Leachate Tables as a Tool for Monitoring Changes in Physical and Chemical Parameters of the Peat Substrate in the Cells of Nursery Containers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Measuring Station
2.2. Description of the Tests and Measurements
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Physical Parameters
3.2. Chemical Parameters
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szabla, K.; Pabian, R. Szkółkarstwo Kontenerowe: Nowe Technologie i Techniki w Szkółkarstwie Leśnym. Container Nursery. New Technologies and Techniques in Forestry Nursery; State Forests Information Centre: Warsaw, Poland, 2003; p. 212. ISBN 83-88478-43-5. (In Polish) [Google Scholar]
- Cannavo, P.; Hafdhi, H.; Michal, J.C. Impact of root growth on the physical properties of peat substrate under a constant water regimen. HortScience 2011, 46, 1394–1399. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Ferrer, V.; Bravo-Arrepol, G.; Reyes-Contreras, P.; Elissetche, J.P.; Santos, J.; Fuentealba, C.; Cabrera-Barjas, G. Pretreated Eucalyptus globulus and Pinus radiata Barks: Potential Substrates to Improve Seed Germination for a Sustainable Horticulture. Forests 2023, 14, 991. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Debode, J.; Willekens, K.; Van Delm, T. Recycling of P and K in circular horticulture through compost application in sustainable growing media for fertigated strawberry cultivation. Eur. J. Agron. 2018, 96, 131–145. [Google Scholar] [CrossRef]
- Stewart-Wade, S.M. Efficacy of organic amendments used in containerized plant production: Part 1—Compost-based amendments. Sci. Hortic. 2020, 266, 108856. [Google Scholar] [CrossRef]
- Stewart-Wade, S.M. Efficacy of organic amendments used in containerized plant production: Part 2—Non-compost-based amendments. Sci. Hortic. 2020, 266, 108855. [Google Scholar] [CrossRef]
- Cook, A.; Bilderback, T.; Lorscheider, M. Physical property mesurements in container substrates: A field Quantification strategy. SNA Res. Conf. 2004, 49, 102–104. [Google Scholar]
- Bilderback, T.; Warren, S.; Owen, J.; Albano, J.P. Healthy substrates need Physicals too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Pagliarini, M.K.; Castilho, R.M.; Alves, M.C. Physical-chemical characterization of substratum components mixture with cellulose residue for seedling production. Rev. Bras. Agroecol. 2012, 7, 160–169. [Google Scholar]
- Wallach, R. Physical Characteristics of Soilless Media, Soilless Culture. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–112. [Google Scholar] [CrossRef]
- Benito, M.; Masaguer, A.; Moliner, A.; De Antonio, R. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 2006, 97, 2071–2076. [Google Scholar] [CrossRef]
- Jaenicke, H. Good Tree Nursery Practices: Practical Guidelines for Research Nurseries; International Centre for Research in Agroforestry (ICRAF): Nairobi, Kenya, 1999. [Google Scholar]
- De Boodt, M.; Verdonck, O. The Physical Properties of the Substrates in Horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- Fernandes, C.; Cora, J.E. Bulk density and relationship air/water of horticulture substrate. Sci. Agric. 2004, 61, 446–450. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S.; Banach, J.; Durło, G. Effect of Changing Substrate Density and Water Application Method on Substrate Physical Properties and Container-Grown Seedling Growth. Forests 2023, 14, 1490. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S. Analysis of the Water Leakage Rate from the Cells of Nursery Containers. Forests 2023, 14, 2246. [Google Scholar] [CrossRef]
