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Abstract: Forest biomass is an important indicator of forest ecosystem productivity, and it plays
vital roles in the global carbon cycling, global climate change mitigating, and ecosystem researches.
Multiscale, rapid, and accurate extraction of forest biomass information is always a research topic. In
this study, comprehensive investigation of a larch (Larix olgensis) plantation was performed using
remote sensing and field-based monitoring methods, in combination with LiDAR-based multisource
data and machine learning methods. On this basis, a universal, multiscale (single tree, stand,
management unit, and region), and unit-high-precision continuous monitoring method was proposed
for forest biomass components. The results revealed the following. (1) Airborne LiDAR point cloud
variables exhibited significant correlation with the aboveground components (except leaves) and
the whole-plant biomass (R2

adj > 0.91), suitable for extraction or estimation of forest parameters such
as biomass and stock volume. (2) In terms of biomass monitoring at forest stand and management
unit scale, a random forest model performed well in fitting accuracy and generalization ability,
whereas a multiple linear regression model produced clearer explanation regarding the biomass
of each forest component. (3) Using seasonal phenological characteristics in the study area, larch
distribution information was extracted effectively. The overall accuracy reached 90.0%, and the
kappa coefficient reached 0.88. (4) A regional-scale forest biomass component estimation model was
constructed using a long short-term memory model, which effectively reduced the probability of
biomass underestimation while ensuring good estimation accuracy, with R2 exceeding 0.6 for the
biomass of the aboveground and whole-plant components. This research provides theoretical support
for rapid and accurate acquisition of large-scale forest biomass information.

Keywords: forest; biomass; LiDAR; machine learning; remote sensing

1. Introduction

Forest biomass is a critical structural characteristic that serves as an indicator of a
forest ecosystem’s productivity and carbon storage. This measurement plays a pivotal role
in understanding both local and regional carbon cycles, ultimately influencing terrestrial
carbon sequestration [1–6]. Furthermore, precise forest biomass estimates are essential
for effective forest management and the associated industries [7]. Consequently, the
demand for a swift and precise approach to assess multiscale forest biomass information is
on the rise.
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Traditionally, forest biomass estimation relies on establishing specific relationships
between structural traits, such as breast radius and tree heights, and biomass [8,9]. These
traits are typically gathered through field investigations. By recording these structural traits
for all or representative trees within designated plots, the results obtained through these
conventional methods serve as benchmarks for other biomass estimation attempts. Thus
far, more than 2000 models encompassing over 100 tree species have been developed for
biomass estimation [10–12]. Despite the high accuracy and wide applicability of such mod-
els, long-term dynamic monitoring of biomass can be a time-consuming, labor-intensive,
destructive, and often challenging endeavor [13]. Furthermore, when dealing with het-
erogeneous regions, the spatial representativeness of the investigation samples remains
uncertain. As a more robust and intricate approach to biomass estimation, the utilization
of dynamic global vegetation models (DGVMs) is considered to possess greater potential
for predicting forest dynamics under the influence of climate change [14]. However, this
method requires the calibration of numerous type-specific parameters based on diverse
field experiments. This suggests that DGVMs cannot be swiftly adapted to new forest
categories and lack the ability to diagnose biomass status in current forests with high
spatial resolution.

The rapid advancement of remote sensing (RS) technology has enabled the swift
assessment of the spatial distribution of forest biomass across a broad spectrum. Leveraging
fitted relationships between biomass and RS-derived predictors, it is possible to generate
comprehensive biomass maps that cover entire regions [15]. The selection of input features
typically depends on data availability and the research objectives. Conventional input
features include optical RS images, given that a variety of RS indices has been devised
to capture various forest characteristics, some of which are closely linked to biomass.
Additionally, microwave RS observations are sensitive to canopy structure and water
volume, making them valuable for biomass prediction [16]. Microwave observations with
extended waveforms such as L-band or P-band have proven effective in global forest
biomass retrieval [17]. However, it is worth noting that the spatial resolution of related
products is not comparable to optical RS observations, typically at a 0.1- or 0.25-degree
grid scale.

On a regional scale, numerous studies have combined optical and microwave RS data
to construct biomass inversion models that have achieved a certain degree of accuracy,
while challenges like saturation and instability hinder the assurance of sufficient accuracy
in regional applications using such an approach [18–20]. Therefore, LiDAR (Light Detec-
tion And Ranging) technology, a novel non-imaging RS technology capable of measuring
the absolute distance between a target (such as canopy tops in the current context) was
introduced. This ability ensures accurate canopy height measurements, a crucial factor in
biomass estimation [21]. LiDAR has demonstrated reasonable performance in estimating
forest biomass on small to medium scales, including single trees, stands, and management
units, due to its precise acquisition of forest vertical structure [22,23]. However, the discrete
nature and high cost of airborne LiDAR limit its continuous application on a large scale [24].
Consequently, the question remains: Can an integrated strategy that leverages the strengths
of various data and technologies, mitigates the limitations of individual methods, and estab-
lishes a multiscale, rapid, and accurate approach for acquiring forest biomass information
using multisource data be realized?

To integrate multiple data sources effectively, a proficient algorithm is essential for
learning or summarizing the relationship between input features and forest biomass. In
comparison to traditional algorithms like linear regression, machine learning approaches
such as LSTM, U-Net, and transformer approach exhibit superior capability and reliability
in enhancing the accuracy of forest biomass estimation and conducting in-depth analysis
of multisource data [25–27]. Machine learning’s applications in remote sensing within the
field of forestry primarily concentrate on tasks such as land-use/land-cover classification,
vegetation succession prediction, tree species identification, forest pest and fire damage
detection, and the estimation of parameters like forest leaf area index, stock volume, and
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biomass [28–31]. Regarding the remote sensing estimation of forest biomass using machine
learning, it can be categorized into image-based and object-oriented methods [32–36].
Nevertheless, many prior studies focused on establishing relationships solely between
remote sensing image pixels or objects and forest biomass. Little attention has been given
to exploring relationships between adjacent pixels (or objects) or between pixels with
similar information but separated by a certain distance. Moreover, machine learning often
necessitates numerous high-precision samples, which may be challenging to obtain through
traditional methods. Therefore, research that combines machine learning with multi-source
remote sensing data is also a promising avenue worth considering.

