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Abstract: This study was conducted to quantify the carbon storage in each pool (including trees,
forest floor, and soil) and to analyze the carbon cycle in a Chamaecyparis obtusa (Siebold and Zucc.)
Endl. forest according to different thinning intensities. The study site was located in Gochang-gun,
Jeollabuk-do, and the treatments consisted of a control (Con), a light thinning (LT), and a heavy
thinning (HT), based on 3000 trees originally planted per hectare. As stand density decreased, total
C storage decreased, and the annual C storage of trees and C released through soil respiration
significantly increased. Net ecosystem production (NEP; Mg·C·ha−1·year−1), as the difference
between net primary production and microbial respiration, was 1.95, 2.49, and 2.11 in the Con, LT,
and HT treatments, respectively; i.e., the LT stimulated greater NEP than the Con and HT treatments.
While these results show that thinning decreases total C storage of forests, proper thinning enhances
carbon uptake capacity. In addition, this study can be a basic reference for the effects of thinning
on forest carbon cycles. Repeated measurements of each C pool should be performed over multiple
years to see the exact movement patterns of forest carbon in the future.

Keywords: carbon storage; thinning; stand density; annual growth; material cycle

1. Introduction

Climate change and ecosystem destruction are occurring globally because of global
warming, and increasing atmospheric carbon dioxide (CO2) concentrations are regarded as
the main cause of this phenomenon [1]. In response to climate change, forests, as carbon
dioxide sinks, can be used as a countermeasure [2,3]. Forests absorb and store a lot of carbon
(C) in trees, the forest floor, and soil [4,5], and their ability to do so varies depending on
various factors such as climate (and thus climate change), afforestation, and thinning [6,7].
Therefore, in terms of carbon neutrality, it is important to quantify the carbon cycle of forest
vegetation and soils, and how the forestry management practices used for major plantation
species affect them.

Thinning is a forest management practice that enhances trees’ C uptake in which
some trees are removed to reduce competition for resources such as sunlight and nutrients
within the stand [8,9]. Therefore, to establish appropriate forest management practices or
build a forest C inventory, we must identify the changes to forests caused by thinning [10].
Thinning is known to increase diameter growth but decrease total aboveground carbon
storage in trees [10,11]. It is also known that thinning can cause changes in the influx and
decomposition of litterfall, affecting the accumulation of organic matter on the forest floor
and in the soil [12–14]. A meta-analysis of the effects of thinning on soil C stocks and
dynamics reported that thinning increased soil respiration [15]. However, it is difficult to
draw consistent conclusions because the effects of thinning on the C cycle differ depending
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on species, climatic zone, soil, and operation method [2,16]. In addition, questions remain
about how and for how long thinning affects net ecosystem production (NEP).

Cypress (Chamaecyparis obtusa (Siebold and Zucc.) Endl.) is a major afforestation
species in Korea. After being introduced from Japan in 1904, its use in afforestation
activities carried out in the southern part of Korea began in the 1960s. In 2020, cypress
was planted with the largest area (5077 ha) among conifers [17]. Recently, cypress was
selected as a species responding to climate change and a species recommended for future
afforestation, and it is expected that research on expanding afforestation and responding
to climate change will be conducted actively [18]. In addition, since cypress is a species
with high medicinal and recreational value, it is expected that the value of using forest
ecosystem services will increase [19,20].

Research on cypress forests has included studies characterizing the vegetation struc-
ture [21]; investigating the relationship between C stocks (trees, forest floor, and soil) and
environmental factors in cedar (Cryptomeria japonica) and cypress forests and comparing
C absorption capacity among tree species through the investigation of tree, forest floor,
and soil C stocks [22]; analyzing the correlation between site environmental factors and
tree ring growth [23]; and assessing the adequacy and growth effects of thinning meth-
ods [24]. However, most studies looking at thinning intensity and the resulting changes in
carbon storage have been conducted on pine forests [25,26]. There is no such research on
cypress forests.

Therefore, the purpose of this study was to analyze and compare the changes in C
storage in trees, forest floor, and soil and the C shifts between them resulting from thinning
methods of different intensities in a cypress forest.

2. Materials and Methods
2.1. Site Description

This study was conducted in a cypress plantation (35◦24′17.64′′ N, 126◦43′15.03′′ E)
located on Mt. Munsu in Gochang-gun, Jeollabuk-do. The study site is more than 100 m
away from the main forest road on the ridge of a northeast-facing slope with a steepness
gradient of 20–25◦. The dominant soil types are Inceptisols and Entisols [27]. The climate
zone belongs to the temperate zone, and the parent rock is metamorphic. The 30-year aver-
age temperature of Gochang-gun is 13.2 ◦C with an annual average maximum temperature
of 18.6 ◦C and an annual average minimum temperature of 8.6 ◦C. The annual precipitation
is 1225.5 mm [28].

