Dendrochronological Analysis of One-Seeded and Intermediate Hawthorn Response to Climate in Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Tree-Ring Data
2.3. Climate Data
3. Results
3.1. Ring Width Chronologies
3.2. Correlation and Response Function Analysis
3.3. Regional Pointer Years
3.4. Dendrochronological Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA,, 2021; p. 2391. [Google Scholar] [CrossRef]
- Hinckley, T.M.; Chi, P.; Hagmann, K.; Harrell, S.; Schmidt, A.H.; Urgenson, L.; Zeng, Z.Y. Influence of Human Pressure on Forest Resources and Productivity at Stand and Tree Scales: The Case Study of Yunnan Pine in SW China. J. Mt. Sci. 2013, 10, 824–832. [Google Scholar] [CrossRef]
- Deutsch, N. Human Dependency on Nature Framework: Qualitative Approaches Background Study; People in Nature Working Paper No. 1; IUCN and CEESP: Gland, Switzerland, 2014; pp. 1–31. [Google Scholar]
- Kapos, V.; Wicander, S.; Salvaterra, T.; Dawkins, K.; Hicks, C. The Role of the Natural Environment in Adaptation; Background Paper for the Global Commission on Adaptation; Global Commission on Adaptation: Rotterdam, The Netherlands; Washington, DC, USA, 2019; pp. 1–82. [Google Scholar]
- Edwards, C.A. Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. Eur. J. Soil Biol. 2002, 38, 225–231. [Google Scholar] [CrossRef]
- Hussain, T.; Kalita, S. Livelihood status and human pressure on forest resources by the inhabitants of forest villages of Assam, India. Int. J. Res. Rev. 2021, 8, 189–201. [Google Scholar]
- Laurance, W.F. Habitat destruction: Death by a thousand cuts. In Conservation Biology for All; Navjot, S., Ehrlich, P.R., Eds.; Oxford Academic: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Radić, B.; Gavrilović, S. Natural Habitat Loss: Causes and Implications of Structural and Functional Changes. In Life on Land. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Turnhout, E.; Purvis, A. Biodiversity and species extinction: Categorisation, calculation, and communication. Griffith Law Rev. 2020, 29, 669–685. [Google Scholar] [CrossRef]
- Scanes, C.G. Human Activity and Habitat Loss: Destruction, Fragmentation, and Degradation. In Animals and Human Society; Scanes, C.G., Toukhsati, S.R., Eds.; Academic Press: Cambridge, MA, USA, 2018; Chapter 19; pp. 451–482. [Google Scholar] [CrossRef]
- Jenkins, M.; Schaap, B. Forest Ecosystem Services. Background Analytical Study Prepared for the Thirteenth Session of the United Nations Forum on Forests. 2018. Available online: https://www.un.org/esa/forests/wpcontent/uploads/2018/05/UNFF13_BkgdStudy_ForestsEcoServices.pdf (accessed on 27 September 2023).
- Pastur, G.M.; Perera, A.H.; Peterson, U.; Iverson, L.R. Ecosystem Services from Forest Landscapes: An Overview. In Ecosystem Services from Forest Landscapes; Perera, A., Peterson, U., Pastur, G., Iverson, L., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Phipps, J.B. Introduction to the red-fruited hawthorns (Crataegus, Rosaceae) of Western North America. Can. J. Bot. 1998, 76, 1863–1899. [Google Scholar]
- Sallabanks, R. Fruit fate, frugivory, and fruit characteristics: A study of the hawthorn, Crataegus monogyna (Rosaceae). Oecologia 1992, 91, 296–304. [Google Scholar] [CrossRef]