Larch (Larix olgensis) forests represent a forest category with notable economic potential.
These forests are extensively distributed throughout the northeastern region of China,
characterized by a temperate and cold temperate monsoon climate [14]. The ongoing global
climate warming has had a marked impact on larch forests, which is particularly significant
given larch’s heightened sensitivity to climate variations. Furthermore, the northeastern
part of China is experiencing a more pronounced warming trend [37]. In order to ensure
the continued productivity of larch forests amidst climate change and to sustain economic
benefits for local communities, it is imperative to enhance our understanding of larch
growth and optimize the management of these forests [38]. This optimization process
necessitates the accurate mapping of larch biomass.

In this study, our aim was to develop a methodology capable of addressing the
challenges associated with extensive and large-scale ground-based surveys. To achieve this,
we integrated LiDAR observations with ground-based sample survey data and applied it
to estimate biomass in a larch plantation located in Heilongjiang Province, northeast China.
Additionally, we harnessed the “memory” characteristics of the long short-term memory
(LSTM) machine learning method for data analysis in two scenarios: (1) homogenous
forest stands not adjacent in space and (2) forest stands (planted forests) with a stable
status closely linked to a specific factor (age). The outcomes of this study aim to illustrate
the suitability of a universal, multiscale (including single tree, forest stand, management
unit, and region), and high-precision continuous monitoring approach for assessing forest
biomass components by integrating data from multiple remote sensing sources.

2. Materials and Methods
2.1. Study Area

The study area was located in the Mengjiagang Forest Farm in Heilongjiang Province
(46◦20′–46◦30′ N, 130◦32′–130◦52′ E). It is located in the western foothills of Wanda Moun-
tain, dominated by low mountains and hills with elevation of 170–575 m (average elevation:
250 m) and gentle slope of 10◦–20◦. The soil is dominated by typical dark-brown earth.
The forested area of the forest farm covers 13,671 ha. The forest coverage rate is 86.3%,
and the total standing tree stock volume is 1.46 million m3. The main forest types are
plantations of Pinus sylvestris L. var. mongolica Litv. and Pinus koraiensis Sieb. et Zucc., which
occupy approximately two-thirds of the total area. Other natural secondary forests account
for the remaining one-third. To objectively evaluate the generalization capability of the
regional-scale biomass component extrapolation model, an independent sample test area
(45◦3′–45◦58′ N, 129◦42′–130◦34′ E) was designated in the Linkou Forestry Bureau. The
topography, landforms, climate, flora, and other factors of this test area are broadly con-
sistent with those of the Mengjiagang Forest Farm. The forest area of the Linkou Forestry
Bureau covers 213,600 ha, the standing tree stock volume is 14.1 million m3, and the forest
coverage rate is 78.9%.

2.2. Data
2.2.1. Field Data

A field survey conducted in June 2016 divided the L. olgensis plantation into young
stands (age: ≤20 years), middle-aged stands (21–30 years), near-mature stands (31–40 years),
and mature stands (≥41 years) and established 40 sample plots (each with area of 0.06 ha)
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(Figure 1). The diameter at breast height (DBH, in cm) of a single tree was measured
using a measuring tape. The height of a tree and the height (H, in m) of its branches were
measured using an ultrasonic altimeter (Vertex III, HAGLOF Company, Långsele, Sweden).
A summary of the data details of the sample plots is presented in Table 1.
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Figure 1. Location of the study area (Mengjiagang Forest Farm).

Table 1. Summary statistics of the sampled plots.

Ages
DBH
(cm)

H
(m)

Basal Area
(m2·ha)

Density
(Trees·ha)

Mean Range Mean Range Mean Range Mean Range

Young stand 8.6 5.6~11.0 18.51 12.94~26.16 21.6 16.8~24.7 1825 1700~1950
Middle-aged stand 12.7 11.8~13.3 15.81 13.55~24.86 25.2 23.2~28.7 1589 1283~1750
Near-mature stand 17.7 16.6~19.5 20.27 19.28~21.16 33.6 27.3~49.9 1233 1050~1467

Mature stand 22.8 16.9~31.5 26.82 23.85~29.41 26.4 16.8~33.4 672 417~1133

Notes: DBH, diameter at breast height; H, height of a tree.

On the basis of the sample plot investigation, four standard plots were selected in
areas of the four forest ages. Each standard plot comprised one superior tree, one inferior
tree, and two standard trees [39]. Thus, 64 sample trees were selected (Table 2). The
aboveground survey adopted the Monsic layered cutting method [40–42] to determine
the weight of fresh stem, bark, branch, and leaf of each sample tree. The underground
survey used the whole-root excavation method to determine the weight of fresh small roots
(≤2 cm), thick roots (2–5 cm), and rhizomes (≥5 cm). After each element was sampled
separately, it was processed for 30 min in an oven at 105 ◦C. Then, the temperature of the
oven was adjusted to 80 ◦C to dry the sample to constant mass, and the moisture content of
each component sample was measured. The biomass of each component was calculated by
multiplying the moisture content of the sample by the total fresh mass.

Following similar procedures, 10 sample plots were designated in the independent
sample inspection area, and individual trees were surveyed (Table 3). All data collected
and survey standards adopted were consistent with those used in the study area to ensure
uniformity between the samples from the inspection area and those from the study area.
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Table 2. Summary statistics of the sampled trees.

Ages Numbers of Trees DBH/cm Height/m Stem/kg Bark/kg Branch/kg Leaf/kg Root/kg

Young stand 16 3.4~9.2 3.7~13.8 1.7~15.9 0.3~2.9 0.7~4.8 0.6~2.0 0.8~5.2
Middle-aged stand 16 9.2~13.1 6.5~17.1 10.1~48.6 2.1~7.1 3.7~9.0 1.5~3.1 4.7~11.9
Near-mature stand 16 12.9~16.7 11.3~18.4 26.9~106.4 4.0~12.3 5.4~12.3 1.8~3.5 7.4~20.1

Mature stand 16 17.2~23.0 11.7~20.8 64.0~185.7 7.9~19.2 8.7~19.4 2.5~5.6 15.8~49.9

Note: Stem, bark, branch, leaf, and root represent the biomass of different tree parts.

Table 3. Sampled plot statistics of the test area.

