Seasonal Dynamics of Soil Respiration and Its Autotrophic and Heterotrophic Components in Subtropical Camphor Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Design
2.3. Field Measurements
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils on a 0.5-degree-grid-cell basis. CDIAC Commun. 1996, 9, 23–36. [Google Scholar]
- Yiqi, L.; Zhou, X. Soil Respiration and the Environment; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob. Chang. Biol. 2004, 10, 1756–1766. [Google Scholar] [CrossRef]
- Johnston, A.S.A.; Sibly, R.M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2018, 2, 1597–1602. [Google Scholar] [CrossRef]
- Tang, X.L.; Du, J.; Shi, Y.H.; Lei, N.F.; Chen, G.; Cao, L.X.; Pei, X.J. Global patterns of soil heterotrophic respiration—A meta-analysis of available dataset. Catena 2020, 191, 104574. [Google Scholar] [CrossRef]
- Tang, J.; Baldocchi, D.D. Spatial–temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 2005, 73, 183–207. [Google Scholar] [CrossRef]
- Xiu-Rong, L.; Wei-Wei, F.; Wen-Jun, W.; Ji-Xin, C.; Jian-Kun, S.; Bo, Q.; Ming-Chao, L.; Yu-Long, F. AMF colonization and community of a temperate invader and co-occurring natives grown under different CO2 concentrations for three years. J. Plant Ecol. 2021, 15, 437–449. [Google Scholar]
- Lee, M.S.; Nakane, K.; Nakatsubo, T.; Koizumi, H. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 2003, 255, 311–318. [Google Scholar] [CrossRef]
- Yan, W.; Peng, Y.; Zhang, C.; Chen, X. The manipulation of aboveground litter input affects soil CO2 efflux in a subtropical liquidambar forest in China. Iforest—Biogeosci. For. 2019, 12, 181–186. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Mukhortova, L.; Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Khabarov, N.; See, L. Respiration of Russian soils: Climatic drivers and response to climate change. Sci. Total Environ. 2021, 785, 147314. [Google Scholar] [CrossRef]
- Sha, L.; Teramoto, M.; Noh, N.J.; Hashimoto, S.; Yang, M.; Sanwangsri, M.; Liang, N. Soil carbon flux research in the Asian region: Review and future perspectives. J. Agric. Meteorol. 2021, 77, 24–51. [Google Scholar]
- ArchMiller, A.A.; Samuelson, L.J. Partitioning Longleaf Pine Soil Respiration into Its Heterotrophic and Autotrophic Components through Root Exclusion. Forests 2016, 7, 39. [Google Scholar] [CrossRef]
- Collin, B. Thresholds of Disturbance: Land Management Effects on Vegetation and Nitrogen Dynamics. Ecology 2005, 80, 150–160. [Google Scholar]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Yang, Y.; Yang, Z.; Chen, G.; Xie, J.; Guo, J.; Zou, S. The dynamic response of soil respiration to land-use changes in subtropical China. Glob. Chang. Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Wang, H.; Wen, X.; Yang, F.; Ma, Z.; Liu, Y.; Sun, X.; Yu, G. Precipitation frequency controls interannual variation of soil respiration by affecting soil moisture in a subtropical forest plantation. Can. J. For. Res. 2011, 41, 1897–1906. [Google Scholar] [CrossRef]
- Chin, M.; Lau, S.; Midot, F.; Jee, M.; Lo, M.; Sangok, F.; Melling, L. Root exclusion methods for partitioning of soil respiration: Review and methodological considerations. Pedosphere 2023, 33, 683–699. [Google Scholar] [CrossRef]
