Impact of Three Chainsaw Lubricants on Forest Soil Bacterial Community, Soil Respiration and Seedling Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Soil 16 PAHs and TPH Concentration
2.3. Soil Physical Properties
2.4. Soil Bacteria
2.5. Soil Respiration
2.6. Vegetation Growth
2.7. Data Analysis
3. Results
3.1. PAH and TPH Persistence in Forest Soil Following CLST
3.2. Changes in Soil Physical Properties Following CLST
3.3. Changes in Soil Bacterial Community Following CLST
3.4. Changes in Soil Respiration Following CLST
3.5. Seedling Quality Following CLST
4. Discussion
4.1. Environmental Impact of Different Types of Lubricants
4.2. Effects of Soil Contamination on Soil Physical Properties and Respiration
4.3. Changes in Soil Bacterial Communities
4.4. Implications for Forest Ecosystem Health and Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nowak, P.; Kucharska, K.; Kamiński, M. Ecological and health effects of lubricant oils emitted into the environment. Int. J. Environ. Res. Public. Health 2019, 16, 3002. [Google Scholar] [CrossRef] [PubMed]
- Nikolaeva, O.; Tikhonov, V.; Vecherskii, M.; Kostina, N.; Fedoseeva, E.; Astaikina, A. Ecotoxicological effects of traffic-related pollutants in roadside soils of Moscow. Ecotoxicol. Environ. Saf. 2019, 172, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, M.; Nowak, K.M.; Miltner, A.; Trapp, S.; Schaeffer, A. Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil—A synthesis. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2107–2171. [Google Scholar] [CrossRef]
- Singer, A.C.; van der Gast, C.J.; Thompson, I.P. Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol. 2005, 23, 74–77. [Google Scholar] [CrossRef]
- Wu, M.; Guo, X.; Wu, J.; Chen, K. Effect of compost amendment and bioaugmentation on PAH degradation and microbial community shifting in petroleum-contaminated soil. Chemosphere 2020, 256, 126998. [Google Scholar] [CrossRef] [PubMed]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Dick, R.P.; Li, H.; Shen, D.; Gao, Y.; Ling, W. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Environ. Pollut. 2018, 240, 359–367. [Google Scholar] [CrossRef]
- Chicca, I.; Becarelli, S.; Di Gregorio, S. Microbial involvement in the bioremediation of total petroleum hydrocarbon polluted soils: Challenges and perspectives. Environments 2022, 9, 52. [Google Scholar] [CrossRef]
- Uquetan, U.I.; Osang, J.E.; Egor, A.O.; Essoka, P.A.; Alozie, S.I.; Bawan, A.M. A case study of the effects of oil pollution on soil properties and growth of tree crops in Cross River State, Nigeria. Int. Res. J. Pure Appl. Phys. 2017, 5, 19–28. [Google Scholar]
- Egobueze, F.E.; Ayotamuno, J.M.; Iwegbue, C.M.; Eze, C.; Okparanma, R.N. Effects of organic amendment on some soil physicochemical characteristics and vegetative properties of Zea mays in wetland soils of the Niger Delta impacted with crude oil. Int. J. Recycl. Org. Waste Agric. 2019, 8, 423–435. [Google Scholar] [CrossRef]
- Bekins, B.A.; Brennan, J.C.; Tillitt, D.E.; Cozzarelli, I.M.; Illig, J.M.; Martinović-Weigelt, D. Biological effects of hydrocarbon degradation intermediates: Is the total petroleum hydrocarbon analytical method adequate for risk assessment? Environ. Sci. Technol. 2020, 54, 11396–11404. [Google Scholar] [CrossRef] [PubMed]
- Chibwe, L.; Geier, M.C.; Nakamura, J.; Tanguay, R.L.; Aitken, M.D.; Simonich, S.L.M. Aerobic bioremediation of PAH contaminated soil results in increased genotoxicity and developmental toxicity. Environ. Sci. Technol. 2015, 49, 13889–13898. [Google Scholar] [CrossRef] [PubMed]
- Davie-Martin, C.L.; Stratton, K.G.; Teeguarden, J.G.; Waters, K.M.; Simonich, S.L.M. Implications of bioremediation of polycyclic aromatic hydrocarbon-contaminated soils for human health and cancer risk. Environ. Sci. Technol. 2017, 51, 9458–9468. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B.; Mohanty, P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. J. Plant Physiol. 2004, 161, 531–542. [Google Scholar] [CrossRef]