- Sallabanks, R. Fruiting plant attractiveness to avian seed dispersers: Native vs. Invasive Crataegus in western Oregon. Madrono 1993, 40, 108–116. [Google Scholar]
- Sobral, M.; Larrinaga, A.R.; Guitia’n, J. Do seed-dispersing birds exert selection on optimal plant trait combinations? Correlated phenotypic selection on the fruit and seed size of hawthorn (Crataegus monogyna). Evol. Ecol. 2010, 24, 1277–1290. [Google Scholar] [CrossRef]
- Guitian, J.; Fuentes, M. Reproductive biology of Crataegus Monogyna in northwestern Spain. Acta Ecol. 1992, 13, 3–11. [Google Scholar]
- Shetti, R.; Lehejček, J.; Zacharová, J. Do trees on agrarian stone walls respond to contemporary climate warming? Res. Sq. 2022. [Google Scholar] [CrossRef]
- Gostyńska-Jakuszewska, M.; Hrabetova-Uhrova, A. Distribution of Crataegus in Poland and Czechoslovakia. Preslia 1983, 55, 9–24. [Google Scholar]
- Oklejewicz, K.; Chwastek, E.; Szewczyk, B.; Mitka, J. Chorological Aspects of the Occurrence of Hawthorn in the Polish Carpathians; Wydawnictwo Uniwersytetu Rzeszowskiego: Rzeszów, Poland, 2014; pp. 1–210. [Google Scholar]
- Oklejewicz, K.; Chwastek, E.; Szewczyk, M.; Bobiec, A.; Mitka, J. Distribution of Crataegus (Rosaceae) in S-E Poland along a gradient of anthropogenic influence. Pol. J. Ecol. 2013, 61, 683–691. [Google Scholar]
- Seneta, W. Drzewa i krzewy liściaste [Deciduous Trees and Shrubs]; Tom II; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1994. [Google Scholar]
- Seneta, W.; Dolatowski, J. Dendrology; PWN: Warszawa, Poland, 2004; pp. 1–559. [Google Scholar]
- Özcan, M.; Hacıseferoğulları, H.; Marakoğlu, T.; Arslan, D. Hawthorn (Crataegus spp.) fruit: Some physical and chemical properties. J. Food Eng. 2005, 69, 409–413. [Google Scholar] [CrossRef]
- Kumar, D.; Arya, V.; Bhat, Z.A.; Khan, N.A.; Prasad, D.N. The genus Crataegus: Chemical and pharmacological perspectives. Rev. Bras. Farmacogn. 2012, 22, 1187–1200. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A. Health-promoting potential of hawthorn fruits and flowers. Probl. Hig. Epidemiol. 2016, 97, 24–28. [Google Scholar]
- Cedro, A.; Cedro, B. Tree-ring analysis of intermediate hawthorn (Crataegus media Bechst.) in NW Poland. Forests 2021, 12, 29. [Google Scholar] [CrossRef]
- Richling, A.; Solon, J.; Macias, A.; Balon, J.; Borzyszkowski, J.; Kistowski, M. (Eds.) Regionalna Geografia Fizyczna Polski [Regional Physical Geography of Poland]; Bogucki Wyd. Naukowe: Poznań, Poland, 2021. [Google Scholar]
- Shariati Najaf Abadi, H.; Soltani, A.; Saeidi, Z.; Gorjestani Zadeh, S. Study of Spatial Distribution of the Hawthorn (Crataegus monogyna) Trees Attacked by Orchard Ermine (Yponomeuta padella) in Bazoft Forests of Chaharmahal and Bakhtiari Province. Iran. J. Appl. Ecol. 2016, 4, 39–49. [Google Scholar] [CrossRef]
- Taggar, G.K.; Arora, R. Insect Biotypes and Host Plant Resistance. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- LBD_Measure, version 1.0; Laboratorium Datowań Bezwzględnych: Kraków, Poland, 2020.
- Holmes, R.J. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Holmes, R.J. Dendrochronology Program Library; Users Manual; University of Arizona: Tucson, AZ, USA, 1994; Available online: https://www.ltrr.arizona.edu/software.html (accessed on 9 November 2020).