Sample NO.
DBH (cm) Basal Area

(m2·ha)
Density

(Trees·ha)Mean Range

1 8.85 5.3~15.4 18.46 2850
2 10.63 5.5~19.7 16.78 1783
3 10.29 4.8~16.2 22.13 2517
4 12.53 7.0~18.6 15.85 1233
5 19.19 6.5~26.4 16.44 550
6 16.87 9.5~23.4 16.25 700
7 17.61 10.1~25.5 18.86 750
8 16.64 6.5~22.2 21.08 933
9 17.03 5.6~23.5 16.38 683
10 17.80 9.9~26.3 15.64 600

Notes: DBH, diameter at breast height.

2.2.2. Remotely Sensed Data

(1) LiDAR Data

In June 2016, an observational flight was conducted simultaneously with the ground-
based sample site survey. The LiCHy (LiDAR, CCD, and Hyperspectral) system was used
to collect LiDAR point clouds and high-definition images of the study area. The detailed
parameters of the LiCHy system are available in the literature [43]. A “Yun-5” aircraft
was used as the flight platform. The observations were acquired as the aircraft flew at
an average height of 2500 m with relative ground speed of approximately 200 km·h−1.
A total area of 300 km2 was obtained. The average scan width of each flight strip was
approximately 1000 m, and the overlap rate of adjacent flight strip was 60%. The coverage
of the flight path strips is shown in Figure 2. The average point cloud density within
the focusing region is 3.6 pts/m2. An improved progressive encryption triangulation
filtering algorithm was used to classify the point cloud into ground points and non-ground
points [44]. Using the elevation threshold method (elevation: >2 m) in combination with
manual editing with ArcGIS 10.8.2 software for several days, the non-ground points were
divided into vegetation points and non-vegetation point cloud types. The classified ground
points were applied to the triangulated irregular network interpolation method to generate
a digital elevation model (DEM), and the difference between the vegetation point and the
digital elevation model was derived to obtain the canopy height model (CHM).

The height and density variable groups of the LiDAR point cloud data (3.6 pts/m2)
extracted from the sample plot statistical unit were taken as the input variables of the
L. olgensis biomass estimation model [45]. The altitude variable groups included 15 altitude
percentiles (H1, H5, H10,. . ., H95, H99), 15 cumulative altitude percentiles (AIH1, AIH5,
AIH10,. . ., AIH95, AIH99), maximum height (Hmax), minimum height (Hmin), average height
(Hmean), height median (Hmedian), height percentile interquartile range (Hinterval), height
kurtosis (Hkurtosis), mean deviation (Hmab), coefficient of variation (Hcv), standard deviation
(Hstddev), and so on. The 10 density variables group was used to divide the point cloud
(>2 m) into 10 equal height layers from low to high, and the ratio of the number of echoes
in each layer was taken as the corresponding density variable (D5, D10, D20,. . ., D80, D90).
Figure 3 shows the height and density variables extracted from LiDAR point cloud data.
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(2) Optical Data

Two scenes acquired by the GF-1 satellite PMS1 camera on 26 March and 6 July
2016 (orbit number: 26 March, E 130.7/N 46.3, E 130.8/N 46.6. 6 July, E 130.7/N 46.6,
E 130.6/N 46.3) were selected for extraction of L. olgensis distribution information and the
construction of the biomass estimation extrapolation model. Additionally, one scene acquired
by the GF-1 satellite PMS1 camera on 18 September 2018 (orbit number: E 129.9/N 45.5) was
selected for evaluation of the biomass estimation extrapolation model. Three scenarios
of the selected images were displayed in Figure 4. The detailed information of the data
is shown in Table 4. The data were provided by the China Center for Resources Satellite
Data and Application (https://www.cresda.com/zgzywxyyzx/index.html, accessed on

https://www.cresda.com/zgzywxyyzx/index.html
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20 October 2023) at a size of 2 m × 2 m for multispectral images and 8 m × 8 m for
panchromatic images.
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Table 4. Detailed Information of optical data.

Satellite/Sensor Resolution Date Orbit Number Use

GF-1/PMS1 2 m/8 m

26 March 16 E 130.7/N 46.3,
E 130.8/N 46.6; Extraction of L. olgensis distribution

information and the construction 171
of the biomass estimation model6 July 16 E 130.7/N 46.6,

E 130.6/N 46.3

18 September18 E 129.9/ N45.5 Evaluation of the biomass estimation model

The GF-1 data should be preprocessed before further application, which included
radiometric calibration, atmospheric correction, geometric correction, and image fusion; the
spectral features, vegetation indexes, and texture feature indicators were extracted. Spectral
features included the band information (Band 1, Band 2, Band 3, and Band 4), mean (x),
variance (σ2), standard deviation (σ), and entropy (h(x)). The vegetation indexes included
the normalized difference vegetation index, vegetation index ratio, difference vegetation
index, red and green vegetation index, and soil-adjusted vegetation index. The eight most
commonly used statistics in the gray level co-occurrence matrix were selected for texture
features: mean, variance, homogeneity, contrast, dissimilarity, entropy, correlation, and
second moment. The parameters were set as follows: the grayscale compression parameter
had 64 levels, the sliding window was 9 × 9, the step size was 1, and the direction was
135◦ (Table 5).

Table 5. Processed set-up for gray-level co-occurrence matrix.

Grayscale Compression Parameters Sliding Window Step Size Direction

64 levels 9 × 9 1 135◦

2.3. Methods

We deployed a deep learning method to create a regional biomass extrapolation model
grounded in GF-1 data. We meticulously evaluated the extrapolation efficacy of this model
using independent sample datasets. The schematic representation of our comprehensive
technical workflow is illustrated in Figure 5.
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2.3.1. Build a Basic Model of Larch Biomass Compatibility

This study was based on analytical data from 64 sampled trees and the allometric
growth model, and a compatible biomass model for larch plantations in the study area was
constructed using the non-linear, seemingly unrelated regressions [46–48]. Subsequently,
the established single-tree-level biomass model was used to calculate the total biomass and
the biomass of each component in each plot. The total biomass should be the sum of each
component (trunk, bark, branches, leaves and roots). In this paper, the biomass modeling
was adopted to consider the compatibility of total biomass and each component biomass.
Details of the specific process are available in the literature [49]. Furthermore, 400 samples
were taken to training model and the remaining 100 samples were used as verification data.