- Zhang, C.G.; Leung, K.K.; Wong, Y.S.; Tam, N.F.Y. Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution. Environ. Exp. Bot. 2007, 60, 127–136. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Janssens, I.A.; Crookshanks, M.; Taylor, G.; Ceulemans, R. Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Glob. Chang. Biol. 1998, 4, 871–878. [Google Scholar] [CrossRef]
- Silva, Í.S.; dos Santos, E.D.C.; de Menezes, C.R.; de Faria, A.F.; Franciscon, E.; Grossman, M.; Durrant, L.R. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour. Technol. 2009, 100, 4669–4675. [Google Scholar] [CrossRef]
- Saraeian, Z.; Haghighi, M.; Etemadi, N.; HajAbbasi, M.A.; Afyuni, M. Phytoremediation effect and growth responses of Cynodon spp. and Agropyron desertorum in a petroleum-contaminated soil. Soil. Sediment. Contam. 2018, 27, 393–407. [Google Scholar] [CrossRef]
- Koohkan, H.; Mortazavi, M.S.; Golchin, A.; Najafi-Ghiri, M.; Golkhandan, M.; Akbarzadeh-Chomachaei, G.; Saraji, F. The effect of petroleum levels on some soil biological properties under phytoremediation and bioaugmentation. Environ. Sci. Pollut. Res. 2023, 30, 60618–60637. [Google Scholar] [CrossRef] [PubMed]
- Popovici, R. Estimating chainsaw operating costs based on fuel, lubricants and spare parts. In Bulletin of the Transilvania University of Brasov. Series II: Forestry • Wood Industry • Agricultural Food Engineering; Transilvania University Press: Lexington, KY, USA, 2013; pp. 63–68. [Google Scholar]
- Antonić, S.; Danilović, M.; Stojnić, D.; Dražić, S. Impact of chainsaw power on fuel and oil consumption. Sustainability 2023, 15, 2795. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water Air Soil Pollut. 2015, 226, 389. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Agrawal, P.; Bawa, S.; Karadbhajne, V.; Agrawal, A.J. Soil contamination by waste transformer oil: A review. Mater. Today Proc. 2023, 72, 306–310. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2008, 10, 421. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Thornley, J.H. Modelling stem height and diameter growth in plants. Ann. Bot. 1999, 84, 195–205. [Google Scholar] [CrossRef]
- Haase, D.L. Understanding forest seedling quality: Measurements and interpretation. Tree Plant. Notes 2008, 52, 24–30. [Google Scholar]
- Sangwan, P.; Chen, X.; Hugenholtz, P.; Janssen, P.H. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the Phylum verrucomicrobia. Appl. Environ. Microbiol. 2004, 70, 5875–5881. [Google Scholar] [CrossRef]
- Kant, R.; Van Passel, M.W.J.; Palva, A.; Lucas, S.; Lapidus, A.; del Rio, T.G.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; et al. Genome sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil Bacterium. J. Bacteriol. 2011, 193, 2902–2903. [Google Scholar] [CrossRef] [PubMed]
- Narożna, D.; Pudełko, K.; Króliczak, J.; Golińska, B.; Sugawara, M.; Mądrzak, C.J.; Sadowsky, M.J. Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Appl. Environ. Microbiol. 2015, 81, 5552–5559. [Google Scholar] [CrossRef] [PubMed]
- Schulte, C.C.; Borah, K.; Wheatley, R.M.; Terpolilli, J.J.; Saalbach, G.; Crang, N.; de Groot, D.H.; Ratcliffe, R.G.; Kruger, N.J.; Papachristodoulou, A.; et al. Metabolic control of nitrogen fixation in rhizobium-legume symbioses. Sci. Adv. 2021, 7, eabh2433. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, E.H.; Hassan, A.-E.; Abdelaal, S. PAH degradation by two native Egyptian strains Flavobacterium sp. and Pseudomonas putida. J. Appl. Sci. Res. 2006, 2, 1092–1098. [Google Scholar]
- Chaudhary, P.; Sharma, R.; Singh, S.B.; Nain, L. Bioremediation of PAH by Streptomyces sp. Bull. Environ. Contam. Toxicol. 2011, 86, 268–271. [Google Scholar] [CrossRef]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef]
- Lu, C.; Hong, Y.; Liu, J.; Gao, Y.; Ma, Z.; Yang, B.; Ling, W.; Waigi, M.G. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. Environ. Pollut. 2019, 251, 773–782. [Google Scholar] [CrossRef]
