Urban Forest and Urban Microclimate
1. Introduction
2. Outline of Urban Forests and the Urban Microclimate
- (1)
- Tree growth and vitality assessments across multiple urban space designs using allometric studies;
- (2)
- Benefits of the cooling effects from urban greenspaces at different spatial and temporal scales for indoor and outdoor thermal comfort;
- (3)
- Assessment of hydrology in urban areas and soil properties;
- (4)
- Understanding and mapping urban greenspaces across scales to promote multi-functional landscapes and resilient cities with focus on climate vulnerability and drought tolerance.
3. Concluding Remarks
Conflicts of Interest
References
- Bernhofer, C.; Matschullat, J.; Bobeth, A. Das Klima in der Regklam-Modelregion Dresden; Regklam Publikationsreihe Heft 1; Rhombos: Berlin, Germany, 2009. [Google Scholar]
- Böll, S.; Schönfeld, P.; Körber, K.; Herrmann, J.V. Stadtbäume unter Stress—Projekt »Stadtgrün 2021« Untersucht Stadtbäume im Zeichen des Klimawandels. LWF Aktuell 2014, 98, 4–8. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Morgenroth, J.; Buchan, G.D. Soil Moisture and Aeration Beneath Pervious and Impervious Pavements. Arboric. Urban For. 2009, 35, 135–141. [Google Scholar] [CrossRef]
- Rötzer, T.; Moser-Reischl, A.; Rahman, M.; Hartmann, C.; Paeth, H.; Pauleit, S.; Pretzsch, H. Urban tree growth and ecosystem services under extreme drought. Agric. For. Meteorol. 2021, 308–309, 108532. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 455. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Day, S.; Wiseman, P.E.; Dickinson, S.; Harris, J.R. Contemporary Concepts of Root System Architecture of Urban Trees. Arboric. Urban For. 2010, 36, 149–159. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing—Health Synthesis; World Health Organization: Washington, DC, USA, 2005. [Google Scholar]
- Rahman, M.A.; Pawijit, Y.; Xu, C.; Moser-Reischl, A.; Pretzsch, H.; Rötzer, T.; Pauleit, S. A comparative analysis of urban forests for storm-water management. Sci. Rep. 2023, 13, 1451. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; von Strachwitz, M.F.; Paeth, H.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Rötzer, T.; Rahman, M.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci. Total. Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landsc. Urban Plan. 2018, 183, 88–99. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Clim. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Gold, A.; Rötzer, T.; Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 2018, 633, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.; Franceschi, E.; Hjazin, A.; Shoqeir, J.H.; Moser-Reischl, A.; Rahman, M.A.; Tadros, M.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Structure and Ecosystem Services of Three Common Urban Tree Species in an Arid Climate City. Forests 2023, 14, 671. [Google Scholar] [CrossRef]
- Franceschi, E.; Moser-Reischl, A.; Mohammad, A.; Rahman, S.P.; Pretzsch, H.; Rötzer, T. Crown Shapes of Urban Trees-Their Dependences on Tree Species, Tree Age and Local Environment, and Effects on Ecosystem Services. Forests 2022, 13, 748. [Google Scholar] [CrossRef]
- Wang, H.; Cai, Y.; Deng, W.; Li, C.; Dong, Y.; Zhou, L.; Sun, J.; Li, C.; Song, B.; Zhang, F.; et al. The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests 2023, 14, 80. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B. Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment? Forests 2022, 13, 358. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, M.; Luo, D.; Zhou, X. The Influence of Plant Community Characteristics in Urban Parks on the Microclimate. Forests 2022, 13, 1342. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, Y.; Li, R.; Ackerman, A.; Guo, N.; Li, Y.; Yang, Q.; Liu, Y. Research on Thermal Comfort of Underside of Street Tree Based on LiDAR Point Cloud Model. Forests 2022, 13, 1086. [Google Scholar] [CrossRef]
- Schütt, A.; Becker, J.N.; Reisdorff, C.; Eschenbach, A. Growth Response of Nine Tree Species to Water Supply in Planting Soils Representative for Urban Street Tree Sites. Forests 2022, 13, 936. [Google Scholar] [CrossRef]
- Liang, A.; Xie, C.; Wang, J.; Che, S. Daily Dynamics of Soil Heat Flux and Its Relationship with Net Radiation in Different Urban Riparian Woodlands. Forests 2022, 13, 2062. [Google Scholar] [CrossRef]
- Shu, Q.; Rötzer, T.; Detter, A.; Ludwig, F. Tree Information Modeling: A Data Exchange Platform for Tree Design and Management. Forests 2022, 13, 1955. [Google Scholar] [CrossRef]
- Dervishi, V.; Poschenrieder, W.; Rötzer, T.; Moser-Reischl, A.; Pretzsch, H. Effects of Climate and Drought on Stem Diameter Growth of Urban Tree Species. Forests 2022, 13, 641. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rötzer, T.; Moser-Reischl, A.; Rahman, M.A.; Pauleit, S. Urban Forest and Urban Microclimate. Forests 2023, 14, 2391. https://doi.org/10.3390/f14122391
Rötzer T, Moser-Reischl A, Rahman MA, Pauleit S. Urban Forest and Urban Microclimate. Forests. 2023; 14(12):2391. https://doi.org/10.3390/f14122391
Chicago/Turabian StyleRötzer, Thomas, Astrid Moser-Reischl, Mohammad A. Rahman, and Stephan Pauleit. 2023. "Urban Forest and Urban Microclimate" Forests 14, no. 12: 2391. https://doi.org/10.3390/f14122391
APA StyleRötzer, T., Moser-Reischl, A., Rahman, M. A., & Pauleit, S. (2023). Urban Forest and Urban Microclimate. Forests, 14(12), 2391. https://doi.org/10.3390/f14122391