- Kormanek, M.; Małek, S.; Banach, J.; Durło, G.; Jagiełło-Leńczuk, K.; Dudek, K. Seasonal changes of perlite–peat substrate properties in seedlings grown in different sized container trays. New For. 2021, 52, 271–283. [Google Scholar] [CrossRef]
- Allaire, S.E.; Caron, J.; Duchesne, I.; Parent, L.É.; Rioux, J.A. Air–filled porosity, gas relative diffusivity, and tortuosity: Indices of Prunus × Cistena sp. growth in peat substrates. J. Am. Soc. Hortic. Sci. 1996, 121, 236–242. [Google Scholar] [CrossRef]
- Pająk, K.; Kormanek, M.; Małek, S.; Banach, J. Effect of Peat-Perlite Substrate Compaction in Hiko V265 Trays on the Growth of Fagus sylvatica L. Seedlings. Sustainability 2022, 14, 4585. [Google Scholar] [CrossRef]
- Pająk, K.; Małek, S.; Kormanek, M.; Banach, J. Effect of peat substrate compaction on growth parameters and root system morphology of Scots pine Pinus sylvestris L. seedlings. Sylwan 2022, 166, 2537–2550. [Google Scholar] [CrossRef]
- Paquet, J.M.; Caron, J.; Banton, O. In situ determination of the water desorption characteristics of peat substrates. Can. J. Soil. Sci. 1993, 73, 329–339. [Google Scholar] [CrossRef]
- Strojny, Z. Podłoże w pojemnikowej produkcji szkółkarskiej. Substrate in container nursery production. Nursery 2003, 4, 61–67. (In Polish) [Google Scholar]
- Mathers, H.M.; Yeager, T.H.; Case, L.T. Improving irrigation water use in container nurseries. HortTechnology 2005, 15, 8–12. [Google Scholar] [CrossRef]
- Evans, M.R.; Gachukia, M.M. Physical properties of sphagnum peat– based root substrates amended with perlite or parboiled fresh rice hulls. HortTechnology 2007, 17, 312–315. [Google Scholar] [CrossRef]
- Altland, T.E.; Owen, J.O.; Gabriel, M.Z. Influence of Pumice and Plant Roots on Substrate Physical Properties. HortTechnology 2011, 21, 554–557. [Google Scholar] [CrossRef]
- Pierzgalski, E.; Tyszka, J.; Boczoń, A.; Wiśniewki, S.; Jeznach, J.; Żakowicz, S. Wytyczne Nawadniania Szkółek Leśnych na Powierzchniach Otwartych. Guidelines for the Use of Sprinklers in Forest Nurseries of the Nursery Trees; State Forests Information Centre: Warsaw, Poland, 2002; p. 64. (In Polish) [Google Scholar]
- Leciejewski, P. Nawodnienia w Szkółkach Leśnych. Irrigation of Forest Nurseries. Biblioteczka Leśniczego; SITLiD Publishing House: Warsaw, Poland, 2011; p. 330. (In Polish) [Google Scholar]
- Sun, Q.; Dumroese, R.K.; Liu, Y. Container volume and subirrigation schedule influence Quercus variabilis seedling growth and nutrient status in the nursery and field. Scand. J. For. Res. 2018, 33, 560–567. [Google Scholar] [CrossRef]
- Landis, T.D. Container Tree Nursery Manual. Vol II. Containers and Growing Media. Ch 1 Containers: Types and Functions. Agric. Handbk. 674; USDA Forest Service: Washington, DC, USA, 1990; pp. 1–39. [Google Scholar]
- Beeson, R.C. Relationship of plant growth and actual evapotranspiration to irrigation frequency based on management allowed deficits for container nursery stock. J. Am. Soc. Hortic. Sci. 2006, 131, 140–148. [Google Scholar] [CrossRef]
- Luna, T.; Landis, T.D.; Dumroese, R.K. Nursery Manual for Native Plants: A Guide for Tribal Nurseries—Volume 1: Nursery Management; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2009; pp. 95–111. [Google Scholar]