- Zeng, X.; Song, Y.; Zeng, C.; Zhang, W.; He, S. Partitioning soil respiration in two typical forests in semi-arid regions, North China. Catena 2016, 147, 536–544. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Larionova, A.A. Root and rhizomicrobial respiration: A review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. Z. Fuer Pflanz. Und Bodenkd. 2010, 168, 503–520. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; De Deyn, G.B.; Johnson, D.; Klimešová, J. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Comstedt, D.; Bostrom, B.; Ekblad, A. Autotrophic and heterotrophic soil respiration in a Norway spruce forest: Estimating the root decomposition and soil moisture effects in a trenching experiment. Biogeochemistry 2011, 104, 121–132. [Google Scholar] [CrossRef]
- Sirca, C.; Carta, M.; Arca, A.; Duce, P.; Spano, D. Partitioning of Soil Respiration Components in a Mediterranean Maquis Ecosystems; American Geophysical Union: Washington, DC, USA, 2010. [Google Scholar]
- Yan, W.D.; Chen, X.Y.; Tian, D.L.; Peng, Y.Y.; Wang, G.J.; Zheng, W. Impacts of changed litter inputs on soil CO2 efflux in three forest types in central south China. Chin. Sci. Bull. 2013, 58, 750–757. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, P.; Wang, H.; Zhou, G.; Wu, J.; Yang, F.; Qian, X. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For. Ecol. Manag. 2011, 262, 1131–1137. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef]
- Tian, D.; Wang, G.; Peng, Y.; Yan, W.; Fang, X.; Zhu, F.; Chen, X. Contribution of autotrophic and heterotrophic respiration to soil CO2 efflux in Chinese fir plantations. Aust. J. Bot. 2011, 59, 26–31. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Thomas, S.C. Soil CO2 efflux in uneven-aged managed forests: Temporal patterns following harvest and effects of edaphic heterogeneity. Plant Soil 2006, 289, 253–264. [Google Scholar] [CrossRef]
- Sayer, E.J.; Tanner, E.V.J. A new approach to trenching experiments for measuring root-rhizosphere respiration in a lowland tropical forest. Soil Biol. Biochem. 2010, 42, 347–352. [Google Scholar] [CrossRef]
- Schaefer, D.A.; Feng, W.; Zou, X. Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biol. Biochem. 2009, 41, 1000–1007. [Google Scholar] [CrossRef]
- Li, J.; Pendall, E.; Dijkstra, F.A.; Nie, M. Root effects on the temperature sensitivity of soil respiration depend on climatic condition and ecosystem type. Soil Tillage Res. 2020, 199, 104574. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Y.; Trogisch, S.; Huang, Y.; Geng, Y.; Scherer-Lorenzen, M.; He, J.-S. Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical China. J. Plant Ecol. 2017, 10, 36–46. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Chen, G.-S.; Guo, J.-F.; Xie, J.-S.; Wang, X.-G. Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecol. 2007, 193, 71–84. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wang, Y.; Sun, S.; Liu, L. Quantifying components of soil respiration and their response to abiotic factors in two typical subtropical forest stands, southwest China. PLoS ONE 2015, 10, e0117490. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Fu, S.; Yi, W.; Zhou, G.; Mo, J.; Zhang, D.; Ding, M.; Wang, X.; Zhou, L. Partitioning soil respiration of subtropical forests with different successional stages in south China. For. Ecol. Manag. 2007, 243, 178–186. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Wang, S. Forest soil respiration and its heterotrophic and autotrophic components: Global patterns and responses to temperature and precipitation. Soil Biol. Biochem. 2010, 42, 1236–1244. [Google Scholar] [CrossRef]