2.3.2. Build a Plot-Scale Biomass Component Estimation Model on the Basis of Airborne
LiDAR Data

In this study, multiple linear regression (MLR) and random forest (RF) methods
were used to establish a plot-scale biomass component estimation model on the basis of
airborne LiDAR data. The RF approach is a type of machine learning method that is widely
applied to data mining and provides the benefits of good fitting effects and generalization
ability [50]. The dependent variable was the biomass, and the independent variable was all
the extracted parameters extracted in the second part.

2.3.3. Extraction of Larch Distribution Information on the Basis of Vegetation
Phenology Characteristics

Extraction of larch distribution information was the prerequisite for achieving regional-
scale biomass estimation. The approach made full use of the phenological characteristics of
the deciduous winter leaves of larch among the coniferous species in the study area and
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used the GF-1 data of the two phases of winter (March) and summer (June) to improve the
accuracy of larch information extraction. The support vector machine (SVM) approach was
used to extract the distribution information of larch in the study area.

Land-cover types in the study area were divided into two types: forest land and
non-forest land. Forest land included three secondary types: larch, other conifers, and
broadleaved trees. Non-forest land types included three secondary types: cultivated land
and unused land, construction land, and water area. Using GF-1 data acquired in the
two periods, the spectral features, vegetation indexes, and texture feature variable groups
were extracted as SVM input variables. In accordance with the established classification
system, an SVM-supervised classification and interpretation symbol library was established
using the field survey data and analysis of the GF-1 remote sensing images, and a total of
3000 GPS interpretation symbols were collected according to the six secondary types, i.e.,
500 samples of each type (Figure 6). For each type, 400 samples were taken for the training
model, and the remaining 100 samples were used as verification data.
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When using SVM to solve a classification problem, the core difficulty is to determine
the appropriate choice of the kernel function. This study randomly selected 200 test
samples to pretrain the most commonly used kernel functions (i.e., linear kernel, quadratic
polynomial kernel, third polynomial kernel, fine Gaussian kernel, medium Gaussian kernel,
and coarse Gaussian kernel) to classify the overall accuracy and prediction speed. The
evaluation results of indicators such as classification accuracy and training time were
used as the basis for selecting the optimal kernel function. The results showed that the
quadratic polynomial kernel had the highest classification accuracy (overall accuracy:
88.3%), shortest training time (14.154 s), and fastest prediction speed (18,000 items/s).
Therefore, it was chosen for use as the classifier in this study. The SVM classification
process was implemented in MATLAB R2023b.

The evaluation of the accuracy of the results of information extraction used a com-
bination of qualitative and quantitative analyses. The qualitative analysis comprised
comparison with the results of a forest resource census performed in the study area to
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establish whether there were too many points, missing points, or wrong points. Quan-
titative analysis was achieved by constructing a confusion matrix. The overall accuracy,
user accuracy, mapping accuracy, kappa coefficient (Equation (1)), and other indicators
were calculated to test the degree of agreement between the classification results and the
verification sample while taking into account the correctly classified diagonal samples and
noncorresponding samples that were missed and misclassified at the corners [51–53]:

Kappa =
N∑m

i=1 xii −∑m
i=1 (xi+x+i)

N2 −∑m
i=1 (xi+x+i)

, (1)

where m is the total number of columns in the error matrix, which is also the total number
of classifications. xii is the number of pixels in row i and column i of the confusion matrix,
representing the number of samples classified correctly, and xi+ and x+i are the total
numbers of pixels in the row and column, respectively. N is the total number of pixels used
for the accuracy evaluation.

2.3.4. Construction of a Model for Extrapolation of Biomass Components at the
Regional Scale

A 20 × 30 m sample plot was systematically arranged within the distribution range
of larch extracted in Section 2.3.3, and the biomass components of each plot were re-
trieved in accordance with the RF method outlined in Section 2.3.2. Overall, 53,348 initial
samples were obtained. To enable the accuracy and objectivity of the fitted model, only
38,276 samples were finally selected through a boxplot method. The sample data were
divided into training data (26,793 samples), verification data (3828 samples), and prediction
data (7655 samples) in a ratio of 7:1:2. In the 10 sample plots established in the independent
sample inspection area, the method of Section 2.3.1 was used to calculate both the total
biomass and the biomass of each component of each sample plots, which were used as ob-
servational values to test the generalization capability of the biomass extrapolation model.

In this section, the RF and LSTM neural networks were used to construct a regional-
scale biomass component extrapolation model. Recurrent neural network (RNN) belongs
to the deep learning algorithms in machine learning, which is suitable for complex nonlin-
ear problems and can mine the relationship between remote sensing and forest biomass.
However, trapped by the problems of gradient explosion and gradient disappearance,
simple RNN may not be the best model for predicting time-series data with long-term
dependence [54,55]. LSTM, as a special recurrent neural network, inserts a storage unit to
the hidden layer of the RNN, which controls the flow of information through each unit and
the neural network using input gates, forget gates, and output gates, thereby avoiding the
common problems of recurrent neural network [56–58].

The input is xt, the hidden layer output is ht, the previous output is ht−1, the unit input

state is
∼
Ct, the unit output state is Ct, the previous state is Ct−1, and the input gate, forget

gate, and output gate states are it (it = σ(Wi·[ht−1, xt] + bi)), ft( ft = σ
(

W f ·[ht−1, xt] + b f

)
),

and ot (ot = σ(Wo·[ht−1, xt] + bo)), respectively. The structure of the LSTM unit indicates
that Ct and ht were transmitted to the next neural network in the recurrent neural network.
To calculate Ct and ht, it is necessary to first calculate the state of each of the three gates

and the unit input state (
∼
Ct = tanh(Wc·[ht−1, xt] + bc)), where W f , Wi, Wo, and Wc (repre-

senting ht−1) and xt connect the weights on the forget gate, input gate, output gate, and
unit state input, respectively, and b f , bi, bo, and bc represent their corresponding offset
items, respectively.

To predict the whole-plant biomass and the biomass of its components, a three-layer
neural network comprising an input layer, hidden layer, and output layer was designed.
The input layer contained 44 input neurons, i.e., 44 factor variables extracted from the GF-1
remote sensing images. The hidden layer comprises two LSTM layers, and each layer has
100 neurons. To avoid overfitting of the LSTM model, the dropout parameter value (which
was a deactivation probability value between 0 and 1) was added after each LSTM layer.
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The output layer was a fully connected neural network that included seven output neurons,
i.e., the seven biomass factors to be predicted. The mean systematic error (MSE) was chosen
as the loss function in the LSTM biomass prediction model. The smaller the MSE, the closer
the predicted value was to the actual value, the higher the accuracy of the model, and the
stronger the prediction capability. Adam was used as the optimizer of the adaptive learning
rate, and the initial value of the learning rate was set to 0.001. The deactivation probability
value of dropout was set to 0.2, the activation function of the output layer fully connected
output layer of the network was set to the function, the batch size of each feed to the neural
network was set to 50, and the number of iterations was set to 1000 [59].