- Cabrera, P.I.; Johnson, J.R. Fundamentals of Container Media Management: Part 1. Greenhouse and Nursery Crops Fact Sheets & Bulletins; Rutgers Fact Sheet FS 812; The State University of New Jersey: Brunswick, NJ, USA, 2014; p. 3. [Google Scholar]
- Heiskanen, J. Water status of sphagnum peat and a peat–perlite mixture in containers subjected to irrigation regimes. HortSciences 1995, 30, 281–284. [Google Scholar] [CrossRef]
- Salifu, K.F.; Jacobs, D.F.; Pardillo, G.; Schott, M. Response of grafted Juglans nigra to increasing nutrient availability: Growth, nutrition, and nutrient retention in root plugs. HortScience 2006, 41, 1477–1480. [Google Scholar] [CrossRef]
- Carlile, W.R.; Raviv, M.; Prasad, M. Organic Soilless Media Components. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–378. [Google Scholar] [CrossRef]
- Schmilewski, G.; Nordzieke, B. Researched, developed and commercialized: GreenFiber. Acta Hortic. 2019, 1266, 361–368. [Google Scholar] [CrossRef]
- Gurmessa, B.; Cocco, S.; Ashworth, A.J.; Pedretti, E.F.; Ilari, A.; Cardelli, V.; Fornasier, F.; Ruello, M.L.; Corti, G. Post-Digestate Composting Benefits and the Role of Enzyme Activity to Predict Trace Element Immobilization and Compost Maturity. Bioresour. Technol. 2021, 338, 125550. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and standalone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- UK Government. England Peat Action Plan. 2021. Available online: https://assets.publishing.service.gov.uk/government/up-loads/system/uploads/attachment_data/file/1010786/england-peat-action-plan.pdf (accessed on 9 August 2023).
- Federal Council of Switzerland. Bericht des Bundesrates in Erfüllung des Postulats 10.3377 Diener Lenz «Torfausstiegskonzept». 2012. Available online: https://www.newsd.admin.ch/newsd/message/attachments/29089.pdf (accessed on 9 August 2023).
- Norwegian Ministry of Climate and Environment. Norway’s Climate Action Plan for 2021–2030: Meld. St. 13 (2020–2021) Report to the Storting (White Paper). 2022. Available online: https://www.regjeringen.no/contentassets/a78ecf5ad2344fa5ae4a394412ef8975/en-gb/pdfs/stm202020210013000engpdfs.pdf (accessed on 9 August 2023).
- Ministry of Agriculture, Nature and Food Quality; Ministry of Economic Affairs and Climate Policy; Netherlands Association of Potting Soil and Substrate Manufacturers; Netherlands Agricultural and Horticultural Association; Greenhouse Horticulture Netherlands; Plantum; Tuinbranche Nederland; Dutch Association of Biowaste Processors; Dutch Association of Wholesalers in Floricultural Products; Dutch Flower Auctions Association; et al. Covenant on the Environmental Impact of Potting Soil and Substrates. 2022. Available online: https://turfvrij.nl/wp-content/uploads/2023/02/Convenant-english.pdf (accessed on 9 August 2023).
- Bundesministerium für Landwirtschaft, Regionen und Tourismus. Moorstrategie Österreich 2030+. 2022. Available online: https://info.bml.gv.at/dam/jcr:b1db9395-5df4-4863-8d3b-f0d97b83cc67/Moorstrategie.pdf (accessed on 9 August 2023).
- Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (Text with EEA Relevance). 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0841 (accessed on 8 September 2023).
- Growing Media Europe. The Role of Peat in Growing Media. 2023. Available online: https://www.growing-media.eu/peat (accessed on 9 August 2023).