- Hogberg, P.; Bhupinderpal, S.; Lofvenius, M.O.; Nordgren, A. Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. For. Ecol. Manag. 2009, 257, 1764–1767. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Y.; Castellano, M.J.; Fontaine, S.; Wang, W.; Ding, W. Soil Respiration Components and their Temperature Sensitivity Under Chemical Fertilizer and Compost Application: The Role of Nitrogen Supply and Compost Substrate Quality. J. Geophys. Res. Biogeoences 2019, 124, 556–571. [Google Scholar] [CrossRef]
- Andersonteixeira, K.J.; Herrmann, V.; Morgan, R.B.; Bondlamberty, B.; Cookpatton, S.C.; Ferson, A.E.; Mullerlandau, H.C.; Wang, M.M.H. Carbon cycling in mature and regrowth forests globally. Environ. Res. Lett. 2021, 16, 053009. [Google Scholar] [CrossRef]
- Yan, L.; Chen, S.; Huang, J.; Lin, G. Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Glob. Chang. Biol. 2010, 16, 2345–2357. [Google Scholar] [CrossRef]
- Cisneros-Dozal, L.M.; Trumbore, S.; Hanson, P.J. Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Glob. Chang. Biol. 2010, 12, 194–204. [Google Scholar] [CrossRef]
- Pumpanen, J.; Kulmala, L.; Linden, A.; Kolari, P.; Nikinmaa, E.; Hari, P. Seasonal dynamics of autotrophic respiration in boreal forest soil estimated by continuous chamber measurements. Boreal Environ. Res. 2015, 20, 637–650. [Google Scholar]
- Tomotsune, M.; Masuda, R.; Yoshitake, S.; Anzai, T.; Koizumi, H. Seasonal and Inter-annual Variations in Contribution Ratio of Heterotrophic Respiration to Soil Respiration in a Cool-temperate Deciduous Forest. J. Geogr. 2013, 122, 745–754. [Google Scholar] [CrossRef]
- Ryan, M.G.; Hubbard, R.M.; Pongracic, S.; Raison, R.J.; McMurtrie, R.E. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 1996, 16, 333–343. [Google Scholar] [CrossRef]
- Gutierrez del Arroyo, O.; Wood, T.E. Large seasonal variation of soil respiration in a secondary tropical moist forest in Puerto Rico. Ecol. Evol. 2021, 11, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zang, Z.; Xie, Z.; Chen, Q.; Xu, W.; Zhao, C.; Shen, G. Soil respiration of four forests along elevation gradient in northern subtropical China. Ecol. Evol. 2019, 9, 12846–12857. [Google Scholar] [CrossRef] [PubMed]
- Subke, J.A.; Bahn, M. On the ‘temperature sensitivity’ of soil respiration: Can we use the immeasurable to predict the unknown? Soil Biol. Biochem. 2010, 42, 1653–1656. [Google Scholar] [CrossRef] [PubMed]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Sulzman, E.W.; Brant, J.B.; Lajtha, B.K. Soil Respiration || Contribution of Aboveground Litter, Belowground Litter, and Rhizosphere Respiration to Total Soil Co? Efflux in an Old Growth Coniferous Forest. Biogeochemistry 2005, 73, 231–256. [Google Scholar] [CrossRef]
- Linn, D.M.; Doran, J.W. Aerobic and Anaerobic Microbial Populations in No-till and Plowed Soils1. Soil Sci. Soc. Am. J. 1984, 48, 794–799. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Novak, M.D.; Gaumont-Guay, D.; Nesic, Z. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob. Chang. Biol. 2010, 14, 1305–1318. [Google Scholar] [CrossRef]
- Chen, X.; Eamus, D.; Hutley, L. Seasonal patterns of soil carbon dioxide efflux from a wet-dry tropical savanna of northern Australia. Aust. J. Bot. 2002, 50, 43–52. [Google Scholar] [CrossRef]