The study site is divided into three thinning treatment groups: control (Con), light
thinning (LT), and heavy thinning (HT). In 1976, 3-year-old cypress seedlings were planted
in each treatment at a density of 3000 trees per hectare. The first thinning was in 2000
(27-year-old trees), and the second thinning was in 2018 (45-year-old trees). In both cases,
the thinning intensities were 30% and 50% in the LT and HT treatments, respectively, based
on the number of trees in pre-thinned plots. The size of the study site was 2.5 ha, and each
treatment group was divided into 0.5 ha. Three 20 × 20 m plots were established in each
treatment group, and two 20 × 20 m plots were established in the unthinned treatments
due to the small size of the study site (Table 1). The locations of individual plots were
kept at least 10 m apart to prevent plots from being affected by adjacent treatment areas.
In 2000, the diameter at breast height (DBH) and the number of trees by treatments were
collected after the first thinning, and in 2018, DBH, number of trees, and the light intensity
by treatments were collected before the second thinning (Table 1).
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Table 1. Characteristics of Con, light thinning (LT), and heavy thinning (HT) treatments in a Chamae-
cyparis obtusa (Siebold and Zucc.) Endl. forest in 2000 and 2018.

Treatments Year (Age) Con LT HT

Thinning intensity (%) 0% 30% 50%

Light intensity
(µmol·m2·s−1) 205 ± 80 c 355 ± 34 b 649 ± 43 a

Trees per ha
(N ha−1)

2000 (27) 2900 ± 43 1858 ± 134 1458 ± 42
2018 (45) 2338 ± 22 1792 ± 33 1308 ± 22

Minimum
Diameter at breast height

(DBH) (cm)

2000 (27) 9.10 ± 0.3 a 9.93 ± 0.96 a 10.60 ± 0.31 a

2018 (45) 11.85 ± 0.85 a 12.67 ± 0.37 ab 13.97 ± 0.29 b

Maximum DBH (cm)
2000 (27) 20.05 ± 0.65 a 21.00 ± 0.15 a 20.33 ± 0.44 a

2018 (45) 28.15 ± 0.75 a 30.17 ± 0.28 ab 32.47 ± 0.95 b

Mean DBH (cm)
2000 (27) 13.75 ± 0.16 b 14.99 ± 0.27 a 15.60 ± 0.49 a

2018 (45) 18.65 ± 0.28 c 20.42 ± 0.14 b 23.11 ± 0.45 a

Aboveground biomass of
understory vegetation

(Mg·ha−1)
0.02 ± 0.002 c 0.06 ± 0.01 b 0.43 ± 0.02 a

Values with different letters indicate significant differences among the three thinning intensities (p < 0.05).

2.2. Study Methods
2.2.1. Light Intensity

The light intensity in each plot of each treatment was measured using a portable
photosynthesis system (Type LCA4, ADC, Hoddesdon, UK). Light intensity was measured
every 10 min from 8:00 a.m. to 6:00 p.m. at the beginning of each month on sunny days
in 2018.

2.2.2. Aboveground Biomass of Understory Vegetation

The aboveground biomass of understory vegetation (UVB) existing in a 3 × 3 m
plot was collected in August 2018. Three sampling points for UVB were located in each
treatment plot. In total, 24 samples were weighed after drying.

2.2.3. Tree Carbon Storage and Annual Net Primary Production

In order to analyze growth before and after thinning, DBH was measured in 2000
and 2018. Based on the measured DBH, the amount of biomass per unit area was calcu-
lated using the biomass algometric equations of cypress (independent variable of DBH)
presented by KFRI [29]. Stem, branch, leaf, and root biomasses were calculated using
Equations (1)–(4). Then, after summing the biomasses of the four parts, the C storage of
each tree was calculated by multiplying the sum by the carbon conversion factor (0.5).
Afterward, the net increase in C, i.e., NPP, was calculated by subtracting the C storage in
2000 from 2018 and dividing it by the corresponding year to estimate the C absorption of
trees in each plot.

