Poland 2021; State Forests Information Center: Warszawa, Poland, 2022; 162p. (In Polish) [Google Scholar]
- Pająk, K.; Małek, S.; Kormanek, M.; Jasik, M. The effect of peat substrate compaction on the macronutrient content of Scots pine Pinus sylvestris L. container seedlings. Sylwan 2022, 166, 211–223. [Google Scholar] [CrossRef]
- Pająk, K.; Małek, S.; Kormanek, M.; Jasik, M.; Banach, J. Macronutrient content in European Beech (Fagus sylvatica L.) seedlings grown in differently compacted peat substrates in a container nursery. Forests 2022, 13, 1793. [Google Scholar] [CrossRef]
- Caron, J.; Elric, C.E.; Michel, J.C.; Naasz, R. Physical properties of organic soils and growing media: Water and air storage and flow dynamics. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 885–912. ISBN 9781420005271. [Google Scholar]
- Abawi, G.S.; Widmer, T.L. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl. Soil Ecol. 2000, 15, 37–47. [Google Scholar] [CrossRef]
- Bergeron, O.; Lamhamedi, M.S.; Margolis, H.A.; Bernier, P.Y.; Stowe, D.C. Irrigation Control and Physiological Responses of Nursery-Grown Black Spruce Seedlings (1+0) Cultivated in Air-Slit Containers. HortScience 2004, 39, 599–605. [Google Scholar] [CrossRef]
- Lamhamedi, M.; Lambany, G.; Margolis, H.; Renaud, M.; Veilleux, L.; Bernier, P.Y. Growth, physiology, and leachate losses in Picea glauca seedlings (1+0) grown in air-slit containers under different irrigation regimes. Can. J. For. Res. 2001, 31, 1968–1980. [Google Scholar] [CrossRef]
- Stowe, D.C.; Lamhamedi, M.S.; Margolis, H.A. Water relations, cuticular transpiration, and bud characteristics of air-slit containerized Picea glauca seedlings in response to controlled irrigation regimes. Can. J. For. Res. 2001, 31, 2200–2212. [Google Scholar] [CrossRef]
- Lamhamedi, M.S.; Labbé, L.; Margolis, H.A.; Stowe, D.C.; Blais, L.; Renaud, M. Spatial Variability of Substrate Water Content and Growth of White Spruce Seedlings. Soil Sci. Soc. Am. J. 2006, 1, 108–120. [Google Scholar] [CrossRef]
Parameter | Container Type | |
---|---|---|
V150 | V300 | |
Length/Width/Height L/W/H | 650/312/150 mm | 650/312/180 mm |
Number of cells nc | 74 pc. | 53 pc. |
Cell volume V | 0.145 dm3 | 0.275 dm3 |
Cell height H | 15.0 cm | 18.0 cm |
Diameter of the entrance hole to the cell Din | 4.6 cm | 5.2 cm |
Diameter of the outlet hole from the cell Dout | 2.5 cm | 2.5 cm |
Average flow area A | 10.4 cm2 | 13.1 cm2 |
Value | Container Type | |
---|---|---|
V150 | V300 | |
Number of containers ncABD and ncDBD (pcs) | 8 | 8 |
Total number of measurements in a single container nmscABD and nmscDBD (pcs) | 6 | 5 |
Total number of measurements in containers nmABD and nmDBD (pcs) | 48 | 40 |
Average value ABD (g·cm−3) | 0.418 | 0.322 |
St. Dev. ABD (g·cm−3) | 0.020 | 0.021 |
Variation coefficient ABD (%) | 4.71 | 6.50 |
Average value DBD (g·cm−3) | 0.103 | 0.079 |
St. Dev. DBD (g·cm−3) | 0.007 | 0.006 |
Variation coefficient DBD (%) | 6.911 | 7.797 |
Factor | |||||
---|---|---|---|---|---|
Container Type | Repeating of Container | Location of the Cell | |||
V150 vs. V300 | V150 | V300 | V150 | V300 | |
Actual bulk density ABD | 0.418 ± 0.003 b | 0.400 ± 0.011 | 0.355 ± 0.008 | 0.413 ± 0.009 | 0.308 ± 0.006 |
0.322 ± 0.003 a | 0.419 ± 0.006 | 0.331 ± 0.007 | 0.412 ± 0.010 | 0.327 ± 0.008 | |
0.424 ± 0.009 | 0.326 ± 0.008 | 0.412 ± 0.005 | 0.323 ± 0.009 | ||
0.428 ± 0.006 | 0.325 ± 0.008 | 0.417 ± 0.006 | 0.326 ± 0.007 | ||