2.3.5. Model Evaluation

The model results in this study were evaluated using several indicators, including the
decision coefficient (R2), root mean square error (RMSE), relative root mean square error
(rRMSE), adjusted decision coefficient (R2

adj), standard deviation of the estimated value
(SEE), total relative error (TRE), mean percentage error (MPE), mean squared error (MSE),
and mean percentage standard error (MPSE). To make full use of the effective information
of the samples, the 10-fold cross-validation method was adopted in the modeling, and the
average value of the cross-validation results was taken as the final model evaluation index.
Equations for the formulation of each of the indicators can be expressed as follows:

R2 = 1−∑(yi − ŷi)
2∑(yi − yi)

2, (2)

RMSE =
√

1/n∑(yi − ŷi)
2, (3)

rRMSE =
√

1/n∑(yi − ŷi)
2/∑ yi, (4)

R2
adj = 1− (n− 1)∑(yi − ŷi)

2/(n− p)∑(yi − yi)
2, (5)

SEE =
√

∑(yi − ŷi)
2/(n− p), (6)

TRE = ∑(yi − ŷi)/∑ ŷi × 100, (7)

MPE = tα·(SEE/y)/
√

n× 100, (8)

MSE = ∑ (yi − ŷi)/ŷi/n× 100, (9)

MPSE = ∑ |yi − ŷi/ŷi|/n× 100 (10)

where n is the total number of training samples, yi is the observed value, ŷi is the estimated
value, yi is the average value of the samples, tα is the t value at the confidence interval of α,
and p is the number of parameters.

3. Results
3.1. Basic Model of Larch Biomass Compatibility

The results showed that the R2
adj values of the biomass models of the whole plant and

each component (except leaves) were >0.91, and those of the aboveground and whole-plant
biomass models were >0.95, indicating that DBH explains more than 95% of the changes
in the standing tree biomass (Table 6). The small values of SEE, TRE, and MSE indicate
that the two models have good fitting effects. The MPE for the whole plant and for each
component was approximately 4%–7%, indicating that the average prediction accuracy
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of the model was >93%. In summary, the model has good fitting effect and prediction
accuracy that meet the requirements of application.

Table 6. Parameter estimates and evaluation statistics of the biomass model.

Components

Parameter Estimates Evaluation Statistics

a b R2
adj SEE (t) TRE

(%)
MPE
(%)

MSE
(%)

MPSE
(%)

Stem 0.06 2.51 0.97 14.59 9.03 7.03 6.31 18.47
Bark 0.03 1.99 0.95 1.78 7.70 7.21 6.52 17.34

Branch 0.16 1.46 0.92 1.69 5.91 5.40 5.98 16.81
Leaf 0.24 0.91 0.84 0.49 5.69 4.73 5.69 16.21
Root 0.04 2.10 0.96 4.20 10.85 8.01 7.50 17.15

Aboveground 0.96 18.01 8.41 6.58 6.38 16.74
Total 0.96 21.02 8.80 6.44 6.53 16.38

Note: BAbove = BStem + BBark + BBranch + BLeaf. BTotal = BAbove + BRoot. The biomass model of each component is
lnBi = ln(a i) + bilnDi, where a and b represent the fitting parameters in the biomass model. i is components. R2,
SEE, TRE, MPE, MSE, and MPSE represent evaluation indicators referenced in Section 2.3.5.

3.2. Plot-Scale Biomass Component Estimation Model Based on Airborne LiDAR Data

Tables 7 and 8 show that LiDAR variables had strong correlation with biomass, and
the correlations between Hinterval, H80, D10, and D20 and the biomass of each component
obtained by stepwise regression were generally significant (p < 0.05) or extremely significant
(p < 0.01). Except for branches and leaves, the biomass models constructed using the MLR
method have R2 > 0.82, and the R2 for stem, ground, and whole-plant models were >0.90.
The biomass models constructed using the RF method have R2 > 0.91. Moreover, they
have smaller rRMSE and TRE values, indicating that the models constructed using the two
methods have better fitting effects and that the explainable variation accounts for a higher
proportion of the total.

Table 7. Parameter estimates and evaluation statistics of the MLR model.

Components

Parameter Estimates Evaluation Statistics

a0 b1 b2 b3 R2 RMSE
(t) rRMSE TRE

(%)

Stem −2.76 ** −0.63 ** 1.70 ** 11.85 ** 0.91 0.41 0.08 0.60
Bark −3.12 ** −0.88 ** 1.19 ** 10.78 ** 0.83 0.05 0.08 0.66

Branch −0.87 * −0.79 ** 0.44 ** 7.35 * 0.54 0.07 0.10 0.91
Leaf 0.11 −1.10 ** −0.167 5.86 0.634 0.15 0.68 0.96
Root −2.57 ** −0.60 ** 1.145 ** 8.38 ** 0.87 0.08 0.067 0.45

Aboveground −1.59 ** −0.65 ** 1.40 ** 10.58 ** 0.91 0.46 0.067 0.45
Total −1.30 ** −0.64 ** 1.36 ** 10.22 ** 0.91 0.534 0.07 0.45

Note: *, significant correlation (p < 0.05); **, extremely significant correlation (p < 0.01). The model form of
branch composition is lnBBranch = a0 + b1lnHinterval + b2lnH90 + b3lnD20. The form of other component models
is lnBcomponents = a0 + b1lnHinterval + b2lnH90 + b3lnD10, where a0, b1, b2, and b3 represent the fitting parameters
in the biomass model. R2, RMSE, rRMSE, and TRE represent evaluation indicators referenced in Section 2.3.5.