Stem biomass (Mg·ha−1) = (0.165 × DBH2.157)/1000 (1)

Branch biomass (Mg·ha−1) = (0.022 × DBH 2.277)/1000 (2)

Leaf biomass (Mg·ha−1) = (0.136 × DBH 1.470)/1000 (3)

Root biomass (Mg·ha−1) = (0.464 × DBH 1.404)/1000 (4)

2.2.4. Litterfall

Three circular litter traps (0.25 m2 circular area and 1.2 m height) per plot were used
for litterfall collection. These litter traps were installed randomly in each plot, and samples
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were collected a total of six times, at two-month intervals, from February 2019 to February
2020. Samples were dried at 65 ◦C until a constant weight was reached then divided into
leaves, branches, and seeds, and each was weighed. Dried samples were pulverized with a
grinder, and their C concentrations were analyzed using a Vario Macro Elemental Analyzer
(Elementary Analysensysteme GmbH, Langenselbold, Germany). Based on this, the relative
C concentrations were calculated as 57% of the dry weight of leaves and branches and 3.7%
of the dry weight of seeds.

2.2.5. Forest Floor and Soil C Concentration and Storage

Forest floor (FF) and soil samples were collected in three repetitions by selecting three
sampling points within each plot in 2018. The forest floor samples were collected using a
frame covering 30× 30 cm, and soil samples were separately sampled at 0–10 cm, 10–20 cm,
and 20–30 cm depths using a 10 cm long cylindrical metal core (407 cm3). The soil samples
were air-dried for two weeks. They were then separated into fine earth and gravel with a
2 mm mesh (US standard No. 10), and each was weighed to calculate coarse rock content
and bulk density. The forest floor and soil C concentrations were measured using a CN
elemental analyzer (Vario Macro, Elementary Analysensysteme GmbH, Langenselbold,
Germany). Forest floor C storage (FFCS) was calculated by multiplying the forest floor
C concentrations by the dry weight, and soil C storage (SCS) was calculated using the
following equation [30] (Equation (5)):

SCS (Mg·C·ha−1) = T × BD × C × (100 − CF)/100 (5)

where T is the depth of soil (cm), BD is the bulk density (g·cm−3), C is the C concentration
(%), and CF is the coarse fraction (%).

2.2.6. Litter Decomposition

From the logging residues, fresh leaf litter and one-year fresh branches originating
from the thinned cypress trees were collected in December 2018. After air-drying for
one month, 3 sets, each composed of 5 litter bags containing 5 g of litter per bag, were
buried under the forest floor in February 2019 for each plot in the study site. Samples
were retrieved in May and August 2019 and February and August 2020. They were then
air-dried in a dryer at 65 ◦C for 72 h, and the remaining mass was measured. The remaining
weight was expressed as a percentage (%) of the initial weight [31] (Equation (6)):

Remaining mass (%) = Rt/R0 × 100 (6)

where R0 is the mass of the original collection, Rt is the mass remaining at time t, and t is
decomposition time.

2.2.7. Soil Respiration

Soil respiration was measured regularly every month from April 2019 to October
2020. The measurement was performed twice a day using a portable soil respiration
analyzer (GMP343, Vaisala, Finland), Indicator MI-70 (Vaisala, Finland), and a cylindrical
chamber (diameter 119 mm, height 155 mm) at three random points in each plot. The CO2
concentration was calculated using Equation (7) [32]. Annual soil respiration was calculated
by converting it into CO2 concentration per hectare per year. Since root respiration for soil
respiration varies from 10 to 90%, root respiration and microbial respiration were calculated
by applying 46% and 54%, respectively, of the total soil respiration to each category [33,34].

FCO2 = PVc/1000 × 273.15/A(T + 273.15) × 10,000 × ∆CO2/∆t × 44/22.41 (7)

where FCO2 is the CO2 concentration (µg·CO2·m−2·s−1), P is the atmospheric pressure
(kPa), Vc is the chamber volume (cm3), A is the chamber basal area (cm2), T is the gas
temperature (K), ∆CO2/∆t is the change rate of the CO2 molar fraction during measurement



Forests 2023, 14, 217 5 of 12

time (µmol·mol−1), and 44/22.41 is used as the molecular weight of CO2 in the volume of
1 mol of gas.

2.2.8. Net Ecosystem Production

The net ecosystem production (NEP) of a forest ecosystem is determined by the differ-
ence between the net primary production (NPP) produced by trees through photosynthesis
and C emissions by microbial respiration (Rh) [35] (Equation (8)):

NEP = NPP − Rh (8)

2.2.9. Statistical Analysis

A one-way analysis of variance (ANOVA) was used to analyze the effects of the
treatments on light intensity, mean annual increment, and each part of the C cycle, such as
C storage and C shift, based on the stand density control of the cypress forests. Duncan’s
multiple range tests were performed to determine the significant differences between the
three groups at a significance level of α = 0.05. Prior to statistical analysis, all data were
examined for homogeneity using Levene’s test (p-value > 0.05). The SAS 9.4 software
package (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses.