0.420 ± 0.006 | 0.316 ± 0.003 | 0.430 ± 0.003 | 0.326 ± 0.006 | ||
0.416 ± 0.011 | 0.312 ± 0.008 | 0.423 ± 0.007 | |||
0.420 ± 0.006 | 0.308 ± 0.003 | ||||
0.416 ± 0.007 | 0.304 ± 0.009 | ||||
F = 476 | F = 1.076 | F = 5.059 | F = 1.173 | F = 1.108 | |
p = 0.000 ** | p = 0.397 | p = 0.060 | p = 0.338 | p = 0.36 | |
Dry bulk density DBD | 0.102 ± 0.001 b | 0.097 ± 0.003 | 0.080 ± 0.002 | 0.100 ± 0.002 | 0.074 ± 0.001 |
0.078 ± 0.001 a | 0.102 ± 0.001 | 0.080 ± 0.002 | 0.100 ± 0.002 | 0.079 ± 0.002 | |
0.103 ± 0.002 | 0.078 ± 0.002 | 0.100 ± 0.001 | 0.078 ± 0.002 | ||
0.104 ± 0.001 | 0.078 ± 0.002 | 0.101 ± 0.001 | 0.079 ± 0.002 | ||
0.102 ± 0.001 | 0.076 ± 0.001 | 0.105 ± 0.001 | 0.079 ± 0.002 | ||
0.101 ± 0.003 | 0.075 ± 0.002 | 0.103 ± 0.002 | |||
0.102 ± 0.002 | 0.074 ± 0.001 | ||||
0.101 ± 0.002 | 0.073 ± 0.002 | ||||
F = 507.0 | F = 1.031 | F = 5.039 | F = 1.195 | F = 1.110 | |
p = 0.000 ** | p = 0.287 | p = 0.057 | p = 0.254 | p = 0.325 |
Value | Container Type | |
---|---|---|
V150 | V300 | |
Number of containers ncv (pcs) | 2 | 2 |
Total number of measurements in a single container nmscv (pcs) | 45 | 45 |
Number of load cells (pcs) | 15 | 15 |
Total number of measurements in containers nmv (pcs) | 600 | 600 |
Average value v (cm∙sek−1) | 0.0252 | 0.0344 |
St. Dev. v (cm∙sek−1) | 0.0085 | 0.0068 |
Variation coefficient v (%) | 33.6 | 19.6 |
Average value Ks (cm∙sek−1) | 0.0244 | 0.0335 |
St. Dev. Ks (cm∙sek−1) | 0.0082 | 0.0066 |
Variation coefficient Ks (%) | 33.44 | 19.63 |
Factor | |||||
---|---|---|---|---|---|
Container Type | Repeating | Location of the Cell | |||
Outflow velocities v (cm∙s−1) | V150 vs. V300 | V150 | V300 | V150 | V300 |
0.025 ± 0.008 | 0.025 ± 0.001 | 0.0321 ± 0.000 a | 0.021 ± 0.001 | 0.037 ± 0.002 b | |
0.034 ± 0.007 | 0.026 ± 0.001 | 0.0368 ± 0.001 b | 0.037 ± 0.001 | 0.034 ± 0.001 abc | |
0.032 ± 0.001 | 0.041 ± 0.001 c | ||||
0.026 ± 0.002 | 0.034 ± 0.001 ab | ||||
0.019 ± 0.001 | 0.034 ± 0.001 abc | ||||
0.020 ± 0.001 | 0.030 ± 0.002 a | ||||
0.023 ± 0.001 | 0.034 ± 0.002 ab | ||||
0.027 ± 0.002 | 0.034 ± 0.002 abc | ||||
0.023 ± 0.000 | 0.036 ± 0.001 ab | ||||
0.030 ± 0.001 | 0.031 ± 0.001 ab | ||||
0.017 ± 0.001 | 0.035 ± 0.000 abc | ||||
0.020 ± 0.001 | 0.031 ± 0.001 c | ||||
0.032 ± 0.001 | 0.041 ± 0.001 ab | ||||
0.020 ± 0.002 | 0.032 ± 0.001 ac | ||||
0.029 ± 0.003 | 0.033 ± 0.003 ab | ||||
F = 219.3 | F = 2.002 | F = 39.94 | F = 12.21 | F = 4.954 | |
p = 0.000 ** | p = 0.158 | p = 0.000 ** | p = 0.060 | p = 0.000 ** |
Actual Bulk Density ABD | Dry Bulk Density DBD | |||
---|---|---|---|---|
Outflow velocities v | r = −0.524 | p = 0.000 ** | r = −0.523 | p = 0.000 ** |
Permeability coefficient Ks | r = −0.531 | p = 0.000 ** | r = −0.529 | p = 0.000 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kormanek, M.; Małek, S. Analysis of the Water Leakage Rate from the Cells of Nursery Containers. Forests 2023, 14, 2246. https://doi.org/10.3390/f14112246
Kormanek M, Małek S. Analysis of the Water Leakage Rate from the Cells of Nursery Containers. Forests. 2023; 14(11):2246. https://doi.org/10.3390/f14112246
Chicago/Turabian StyleKormanek, Mariusz, and Stanisław Małek. 2023. "Analysis of the Water Leakage Rate from the Cells of Nursery Containers" Forests 14, no. 11: 2246. https://doi.org/10.3390/f14112246
APA StyleKormanek, M., & Małek, S. (2023). Analysis of the Water Leakage Rate from the Cells of Nursery Containers. Forests, 14(11), 2246. https://doi.org/10.3390/f14112246