- Gray, S.B.; Classen, A.T.; Kardol, P.; Yermakov, Z.; Mille, R.M. Multiple Climate Change Factors Interact to Alter Soil Microbial Community Structure in an Old-Field Ecosystem. Soil Sci. Soc. Am. J. 2011, 75, 2217–2226. [Google Scholar] [CrossRef]
- Schnürer, J.; Clarholm, M.; Rosswall, S.B.M. Effects of moisture on soil microorganisms and nematodes: A field experiment. Microb. Ecol. 1986, 12, 217–230. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef]
Time (Year) | Treatment | Soil FCO2 Rate (µmol m−2 s−1) | Tsoil (°C) | Wsoil (%) |
---|---|---|---|---|
2010–2011 | Trenched | 1.77 ± 0.12 a | 16.86 ± 0.07 a | 32.26 ± 2.12 a |
Un-trenched | 3.09 ± 0.09 b | 16.88 ± 0.09 a | 28.41 ± 1.86 b | |
2011–2012 | Trenched | 1.56 ± 0.15 a | 16.11 ± 0.06 a | 27.45 ± 1.75 a |
Un-trenched | 2.67 ± 0.10 b | 16.09 ± 0.19 a | 24.45 ± 1.95 b | |
Average | Trenched | 1.67 ± 0.13 a | 16.49 ± 0.06 a | 29.85 ± 1.94 a |
Un-trenched | 2.88 ± 0.09 b | 16.49 ± 0.14 a | 26.43 ± 1.90 b |
Month | Ra | Rh | Rs | Ra/Rs |
---|---|---|---|---|
January | 0.354 | 0.718 | 1.071 | 33.0 |
February | 0.287 | 0.771 | 1.058 | 27.1 |
March | 0.300 | 0.959 | 1.259 | 23.8 |
April | 1.453 | 1.785 | 3.237 | 44.9 |
May | 1.537 | 2.337 | 3.874 | 39.7 |
June | 2.568 | 2.704 | 5.272 | 48.7 |
July | 1.783 | 2.477 | 4.260 | 41.9 |
August | 1.950 | 2.577 | 4.527 | 43.1 |
September | 1.650 | 1.558 | 3.207 | 51.4 |
October | 1.445 | 1.574 | 3.019 | 47.9 |
November | 0.832 | 1.324 | 2.155 | 38.6 |
December | 0.413 | 1.207 | 1.620 | 25.5 |
Forest Type | Ra/Rs Mean (Range) | References |
---|---|---|
Camphor forest | 41.9 (19.0–55.0) | This study |
Chinese fir forest (5 years old) | 27.1 | [34] |
Chinese fir forest (22 years old) | 32.6 (13.3–55.7) | [29] |
Chinese fir forest | 40.3 | [35] |
Natural evergreen forest | 47.8 | [35] |
Broadleaf and needle leaf mixed forest | 26.75 | [36] |
Bamboo forest | 10.98 | [36] |
Monsoon evergreen broad-leaf forest (about 400 years old) | 22.1–35.4 | [37] |
Pine forest (about 60 years old) | 18.1–26.1 | [37] |
Pine and broad-leaf mixed forest (~60 years old) | 20.0–29.1 | [37] |
Evergreen broad-leaved forest (20–120 years old) | 21.4–32.3 | [34] |
Moist forest | 33 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Yan, W.; Peng, Y.; Lei, J.; Zheng, W.; Zhang, Y.; Qi, Y.; Chen, X. Seasonal Dynamics of Soil Respiration and Its Autotrophic and Heterotrophic Components in Subtropical Camphor Forests. Forests 2023, 14, 2397. https://doi.org/10.3390/f14122397
He P, Yan W, Peng Y, Lei J, Zheng W, Zhang Y, Qi Y, Chen X. Seasonal Dynamics of Soil Respiration and Its Autotrophic and Heterotrophic Components in Subtropical Camphor Forests. Forests. 2023; 14(12):2397. https://doi.org/10.3390/f14122397
Chicago/Turabian StyleHe, Ping, Wende Yan, Yuanying Peng, Junjie Lei, Wei Zheng, Yi Zhang, Yaqin Qi, and Xiaoyong Chen. 2023. "Seasonal Dynamics of Soil Respiration and Its Autotrophic and Heterotrophic Components in Subtropical Camphor Forests" Forests 14, no. 12: 2397. https://doi.org/10.3390/f14122397
APA StyleHe, P., Yan, W., Peng, Y., Lei, J., Zheng, W., Zhang, Y., Qi, Y., & Chen, X. (2023). Seasonal Dynamics of Soil Respiration and Its Autotrophic and Heterotrophic Components in Subtropical Camphor Forests. Forests, 14(12), 2397. https://doi.org/10.3390/f14122397