Comparison of the two methods revealed that the RF model had better fitting effect. In
terms of the Bstem, Babove, and Btotal models, the R2 was 0.97 for RF and 0.91 for MLR, and
the values of rRMSE and TRE were similar. In terms of the branch and leaf models, the R2

of the MLR model was only 0.5–0.6, while that of the RF model was >0.9, indicating that the
RF model had the better fitting effect. Additionally, irrespective of model type (MLR or RF),
underestimation of the interval of biomass Btotal > 8 ton increased substantially (Figure 7).
The high-precision RF method was used to invert the biomass of larch in the study area
(Figure 8), and the results show satisfactory agreement with the observed values.
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Table 8. Evaluation statistics of the RF model.

Components R2 RMSE
(t) rRMSE TRE

(%)

Stem 0.97 0.54 0.11 1.067
Bark 0.96 0.05 0.09 0.73

Branch 0.92 0.07 0.10 0.94
Leaf 0.91 0.03 0.14 1.94
Root 0.96 0.10 0.09 0.71

Aboveground 0.97 0.62 0.10 0.85
Total 0.97 0.72 0.09 0.81

Note: R2, RMSE, rRMSE, and TRE represent evaluation indicators referenced in Section 2.3.5.
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Figure 7. Comparison of biomass from field-measured and airborne LiDAR data. (a) Biomass of
whole plant. (b) Biomass of stem. The unit of biomass is ton. MLR, multiple linear regression; RF,
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3.3. Extraction of Larch Distribution Information Based on Vegetation Phenology Characteristics

The classification results were showed in Figure 9. The overall accuracy of the classi-
fication results was 90.0%, and the kappa coefficient was 0.88, indicating that the correct
matching rate between the classification results and the actual land cover types was >90.0%
(Table 9), and the numbers on the diagonal in the table represent the number of correctly
classified pixels. The overall results were considered satisfactory and meet the requirements
of subsequent work. In terms of user accuracy, the classification accuracy of water was
highest, reaching 93.0%, indicating that this land-cover type had the highest probability of
being classified correctly. The classification accuracy of conifers was the same as that of
cultivated land and unused land, i.e., 92.0%, and the classification accuracy of larch was
91.0%. The classification accuracy of broadleaved trees and construction land was slightly
lower, i.e., only 88.0% and 84.0%, respectively. In terms of mapping accuracy, the accuracy
of the water area was the highest, reaching 96.9%, indicating that water areas within the
study area have the highest probability of being classified correctly. The classification
accuracy of larch and broadleaved trees was 95.8% and 95.7%, respectively, and that of
other conifers was 92.9%. The classification accuracy of construction land was 86.6%, while
that of cultivated land and unused land was only 76.0%.
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Table 9. Confusion matrix and precision evaluation of L. olgensis support vector machine classification.

Classification Types L. olgensis Other
Coniferous

Broad-Leaved
Trees

Cultivated and
Unutilized Land

Construction
Land Waters User

Accuracy(%)

L. olgensis 91 3 1 5 91.0
Other coniferous 3 92 2 2 1 92.0

Broad-leaved trees 1 3 88 6 2 88.0
Cultivated and
unutilized land 1 92 7 92.0

Construction land 1 12 84 3 84.0
Waters 4 3 93 93.0

Graphic accuracy (%) 95.8 92.9 95.7 76.0 86.6 96.9

Overall accuracy = 90.0%; kappa coefficient = 0.88.
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3.4. Construction of a Regional-Scale Biomass Component Extrapolation Model Based on Multisource
Data Fusion

The RF and LSTM methods demonstrated strong capability in fitting and predicting
the biomass of larch, and the prediction accuracy of the whole-plant biomass and the
biomass of its components was broadly > 70% (Table 10). In terms of the whole-plant,
aboveground, and tree root biomass, the statistical results presented in Table 10 confirm
that the fitting effect of the LSTM model was slightly better than that of the RF model, with
higher R2 and lower rRMSE and TRE. In terms of the bark, branch, and leaf component
models, the RF model performs slightly better than the LSTM model. For the stem model,
the indicators reflecting the fitting effect and prediction accuracy of the two models were
broadly consistent.

Table 10. Evaluation statistics of comparison of biomass extrapolation using the LSTM and RF models.

Components

Evaluation Statistics

R2 RMSE (t) rRMSE TRE (%)

RF LSTM RF LSTM RF LSTM RF LSTM

Stem 0.70 0.70 0.68 0.62 0.14 0.14 1.92 1.93
Bark 0.69 0.66 0.04 0.04 0.08 0.08 0.64 0.69

Branch 0.35 0.26 0.04 0.04 0.06 0.06 0.32 0.39
Leaf 0.50 0.44 0.02 0.02 0.10 0.11 0.92 1.11
Root 0.71 0.71 0.10 0.10 0.09 0.08 0.76 0.75

Aboveground 0.71 0.72 0.62 0.61 0.11 0.10 1.09 1.06
Total 0.71 0.71 0.74 0.72 0.11 0.10 1.08 1.04

Note: R2, RMSE, rRMSE and TRE represent evaluation indicators referenced in Section 2.3.5.

From Table 11, among the 7655 predicted samples, 3897 were underestimated when
using the LSTM method, accounting for 50.9% of the predicted samples, i.e., broadly
the same as the number of overestimated samples. Under the RF method, 4066 samples
were underestimated, accounting for 53.1% of the predicted samples, i.e., an increase
of 2.2 percentage points in comparison with the LSTM model. When Btotal > 8 t for the
2336 samples, under the LSTM method, 1824 samples were underestimated, accounting for
78.1% of the predicted samples. Under the RF method, 1966 samples were underestimated,
accounting for 84.2% of the predicted samples, i.e., an increase of 6.1% in comparison with
the LSTM model. Additionally, the average biomass based on the LiDAR estimation model
was 7.0104 t (i.e., the true value of the extrapolated model), the estimated average biomass
of the LSTM extrapolated model was 6.9993 t, and the average estimated biomass of the RF
extrapolated model was 6.9450 t. In summary, in comparison with the RF model, the LSTM
model was less prone to underestimation of biomass, and this characteristic becomes more
obvious with increase in the sample unit biomass.

Table 11. Comparison of the LSTM and RF models in terms of estimated biomass.