3. Results and Discussion
3.1. Changes in C Storage by C Pool Resulting from Different Thinning Intensities in Cypress Forests
3.1.1. Aboveground C Storage in Trees

In 2018, C storage (Mg·C·ha−1) in trees decreased significantly in the HT (151.78)
compared to the Con (179.43) treatment, but there was no significant difference between
the LT (163.86) and Con (p < 0.05; Table 2). The LT decreased tree C storage by about 8.7%
compared to the Con, and the HT decreased tree C storage by about 15.4% compared to
the Con. It is believed that thinning reduced the number of trees, thus affecting the C
storage of trees. Previous research corroborates this: in studies that analyzed the effects of
varied thinning intensities on aboveground C storage of Q. acuta forests in the southern
and P. koraiensis forests in the central regions of Korea, C storage in the thinned treatments
was reduced compared to the unthinned plot [36,37]. Therefore, thinning reduces C storage
of trees regardless of region and species.

Table 2. Mean annual increment (MAI) (cm·year−1), carbon storage (Mg·C·ha−1), and net primary
production (NPP) (Mg·C·ha−1·year−1) from 2000 to 2018 in a Chamaecyparis obtusa (Siebold and Zucc.)
Endl. forest.

Con LT HT

Mean annual increment (MAI)
(cm·year−1) 0.27 ± 0.04 b 0.30 ± 0.02 b 0.42 ± 0.01 a

Carbon storage
(Mg·C·ha−1)

2000 120.10 ± 1.22 a 90.25 ± 3.98 b 77.02 ± 5.33 b

2018 179.43 ± 3.88 a 163.86 ± 3.79 ab 151.78 ± 8.78 b

Net primary production
(NPP) (Mg·C·ha−1·year−1) 3.30 ± 0.28 b 4.09 ± 0.20 a 4.15 ± 0.26 a

Values with different letters indicate significant differences among the three thinning intensities (p < 0.05).

Mean annual increment (MAI; cm·year−1) from 2000 to 2018 increased significantly in
the HT (0.42) compared to the Con treatment (0.27), but there was no significant difference
between the LT (0.30) and Con (p < 0.01; Table 2). The HT increased MAI by about 53.4%
compared to Con, and it is believed that this difference is due to increased light penetration
through the thinned canopy and the mitigation of between-tree competition due to the
decrease in stand density [38]. This has also been proven previously in various tree species,
such as C. obtusa [24], P. koraiensis [39], and Q. glauca [40]. In a study that analyzed the
growth effect of thinning in C. obtusa, which is the same species considered in this study, the
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DBH growth was similar between treatments in the early stages of thinning, but 18 years
after thinning, mean DBH increased as the intensity of thinning increased. In the case of
P. koraiensis, DBH growth of heavily thinned treatments (752 trees per hectare, 951 trees per
hectare) increased by about 19% compared to the unthinned plot for the first 5 years after
thinning. In the Q. glauca forests, the MAI of the unthinned plot (1213 trees per hectare)
was 0.66, and the MAI of heavily thinned treatments (663 trees per hectare) was 1.09, which
was increased compared to the unthinned plot.

Net increases in C, i.e., net primary production (NPP; Mg·C·ha−1·year−1), increased
significantly in LT (4.09) and HT (4.15) compared to the Con (3.30; p < 0.05; Table 2).
Following the LT, NPP increased by about 24.1% compared to the Con; following the
HT, NPP increased by about 26% compared to the Con. This is judged to be due to the
increases in the MAI of DBH in proportion to the thinning intensity. As NPP increased, in
2018, the difference in C storage between the Con and thinned plots decreased by about
46% compared to 2000. If this situation continues, it can be predicted that in 2023, five
years after the second thinning, there will be no significant difference in aboveground C
storage regardless of thinning intensity. In a previous study analyzing the tree growth
characteristics in variably thinned Korean white pine plantations, it was reported that the
higher the thinning intensity, the lower the total stand volume but the greater the individual
timber volume growth [41]. In addition, in a meta-analysis on the effect of forest thinning on
C stocks in Korea, C storage of trees showed a negative correlation with thinning intensity
but a positive correlation with recovery time [10]. Therefore, thinning reduces the C storage
of trees by reducing the number of trees in the short term but ultimately maintains the C
absorption of trees by promoting diameter growth in the long term [42].