- Schmilewski, G. Growing media constituents used in the EU in 2013. Acta Hortic. 2017, 1168, 85–92. [Google Scholar] [CrossRef]
- Oferta Handlowa Gospodarstwo Szkółkarskie w Nędzy. In Commer. Offer. Nurs. Farm Nędza; 2023; p. 2. Available online: https://rudy-raciborskie.katowice.lasy.gov.pl/c/document_library/get_file?uuid=c133ade6-2793-4feb-8159-d95af61ef0bf&groupId=18259 (accessed on 9 August 2023). (In Polish)
- Myślińska, E. Laboratoryjne Badania Gruntów; Laboratory Soil Tests Arkady: Warszawa, Poland, 1992; p. 280. [Google Scholar]
- Walczak, R.T. Modelowe badania zależności retencji wodnej od parametrów fazy stałej gleby (Model studies of the dependence of water retention on the parameters of the solid phase of the soil. Probl. Agrofiz. 1984, 41, 1–69. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Metody Analizy i Oceny Właściwości Gleb i Roślin; Katalog; Instytut Ochrony Środowiska: Warszawa, Poland, 1991; p. 334. (In Polish) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 9 August 2023).
- StatSoft. Electronic Statistics Manual PL, Krakow. 2006. Available online: http://www.statsoft.pl/textbook/stathome.html (accessed on 9 August 2023).
- Yang, H.; Li, S.; Sun, H.; Wang, W.; Zhao, F. Effects of Substrate Material on Plant Growth and Nutrient Loss. Pol. J. Environ. Stud. 2018, 27, 2821–2832. [Google Scholar] [CrossRef]
- Wood, T.E.; Matthews, D.; Vandecar, K.; Lawrence, D. Short-term variability in labile soil phosphorus is positively related to soil moisture in a humid tropical forest in Puerto rico. Biogeochemistry 2016, 127, 35. [Google Scholar] [CrossRef]
- Reilly, A.M.O.; Wanielista, M.P.; Chang, N.B.; Xuan, Z.; Harris, W.G. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin. Sci. Total Environ. 2012, 432, 227. [Google Scholar] [CrossRef]
Container Type | SPD g·cm−3 | WBD g·cm−3 | BD g·cm−3 | OP % | WC % | AC % |
---|---|---|---|---|---|---|
V150 | 1.477 ± 0.141 a | 0.562 ± 0.176 b | 0.099 ± 0.01 a | 93.24 ± 0.93 b | 41.81 ± 5.20 b | 51.43 ± 4.88 a |
V300 | 1.327 ± 0.124 b | 0.843 ± 0.090 a | 0.180 ± 0.02 b | 86.31 ± 1.64 a | 33.13 ± 6.02 a | 53.19 ± 6.34 a |
F = 41.5 p = 0.000 ** | F = 211.2 p = 0.000 ** | F = 1379.6 p = 0.000 ** | F = 811.8 p = 0.000 ** | F = 71.5 p = 0.000 ** | F = 2.9 p = 0.090 | |
Average for V150 and V300 containers | 1.399 ± 0.118 | 0.702 ± 0.119 | 0.139 ± 0.04 | 89.78 ± 3.72 | 37.47 ± 7.10 | 52.31 ± 5.70 |
Container | Term | SPD g·cm−3 | WBD g·cm−3 | BD g·cm−3 | OP % | WC % | AC % |
---|---|---|---|---|---|---|---|