Models
All Samples Samples of Biomass > 8 ton

Overestimated Underestimated Overestimated Underestimated

LSTM
Number of samples 3758 3897 512 1824

Proportion 49.1% 50.9% 21.9% 78.1%

RF
Number of samples 3589 4066 370 1966

Proportion 46.9% 53.1% 15.8% 84.2%

It can be seen from Table 12 that the biomass of the aboveground components and
whole-plant biomass of the LSTM model have the highest R2, reaching 0.65 and 0.63,
respectively, and rRMSE and TRE were only 0.07 and 0.43%, respectively, indicating that
the model had high prediction accuracy. The R2 of the stem, root, and bark biomass models
were 0.53, 0.50, and 0.45, respectively, with smaller rRMSE and TRE. The prediction effect
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of branches and leaves was poor, with R2 of only 0.08 and 0.20, respectively. Overall, the
generalization capability of the extrapolation model of larch component biomass based on
the LSTM method was considered satisfactory, and the prediction accuracy of the model
can reach >50%.

Table 12. Evaluation statistics of the LSTM model in the test area.

Components
Evaluation Statistics

R2 RMSE (t) rRMSE TRE (%)

Stem 0.53 0.31 0.11 1.01
Bark 0.45 0.04 0.09 0.71

Branch 0.08 0.11 0.19 3.31
Leaf 0.20 0.06 0.28 7.06
Root 0.50 0.06 0.08 0.58

Aboveground 0.65 0.29 0.07 0.43
Total 0.63 0.35 0.07 0.43

Note: R2, RMSE, rRMSE and TRE represent evaluation indicators referenced in Section 2.3.5.

4. Discussion
4.1. Performance of Regression-Based Method and Machine Learning Algorithms

In this study, we employed two different modeling approaches to construct plot-scale
biomass models for various components using LiDAR data: the conventional regression-
based method, MLR, and a machine learning algorithm, RF. These choices were made for
specific reasons. Firstly, MLR, representing regression methods, has a long history of use in
establishing growth functions for diverse forest species, making it a well-established choice.
Secondly, we opted for the RF algorithm due to its inherent capability to capture non-linear
relationships between input features and outcomes. The results demonstrated that it is very
effective to use the height and the density information from LiDAR data to retrieve forest
biomass [23]. Our machine-learning-based approach for larch aboveground biomass (AGB)
estimation surpasses traditional methods such as MLR. In a prior study [60], utilizing only
optical RS observations resulted in an R2 value of about 0.36 for larch AGB estimation.
However, by incorporating stereo features, we were able to enhance the accuracy to 0.64.
Reducing the number of input variables and the spatial resolution of RS observations had
an adverse effect on larch AGB estimation accuracy. For instance, when using greenness
RS indices with varying spatial resolutions, the R2 increased from 0.29 to 0.49, while
employing NDVI increased the R2 from 0.26 to 0.79 [61]. Conversely, including unrelated
input variables did not enhance larch AGB estimation, as the R2 value remained around 0.3
despite the incorporation of numerous input variables [62]. Furthermore, the effective AGB
estimation performance can, in part, be attributed to the fact that the study area under focus
consists of a single tree-height layer [63]. When comparing the two modeling techniques,
we observed that the RF model demonstrated superior fitting effects and generalization
capabilities. This enhanced performance can be attributed to the RF approach’s strong
learning capacity and stable generalization accuracy. Furthermore, it is also linked to the
complex, nonlinear relationship between forest biomass and remote sensing data. As stand
ages increase, the growth efficiency decreases, and RF is better equipped to capture these
intricate dynamics. The variables Hinterval, H80, D10, and D20 selected by MLR were found
generally related to the biomass of each component at significant (p < 0.05) or extremely
significant (p < 0.01) levels. This signifies that LiDAR variables possess excellent explanatory
power concerning biomass variation. Integrating these significant input features into the
RF model can simplify the model’s complexity, thereby enhancing its efficiency.

4.2. Extraction of Larch Distribution Information

The classification accuracy of larch reached 91.0%, and the mapping accuracy reached
95.8%. Our research follows a conventional forest classification workflow, integrating
optical RS reflectance and related indices as inputs for a machine-learning-based classifier.
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In comparison to prior large-scale forest classification endeavors, our findings showcase a
notably enhanced level of accuracy. For instance, when we compare our results to a similar
workflow employing similar input datasets, Yang and Huang reported producer accuracies
ranging from 64% to 79% and user accuracies ranging from 69% to 87% for various forest
products [64]. This heightened accuracy can be attributed to our strategic focus on a lim-
ited area, one relatively free from complicating land-cover categories such as shrublands
and plantations. However, it is important to acknowledge that the task of tree species
classification has long presented a formidable challenge. The classification accuracy may
potentially diminish in future applications within natural forests where there is a more intri-
cate combination of tree species. To mitigate this, employing hyperspectral RS observations
proves to be a valuable strategy for bolstering the overall robustness of the classification
method [65]. However, there were still misclassifications and omissions between larch
and other coniferous species, young larch forests, uncultivated and cultivated land, and
unused land. This might be the reason that the extracted optical remote sensing features
were introduced into the model to participate in training without being screened, although
multitemporal image features can significantly improve the classification effect [66–68].
Under conditions with complex surface covering, the advantages are more significant.
However, the resulting optimal feature selection has become a crucial issue, and the op-
timal temporal features should be selected according to different vegetation biological
phenology information, and redundant features should be removed to obtain the optimal
classification effect [69]. It has been suggested that an appropriate number of multiple
time-series images should be selected to fully reflect the characteristic differences of various
vegetation types in different regions. Therefore, in the next step, we considered encrypting
additional time-phase images. According to the evaluation results of the classification
accuracy of deciduous pine trees, the optimal time phase for extracting larch distribution in-
formation was discussed. Analysis of misclassifications and omissions related to extraction
of larch distribution information revealed that the probability of misclassification of larch
into cultivated land and unused land was the highest (reaching 5.0%). The main reason
was that the spatial distribution of larch was broadly the same as that of cultivated land
and unused land. Moreover, the larch in the study area were mostly distributed in strips
with obvious gaps between forest belts. Therefore, young larch trees and uncultivated land
could easily be divided into cultivated land and unused land owing to the large areas of
bare land. Furthermore, the phenomenon of mixed classification of larch and other conifers
was also more obvious. Each type was misclassified into the category of the other at a rate
of 3.0%. The possible main reasons for this were as follows: (1) The image characteristics
of spruce and other young coniferous forests and immature forests were very similar to
those of the middle-aged and young larch forests, which might cause misclassification, and
(2) in a mixed forest of larch and other coniferous species, the image characteristics might
be complicated and mixed owing to the variation of tree species composition.