- Moody, J.D.; Freeman, J.P.; Fu, P.P.; Cerniglia, C.E. Degradation of Benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 2004, 70, 340–345. [Google Scholar] [CrossRef]
- Serrano, A.; Gallego, M.; González, J.L.; Tejada, M. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil. Environ. Pollut. 2008, 151, 494–502. [Google Scholar] [CrossRef]
- Bellino, A.; Baldantoni, D.; Picariello, E.; Morelli, R.; Alfani, A.; De Nicola, F. Role of different microorganisms in remediating PAH-contaminated soils treated with compost or fungi. J. Environ. Manag. 2019, 252, 109675. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pan, H.; Wang, Q.; Ge, Y.; Liu, W.; Christie, P. Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust. Chemosphere 2019, 224, 265–271. [Google Scholar] [CrossRef]
- Simarro, R.; González, N.; Bautista, L.F.; Molina, M.C. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: Change in bacterial community. J. Hazard. Mater. 2013, 262, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Vasilyeva, G.; Mikhedova, E.; Zinnatshina, L.; Strijakova, E.; Akhmetov, L.; Sushkova, S.; Ortega-Calvo, J.J. Use of natural sorbents for accelerated bioremediation of grey forest soil contaminated with crude oil. Sci. Total Environ. 2022, 850, 157952. [Google Scholar] [CrossRef] [PubMed]
- Wloka, D.; Placek, A.; Rorat, A.; Smol, M.; Kacprzak, M. The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents. Ecotoxicol. Environ. Saf. 2017, 145, 161–168. [Google Scholar] [CrossRef]
- Chakraborty, R.; Wu, C.H.; Hazen, T.C. Systems biology approach to bioremediation. Curr. Opin. Biotechnol. 2012, 23, 483–490. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol. Ecol. 1997, 24, 243–249. [Google Scholar] [CrossRef]
- Torimiro, N.; Akhigbe, G.E.; Adebiyi, F.M. Bioprospecting of potential petroleum hydrocarbon degraders using bacterial strains isolated from soils around transformer installation areas. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–14. [Google Scholar] [CrossRef]
- Lellei-Kovács, E.; Botta-Dukát, Z.; de Dato, G.; Estiarte, M.; Guidolotti, G.; Kopittke, G.R.; Kovács-Láng, E.; Kröel-Dulay, G.; Larsen, K.S.; Peñuelas, J. Temperature dependence of soil respiration modulated by thresholds in soil water availability across European shrubland ecosystems. Ecosystems 2016, 19, 1460–1477. [Google Scholar] [CrossRef]
- Sutton, N.B.; Gaans, P.; Langenhoff, A.A.M.; Maphosa, F.; Smidt, H.; Grotenhuis, T.; Rijnaarts, H.H.M. Biodegradation of aged diesel in diverse soil matrixes: Impact of environmental conditions and bioavailability on microbial remediation capacity. Biodegradation 2013, 24, 487–498. [Google Scholar] [CrossRef]
- Saviozzi, A.; Cardelli, R.; Cozzoline, M. Bioremediation with compost of diesel contaminated soil: Monitoring by dehydrogenase activity and basal respiration. Compost. Sci. Util. 2009, 17, 55–60. [Google Scholar] [CrossRef]
- Contin, M.; Franco, L.; Nobili, M.D. Indicatori biochimici di resilienza nell’inquinamento del suolo da petrolio. Convegno annuale S.I.S.S. 2003, 52, 245–252. Available online: https://scienzadelsuolo.org/_docs/bollettini/2003_bollettino_volume_52_n1_2.pdf (accessed on 15 November 2023).
- Wu, B.B.; Lan, T.; Lu, D.N.; Liu, Z. Ecological and enzymatic responses to petroleum contamination. Environ. Sci. Process Impacts 2014, 16, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yu, P.; Han, N.; Jia, H.; Wang, X.; Kodirov, K.G. Monitoring soil respiration dynamics during the biodegradation of crude oil contaminated soil under different environmental conditions. Fresenius Environ. Bull. 2015, 24, 4087–4094. [Google Scholar]
- Saeed, M.; Ilyas, N.; Bibi, F.; Jayachandran, K.; Dattamudi, S.; Elgorban, A.M. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environ. Pollut. 2022, 292, 118343. [Google Scholar] [CrossRef]