- Grissino-Mayer, H.D. Evaluating Crossdating accuracy: A manual and tutorial for the compuret program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Cook, E.R.; Holmes, R.L. Guide for computer program ARSTAN. In The International Tree-Ring Data Bank Program Library, version 2.0; User’s, Manual; Grissino-Mayer, H.D., Holmes, R.L., Fritts, H.C., Eds.; Laboratory of Tree-Ring Research: Tucson, AZ, USA, 1996; pp. 75–87. [Google Scholar]
- Walanus, A. Instrukcja Obsługi Programu TCS. In Program TCS do Obliczania lat Wskaźnikowych [TCS Program User Manual. TCS Program for Calculating Pointer Years]; TCS: Kraków, Poland, 2002. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Jetschke, G.; van der Maaten, E.; van der Maaten-Theunissen, M. Towards the extremes: A critical analysis of pointer year detection methods. Dendrochronologia 2019, 53, 55–62. [Google Scholar] [CrossRef]
- Kaennel, M.; Schweingruber, F.H. Multilingual Glossary of Dendrochronology; WSL FNP; Haupt: Bern, Switzerland, 1990; pp. 1–467. ISBN 3-258-05259-X. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976; pp. 1–582. [Google Scholar]
- Schweingruber, F.H. Tree Rings: Basics and Applications of Dendrochronology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; pp. 1–276. ISBN 978-0-7923-0559-0. [Google Scholar]
- Mills, C.M. High Morlaggan: Dendrochronology of Hawthorn & Rowan. Report for Morlaggan Rural Settlement Group. 2011. pp. 1–19. Available online: https://highmorlaggan.files.wordpress.com/2016/05/high-morlaggan-dendrochronology-report-v1_coralie-mills.pdf (accessed on 27 September 2023).
- Decuyper, M.; Cornelissen, P.; Sass-Klaassen, U. Establishment and growth of hawthorn in floodplains in the Netherlands. Dendrochronologia 2014, 32, 173–180. [Google Scholar] [CrossRef]
- Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M. Effect of site conditions on the properties of hawthorn (Crataegus azarolus L.) wood. J. For. Sci. 2021, 67, 113–124. [Google Scholar] [CrossRef]
- Good, J.E.G.; Bryant, R.; Carlill, P. Distribution, longevity and survival of upland hawthorn (Crataegus monogyna) scrub in North Wales in relation to sheep grazing. J. Appl. Ecol. 1990, 27, 272–283. [Google Scholar] [CrossRef]
- Williams, P.A.; Buxton, R.P. Hawthorn (Crataegus monogyna) Populations in Mid-Canterbury. N. Zeal. J. Ecol. 1986, 9, 11–17. [Google Scholar]
- Grissino-Mayer, H.D. An updated list of species used in tree-ring research. Tree-Ring Bull. 1993, 53, 17–43. [Google Scholar]
- Schweingruber, F.H. Microscopic Wood Anatomy; Swiss Federal Institute for Forest, Snow and Landscape Research: Birmensdorf, Switzerland, 1990; pp. 1–226. [Google Scholar]
- Available online: www.monumentaltrees.com/en/fra/mayenne/saintmarssurlafutaie/2810_church (accessed on 27 September 2023).
- Barniak, J.; Jureczko, A. Impact of air pollution on forest stands in the vicinity of Wodzisław Śląski and Rybnik, Poland. Geol. Geophys. Environ. 2020, 45, 283. [Google Scholar] [CrossRef]
- Cornelissen, P.; Decuyper, M.; Sýkora, K.; Bokdam, J.; Berendse, F. Forest development in a restored floodplain: Effects of grazing, inundation and vegetation. Eur. J. Environ. Sci. 2019, 9, 21–32. [Google Scholar] [CrossRef]
Lab. Code | Name | Species | Geographic Coordinates | Altitude a.s.l. (m) | No. of Trees | No. of Samples | No. of Tree Rings |
---|---|---|---|---|---|---|---|
LB | Lębork | C.xmedia | N: 54.5265° N | 120 | 21 | 41 | 1584 |