V150 | T0 | 1.33 ± 0.032 au | 0.536 ± 0.100 au | 0.100 ± 0.006 bcyz | 92.5 ± 0.43 au | 36.12 ± 4.44 au | 56.38 ± 4.78 dy |
T1 | 1.47 ± 0.023 cx | 0.565 ± 0.095 au | 0.106 ± 0.005 cz | 92.8 ± 0.34 au | 40.70 ± 3.35 bz | 52.13 ± 3.56 cx | |
T2 | 1.41 ± 0.014 bw | 0.573 ± 0.074 au | 0.097 ± 0.011 abxy | 93.1 ± 0.80 au | 43.93 ± 2.89 cw | 49.18 ± 3.07 buw | |
T3 | 1.67 ± 0.01 dz | 0.573 ± 0.057 au | 0.092 ± 0.008 ax | 94.5 ± 0.46 az | 46.50 ± 3.24 cw | 48.01 ± 3.28 auw | |
F-test (Term) | F = 421.27 p = 0.000 ** | F = 5.57 p = 0.064 | F = 8.42 p = 0.000 ** | F = 4.02 p = 0.753 | F = 2.41 p = 0.000 ** | F = 1.49 p = 0.000 ** | |
V300 | T0 | 1.33 ± 0.23 au | 0.719 ± 0.114 ax | 0.182 ± 0.007 auw | 86.38 ± 0.56 aw | 26.85 ± 5.58 ax | 59.53 ± 5.79 dz |
T1 | 1.38 ± 0.26 bx | 0.800 ± 0.099 by | 0.185 ± 0.007 aw | 86.54 ± 0.74 bw | 30.78 ± 4.84 by | 55.76 ± 4.71 cy | |
T2 | 1.45 ± 0.15 cx | 0.917 ± 0.051 cw | 0.179 ± 0.010 auw | 87.70 ± 0.66 cy | 36.92 ± 2.38 cu | 50.77 ± 2.62 bwx | |
T3 | 1.41 ± 0.14 dw | 0.935 ± 0.037 cw | 0.176 ± 0.025 au | 86.63 ± 2.20 bx | 37.95 ± 2.04 cu | 46.68 ± 2.22 au | |
F-test (Term) | F = 314.89 p = 0.000 ** | F = 23.23 p = 0.000 ** | F = 1.08 p = 0.366 | F = 15.62 p = 0.000 ** | F = 25.68 p = 0.000 ** | F = 28.16 p = 0.000 ** | |
F-test (Container × term) | F = 54.21 p = 0.000 ** | F = 217.04 p = 0.000 ** | F = 768.2 p = 0.000** | F = 241.91 p = 0.000 ** | F = 44.1 p = 0.000 ** | F = 19.89 p = 0.000 ** |
Container Type | C | N | P | C | N | P |
---|---|---|---|---|---|---|
Substrate | Leachate | |||||
V150 | 5267.5 ± 2055.9 y | 7786.8 ± 833.1 y | 212.7 ± 30.1 y | 1262.5 ± 945.5 x | 236.6 ± 203.2 x | 116.0 ± 106.4 x |
V300 | 6903.1 ± 2605.2 x | 10,123.8 ± 993.8 x | 273.9 ± 48.9 x | 1083.4 ± 550.3 x | 107.3 ± 47.2 y | 71.8 ± 46.9 y |
F = 12.71 p = 0.000 ** | F = 175.91 p = 0.000 ** | F = 63.01 p = 0.000 ** | F = 1.81 p = 0.181 | F = 21.51 p = 0.000 ** | F = 10.42 p = 0.001 ** | |
V150 and V300 | 6085.2 ± 2476.9 | 8955.3 ± 1486.8 | 243.3 ± 50.8 | 1173.0 ± 775.5 | 169.7 ± 158.4 | 93.7 ± 84.6 |
C | N | P | |||
---|---|---|---|---|---|
Ramp water | T0 | 11.9 ± 1.9 b | 3.6 ± 0.2 b | 0.42 ± 0.1 c | |
T1 | 78.3 ± 1.9 a | 76.4 ± 1.9 a | 14.5 ± 0.05 b | ||
T2 | 70.3 ± 9.6 a | 85.4 ± 11.3 a | 27.8 ± 3.5 a | ||
T3 | 47.9 ± 19.3 a | 88.0 ± 5.7 a | 19.5 ± 0.9 b | ||
F-test | F = 23.68 p = 0.002 ** | F = 130.78 p = 0.000 ** | F = 129.32 p = 0.000 ** | ||
Substrate | V150 | T0 | 6059.9 ± 1257.9 auw | 7887.4 ± 610.1 abwx | 180.6 ± 10.6 cz |
T1 | 5208.5 ± 1132.4 auw | 8439.3 ± 587.5 aw | 216.1 ± 25.1 by | ||
T2 | 4113.5 ± 1473.1 aw | 7473.6 ± 860.5 bwx | 212.2 ± 24.1 by | ||