- Elumalai, P.; Parthipan, P.; Narenkumar, J.; Anandakumar, B.; Madhavan, J.; Oh, B.T.; Rajasekar, A. Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. Biotech 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Fahad, S.; Sonmez, O.; Saud, S.; Wang, D.; Wu, C.; Adnan, M.; Turan, V. (Eds.) Plant Growth Regulators for Climate-Smart Agriculture; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Balasubramanian, P.; Karthickumar, P. Biofertilizers and biopesticides: A holistic approach for sustainable agriculture. In Sustainable Utilization of Natural Resources; CRC Press: Boca Raton, FL, USA, 2017; p. 255. [Google Scholar]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 2016, 23, 28–36. [Google Scholar] [CrossRef]
- Proffitt, C.E.; Devlin, D.J.; Lindsey, M. Effects of oil on mangrove seedlings grown under different environmental conditions. Mar. Pollut. Bull. 1995, 30, 788–793. [Google Scholar] [CrossRef]
- Tian, Z.; Gold, A.; Nakamura, J.; Zhang, Z.; Vila, J.; Singleton, D.R.; Aitken, M.D. Nontarget analysis reveals a bacterial metabolite of pyrene implicated in the genotoxicity of contaminated soil after bioremediation. Environ. Sci. Technol. 2017, 51, 7091–7100. [Google Scholar] [CrossRef]
- Zeng, J.; Wu, R.; Peng, T.; Li, Q.; Wang, Q.; Wu, Y.; Lin, X. Low-temperature thermally enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil: Effects on fate, toxicity and bacterial communities. Environ. Pollut. 2023, 335, 122247. [Google Scholar] [CrossRef]
Treatment | Variable (n = 116) | ||
---|---|---|---|
ST (°C) | SM (%) | EC (μS/cm) | |
CP | 23.9 ± 0.8 a | 21.62 ± 0.74 a | 39.92 ± 2.18 a |
BP | 25.12 ± 0.81 a | 22.94 ± 0.76 a | 39.67 ± 1.82 a |
MP | 25.01 ± 0.76 a | 20.86 ± 0.63 a | 40.84 ± 2.87 a |
RP | 24.57 ± 0.76 a | 21.01 ± 0.77 a | 38.13 ± 2 a |
Major Role | Representative Soil Bacteria (Genus) | Observed Frequency/Treatment | ||||
---|---|---|---|---|---|---|
CP | BP | MP | RP | |||
Nutrient cycling | Nitrogen fixation | Rhizobium | 72 ± 3 | 71 ± 11 | 90 ± 16 | 43 ± 3 |
Bradyrhizobium | 1283 ± 44 | 1313 ± 99 | 1349 ± 56 | 1198 ± 63 | ||
Nitrification | Nitrobacter | 5 ± 2 | 2 ± 1 | 6 ± 3 | 6 ± 3 | |
Subtotal | 1381 ± 58 | 1406 ± 120 | 1472 ± 86 | 1273 ± 80 | ||
Bioremediation | Organic carbon degradation | Chthoniobacter | 1717 ± 186 | 1870 ± 154 | 1721 ± 180 | 1305 ± 137 |
PAH degradation | Mycobacterium | 275 ± 25 | 318 ± 32 | 343 ± 21 | 358 ± 24 | |
Arthrobacter | 192 ± 49 | 156 ± 50 | 167 ± 60 | 188 ± 67 | ||
Bacillus | 108 ± 8 | 106 ± 9 | 143 ± 24 | 135 ± 22 | ||
Beijerinckia | 85 ± 32 | 37 ± 5 | 86 ± 29 | 67 ± 15 | ||
Rhodococcus | 3 ± 2 | 52 ± 40 | 114 ± 54 | 60 ± 19 | ||
Methylobacterium | 33 ± 8 | 28 ± 11 | 26 ± 14 | 11 ± 4 | ||
Pseudomonas | 21 ± 9 | 20 ± 9 | 27 ± 11 | 26 ± 11 | ||
Flavobacterium | 12 ± 6 | 23 ± 11 | 23 ± 8 | 12 ± 3 | ||
Burkholderia | 14 ± 5 | 10 ± 4 | 13 ± 6 | 21 ± 5 | ||
Novosphingobium | 16 ± 5 | 13 ± 5 | 6 ± 4 | 4 ± 2 | ||
Sphingomonas | 375 ± 27 | 242 ± 46 | 218 ± 32 | 266 ± 36 | ||
Streptomyces | 25 ± 6 | 30 ± 10 | 42 ± 13 | 84 ± 19 | ||
Pollutant degradation | Deinococcus | 14 ± 3 | 10 ± 2 | 4 ± 1 | 4 ± 1 | |
Subtotal | 2890 ± 371 | 2915 ± 388 | 2933 ± 457 | 2541 ± 365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Shin, K.; Kim, J.; Ha, E.; Choi, B. Impact of Three Chainsaw Lubricants on Forest Soil Bacterial Community, Soil Respiration and Seedling Growth. Forests 2023, 14, 2287. https://doi.org/10.3390/f14122287
Kim I, Shin K, Kim J, Ha E, Choi B. Impact of Three Chainsaw Lubricants on Forest Soil Bacterial Community, Soil Respiration and Seedling Growth. Forests. 2023; 14(12):2287. https://doi.org/10.3390/f14122287
Chicago/Turabian StyleKim, Ikhyun, Keumchul Shin, Jeongjae Kim, Eugene Ha, and Byoungkoo Choi. 2023. "Impact of Three Chainsaw Lubricants on Forest Soil Bacterial Community, Soil Respiration and Seedling Growth" Forests 14, no. 12: 2287. https://doi.org/10.3390/f14122287
APA StyleKim, I., Shin, K., Kim, J., Ha, E., & Choi, B. (2023). Impact of Three Chainsaw Lubricants on Forest Soil Bacterial Community, Soil Respiration and Seedling Growth. Forests, 14(12), 2287. https://doi.org/10.3390/f14122287