4.3. Extrapolation Model of Biomass Components

In the previous section, we revealed a complex nonlinear relationship between remote
sensing variables and biomass of components, and it would be difficult for traditional
methods such as MLR to achieve better estimation results. The LSTM and RF methods
adopted in this study achieved satisfactory results. Only in terms of the evaluation of the
fitting effect and estimation accuracy was the advantage of the LSTM model not obvious.
This might be related to the lack of information in the GF-1 band. Although this study
supplemented the vegetation indexes and texture index to increase the sample characteris-
tics, these indexes were all dependent on the calculation of band information, which does
not substantially increase the feature dimension. The advantages of deep learning such
as LSTM reflect its powerful capability in solving complex problems through its deeper
net structure. When the complexity of the data is insufficient and the feature dimensions
not high, it is difficult to express the capability of the LSTM approach effectively [70–72].
Figure 10 shows the data distribution structure of the predicted values and observations of
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different remote sensing models in comparison with the RF model. It can be seen that the
median values and the upper and lower quartiles of the predicted data set were closer to
the observations for high-value areas. However, the data prediction in the low-value areas
was more accurate, and the structure of the prediction result was more consistent with the
observed value. To a certain extent, the phenomena of underestimation of high-value areas
and overestimation of low-value areas were reduced.
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Using independent test samples to evaluate the effect of LSTM model extrapolation,
it was found that the R2 of the whole plant and the biomass model of each component
decreased to varying degrees. The time phase of remote sensing images in the study area
was July 2016, and the time phase of remote sensing images in the inspection area was
September 2018. Because optical remote sensing was very susceptible to environmental
factors such as light and atmosphere, the relationship between ground objects and their
reflection spectra in different regions and at different time phases was not stable, although
the data underwent careful image screening, preprocessing, and normalization in this study.
Therefore, it remains difficult to ensure complete consistency in the spectral information
of the same features. Controversy remains regarding whether the use of remote sensing
images to construct a regional-scale extrapolation model requires the introduction of
geographic environmental factors [73,74]. The distribution of larch in the study area has
small undulations, gentle slopes, and insignificant differences in site conditions such as
soil, which were factors that are difficult to incorporate in model training as variable
characteristics. Additionally, the selection of the texture window, the determination of the
extrapolation scale, and the corresponding error measurement should be studied further in
future work to enhance the generalization capability of the proposed extrapolation model.

4.4. Trade-Off between the Accuracy and Cost in Biomass Estimation

In the course of this research endeavor, we undertook an extensive data collection
effort, drawing from diverse sources rather than relying on pre-existing datasets. Our
data acquisition process encompassed field observations, airborne LiDAR surveys, and
the utilization of high-resolution optical remote sensing imagery, along with derived in-
dices. Throughout the data collection phase, we encountered a noteworthy observation:
Traditional biomass investigation proved to be exceedingly time-intensive. It necessitated
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approximately one full day to collect data from a sampled plot. It is worth noting that these
field-derived data are indispensable for training and evaluating the efficacy of methods
grounded in remote sensing imagery. Subsequently, by employing these trained machine
learning models in conjunction with remote sensing imagery, we were able to generate
a comprehensive, wall-to-wall larch biomass map covering the entire study area. This
strategic approach, when juxtaposed with traditional field investigations, not only sig-
nificantly reduces the time and manual labor required but also minimizes the need for
extensive laboratory work. Furthermore, our study demonstrated that machine-learning-
based methods, with their inherent computational efficiency, offer a practical alternative.
They achieve substantial time savings without compromising on the overall accuracy of
forest biomass estimation.

Nonetheless, it is imperative to address several critical considerations in regional
biomass estimation studies. Foremost among these concerns is the quality of LiDAR
observations. When the density of the LiDAR point cloud is sufficiently high, and the
canopy waveform signal is inadequate, there is a non-negligible likelihood of missing the
tree tops and canopy edges. This can result in bias in AGB estimation. When the density of
the LiDAR point cloud is not high, the canopy echo signal is inadequate, and analysis of the
tree tops and canopy edges is likely to miss certain features, resulting in underestimation
of the biological amount [45]. On the other hand, it could be related to depletion of the
branch and leaf biomass in the field sample collection [75].

5. Conclusions

The L. olgensis plantation in Heilongjiang Province considered in this study was
surveyed using airborne LiDAR data, ground-based monitoring, and optical remote sensing
techniques, and a set of methods, namely rapid, universal, multiscale (single tree, stand,
management unit, and region), and unit-high-precision continuous monitoring methods,
was proposed for forest biomass components. The analysis indicated that the variables
extracted from the airborne LiDAR point cloud data had significant correlation with
the biomass of each component. The correlation with the biomass of each component
obtained through MLR screening was generally significant (p < 0.05) or extremely significant
(p < 0.01) and thus very suitable for the extraction or estimation of biomass and other
indicators.

The incorporation of phenological features resulted in a satisfactory model perfor-
mance, demonstrating their utility for SVM and other machine learning algorithms. More-
over, the phenological data within remote sensing images can be effectively harnessed
through time-series algorithms, such as the memory mechanism offered by LSTM. This
enhancement can significantly improve biomass estimation accuracy, particularly when
applied at a large scale.
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Glossary

Abbreviation Definition Units
LSTM Long short-term memory
DBH Diameter at breast height cm
H Height of a tree m
Hi Altitude percentiles extracted from LiDAR points
AIHi Cumulative altitude percentiles extracted from LiDAR points
Di Density variable extracted from LiDAR points
GF-1 Gaofen-1 satellite
PMS1 One of high-resolution cameras on the GF-1
MLR Multiple linear regression
RF Random forest
SVM Support vector machine
Kappa Kappa coefficient, an indicator to evaluate the accuracy of classification
RNN Recurrent neural network
R2 Coefficient of determination
R2

adj Adjusting coefficient of determination
RMSE Root mean square error
rRMSE Relative root mean square error
SEE Standard deviation of the estimated value
TRE Total relative error
MPE Mean estimation error
MSE Mean systematic error
MPSE Mean percentage standard error
a The fitting parameter in biomass model
b The fitting parameter in biomass model
B Biomass ton
BStem Biomass of stem ton
BBark Biomass of bark ton
BBranch Biomass of branch ton
BLeaf Biomass of leaf ton
BRoot Biomass of root ton
BAbove Aboveground biomass ton
BTotal Total biomass ton
t Ton ton
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