T3 | 5687.9 ± 3238.2 auw | 7346.9 ± 829.21 bx | 241.8 ± 21.9 axy | ||
F-test | F = 1.69 p = 0.1693 | F = 1.569 p = 0.207 | F = 31.99 p = 0.000 ** | ||
V300 | T0 | 7824.3 ± 1910.8 au | 10,066.2 ± 518.3 au | 235.1 ± 12.3 cxy | |
T1 | 7255.1 ± 2707.5 au | 10,584.4 ± 1129.1 au | 251.4 ± 19.6 bcwx | ||
T2 | 6733.6 ± 3441.3 auw | 9969.64 ± 697.3 au | 272.6 ± 20.5 bw | ||
T3 | 5799.2 ± 1844.0 auw | 9874.9 ± 1345.1 au | 336.6 ± 52.5 au | ||
F-test | F = 1.69 p = 0.179 | F = 1.57 p = 0.207 | F = 31.99 p = 0.000 ** | ||
F-test (Container × term) | F = 1.66 p = 0.180 | F = 0.36 p = 0.784 | F = 6.55 p = 0.001 ** | ||
Leachate | V150 | T0 | 485.9 ± 119.9 bx | 78.4 ± 22.1 cx | 32.9 ± 18.9 cz |
T1 | 661.8 ± 344.9 bx | 98.3 ± 61.6 cx | 48.3 ± 14.3 cyz | ||
T2 | 1741.9 ± 666.6 aw | 272.6 ± 94.8 bw | 163.7 ± 78.3 bw | ||
T3 | 2160.4 ± 1023.2 au | 495.6 ± 201.2 au | 234.3 ± 118.7 au | ||
F-test | F = 28.76 p = 0.000 ** | F = 42.02 p = 0.000 ** | F = 30.21 p = 0.000 ** | ||
V300 | T0 | 565.9 ± 196.1 bx | 68.1 ± 17.2 bx | 32.2 ± 15.5 cz | |
T1 | 746.1 ± 313.65 bx | 78.3 ± 16.9 bx | 35.4 ± 14.5 cz | ||
T2 | 1628.4 ± 408.7 aw | 135.8 ± 34.5 ax | 123.8 ± 40.4 awx | ||
T3 | 1393.2 ± 377.2 aw | 147.1 ± 49.9 ax | 95.9 ± 23.5 bxy | ||
F-test | F = 34.72 p = 0.000 ** | F = 22.38 p = 0.000 ** | F = 46.89 p = 0.000 ** | ||
F-test (Container × term) | F = 7.06 p = 0.000 ** | F = 27.81 p = 0.000 ** | F = 13.16 p = 0.000 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasik, M.; Kormanek, M.; Staszel-Szlachta, K.; Małek, S. Leachate Tables as a Tool for Monitoring Changes in Physical and Chemical Parameters of the Peat Substrate in the Cells of Nursery Containers. Forests 2023, 14, 2398. https://doi.org/10.3390/f14122398
Jasik M, Kormanek M, Staszel-Szlachta K, Małek S. Leachate Tables as a Tool for Monitoring Changes in Physical and Chemical Parameters of the Peat Substrate in the Cells of Nursery Containers. Forests. 2023; 14(12):2398. https://doi.org/10.3390/f14122398
Chicago/Turabian StyleJasik, Michał, Mariusz Kormanek, Karolina Staszel-Szlachta, and Stanisław Małek. 2023. "Leachate Tables as a Tool for Monitoring Changes in Physical and Chemical Parameters of the Peat Substrate in the Cells of Nursery Containers" Forests 14, no. 12: 2398. https://doi.org/10.3390/f14122398
APA StyleJasik, M., Kormanek, M., Staszel-Szlachta, K., & Małek, S. (2023). Leachate Tables as a Tool for Monitoring Changes in Physical and Chemical Parameters of the Peat Substrate in the Cells of Nursery Containers. Forests, 14(12), 2398. https://doi.org/10.3390/f14122398