E: 17.8470° E | |||||||
ST | Stobno | C.xmedia | N: 53.4181° N | 45 | 22 | 30 | 1990 |
E: 14.4051° E | |||||||
MA | Malczewo | C. monogyna | N: 52.4350° N | 123 | 22 | 40 | 1501 |
E: 17.6433° E | |||||||
CI | Ciemierów | C. monogyna | N: 52.1047° N | 78 | 20 | 38 | 2080 |
E: 17.7267° E | |||||||
ZB | Zbiersk | C. monogyna | N: 51.9724° N | 120 | 21 | 41 | 1508 |
E: 18.1124° E | |||||||
DB | Dęblin | C. monogyna | N: 51.5490° N | 115 | 22 | 42 | 1381 |
E: 21.8282° E | |||||||
WA | Wałbrzych | C. monogyna | N: 50.7995° N | 481 | 21 | 41 | 1327 |
E: 16.2333° E | |||||||
WG | Węgierska Górka | C. monogyna | N: 49.6016° N | 451 | 22 | 44 | 935 |
E: 19.1010° E | |||||||
LE | Leszna Górna | C. monogyna | N: 49.6975° N | 540 | 21 | 42 | 1944 |
E: 18.7318° E | |||||||
Σ | 192 | 359 | 14,250 |
Lab. Code | No. of Years | Time Span | No. of Samples | Mean TRW (Min−Max) (mm) | Measured Chronology | Standard Chronology | EPS >0.85 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
SD | 1AC | MS | SD | 1AC | MS | ||||||
LB | 63 | 1959−2021 | 15 | 1.79 (0.95−3.39) | 0.902 | 0.571 | 0.363 | 0.226 | −0.062 | 0.294 | 1986–2021 |
ST | 56 | 1965−2020 | 24 | 2.41 (1.48−4.44) | 1.587 | 0.509 | 0.453 | 0.320 | 0.224 | 0.355 | 1981–2020 |
MA | 45 | 1976–2020 | 16 | 2.38 (1.37−3.84) | 1.491 | 0.531 | 0.440 | 0.290 | 0.088 | 0.334 | 1987–2020 |
CI | 70 | 1951−2020 | 15 | 1.58 (1.11−2.34) | 0.967 | 0.494 | 0.439 | 0.306 | 0.142 | 0.338 | 1972–2020 |
ZB | 47 | 1974−2020 | 19 | 1.83 (1.12−3.00) | 1.426 | 0.580 | 0.509 | 0.332 | 0.070 | 0.411 | 1985–2020 |
DB | 56 | 1965–2020 | 17 | 2.34 (1.02−4.51) | 1.392 | 0.318 | 0.507 | 0.320 | −0.017 | 0.391 | 1988–2020 |
WA | 62 | 1960−2021 | 18 | 1.42 (0.68−4.30) | 0.906 | 0.435 | 0.491 | 0.332 | 0.007 | 0.429 | 1985–2021 |
WG | 50 | 1971−2020 | 16 | 3.25 (1.66−4.19) | 1.581 | 0.556 | 0.381 | 0.320 | 0.368 | 0.288 | 1986–2020 |
LE | 72 | 1949−2020 | 13 | 1.46 (0.76−2.39) | 0.902 | 0.571 | 0.363 | 0.226 | −0.062 | 0.294 | 1976–2020 |
t/GL | LB | ST | MA | CI | ZB | DB | WA | WG | LE |
---|---|---|---|---|---|---|---|---|---|
LB | - | 4.49 | 3.35 | 9.44 | 3.30 | 4.22 | 3.05 | 2.93 | 3.19 |
ST | 71 | - | 9.07 | 5.31 | 7.32 | 5.13 | 4.34 | 2.57 | 4.82 |
MA | 71 | 86 | - | 4.45 | 3.06 | 10.99 | 5.28 | 3.63 | 7.57 |
CI | 82 | 66 | 66 | - | 5.14 | 4.33 | 2.16 | 3.60 | 3.41 |
ZB | 74 | 80 | 75 | 74 | - | 2.64 | 4.15 | 5.20 | 3.82 |
DB | 66 | 76 | 96 | 66 | 72 | - | 3.17 | 3.34 | 4.34 |
WA | 67 | 80 | 82 | 73 | 76 | 80 | - | 9.88 | 9.49 |
WG | 72 | 74 | 75 | 69 | 74 | 69 | 78 | - | 7.50 |
LE | 71 | 86 | 80 | 67 | 76 | 71 | 82 | 80 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedro, A.; Cedro, B. Dendrochronological Analysis of One-Seeded and Intermediate Hawthorn Response to Climate in Poland. Forests 2023, 14, 2264. https://doi.org/10.3390/f14112264
Cedro A, Cedro B. Dendrochronological Analysis of One-Seeded and Intermediate Hawthorn Response to Climate in Poland. Forests. 2023; 14(11):2264. https://doi.org/10.3390/f14112264
Chicago/Turabian StyleCedro, Anna, and Bernard Cedro. 2023. "Dendrochronological Analysis of One-Seeded and Intermediate Hawthorn Response to Climate in Poland" Forests 14, no. 11: 2264. https://doi.org/10.3390/f14112264
APA StyleCedro, A., & Cedro, B. (2023). Dendrochronological Analysis of One-Seeded and Intermediate Hawthorn Response to Climate in Poland. Forests, 14(11), 2264. https://doi.org/10.3390/f14112264