3.1.2. Forest Floor and Soil C Storage

The mean FFCS (Mg·C·ha−1) was 7.86 ± 0.66 in the Con, 6.26 ± 0.01 in the LT, and
3.83 ± 0.32 in the HT treatments (Table 3). The LT and HT treatments decreased FFCS
significantly compared to the Con (p < 0.01): the LT by about 20.3% and the HT by about
51.3%. Decreases in the dry weight of the forest floor components resulting from the
thinning appear to be the reason for this. In a study that analyzed the influence of thinning
on carbon storage in a Japanese larch, it was reported that FFCS decreased by 15%~22% in
thinned treatments compared to the unthinned plots [43]. The decrease in dry weight in the
thinned plots is thought to be caused by reduced litterfall production from fewer trees [44]
and the mixing of organic matter into the soil by logging machinery and soil animals [12].
In addition, it seems likely that the promotion of the decomposition of organic matter in
the thinned plots caused a significant decrease in the FFCS [45–47].

Table 3. Forest floor and soil C storage (Mg·C·ha−1) in Con, LT, and HT treatments in a Chamaecyparis
obtusa (Siebold and Zucc.) Endl. forest.

Carbon Storage
(Mg·C·ha−1) Con LT HT

Forest floor 7.86 ± 0.66 a 6.26 ± 0.01 b 3.83 ± 0.32 c

Soil 93.9 ± 7.84 90.3 ± 2.11 86.5 ± 4.49
Values with different letters indicate significant differences among the three thinning intensities (p < 0.05).

The average SCS (Mg·C·ha−1) at the 0–30 cm depth for each plot was 93.9 in the Con,
90.3 in the LT, and 86.5 in the HT treatments (Table 3). There was no significant difference
among treatments. In the LT plots, it was reduced by about 3.9% compared to Con, and in
the HT, by about 8%. A meta-analysis of harvest effects on SCS in temperate forests reported
that thinning reduced SCS in Inceptisols and Ultisols, but not Alfisols or Spodosols [48]. In
addition, a study of thinning intensity’s effects on SCS in a Pinus densiflora forest reported
higher values in the thinned plots than in the unthinned plots because of the differences
in soil C concentrations [25]. Therefore, SCS may not show consistent, significant changes
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following thinning because of variations depending on the tree species, parent rock, and
topographical conditions [10,49].

3.2. Changes in C Shift by C Pool Resulting from Different Thinning Intensities in Cypress Forests
3.2.1. Litterfall

The annual litterfall production (Mg·ha−1·year−1) of each plot was 8.49 ± 0.33 in the
Con, 4.70 ± 0.36 in the LT, and 4.45 ± 0.35 in the HT treatments (Figure 1a). In the LT and
HT treatments, it decreased significantly compared to the Con (p < 0.001): in the LT, by
about 44.6%, and in the HT, by about 47.5%. This is consistent with the results of a study
that analyzed the effect of thinning on C. obtusa forests in two different regions, finding
that annual leaf-litter input was significantly lower in the thinned than in the unthinned
plots [38]. In addition, a meta-analysis of the effects of thinning based on global research
results found that litterfall production in thinned plots decreases significantly compared
to that in the unthinned plots [15]. Litterfall production is known to be proportional to
basal area [50,51]. Due to forest management practices such as thinning, the stand density
decreases, and litterfall production appears to decrease as well. In addition, litterfall produc-
tion decreased because the lifespan of leaves and branches increased due to the increased
distance between trees following thinning. The annual amount of C (Mg·C·ha−1·year−1)
entering the forest floor C pool through litterfall decreased significantly with thinning, to
4.06 in the Con, 2.17 in the LT, and 2.11 in the HT treatments (p < 0.001).
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Figure 1. The annual litterfall (Mg·ha−1) (a), the remaining mass of leaf and branch litter (%) following
648 days of decomposition (b), and the annual soil respiration (Mg CO2·ha−1·year−1) (c) of the Con,
LT, and HT treatments in a Chamaecyparis obtusa (Siebold and Zucc.) Endl. forest. Vertical error
bars indicate standard error, and different letters indicate significant differences among the three
thinning intensities.

3.2.2. Litter Decomposition

As for the remaining mass of leaves, leaf mass in the HT (21%) treatments was signifi-
cantly lower than that of the Con (33%) after burial for 548 days, but there was no significant
difference between the LT (29%) and the Con (p < 0.05; Figure 1b). Thinning can promote
soil microbial activity by disturbing the soil, increasing the amount of light in the forest, and
raising the soil temperature [16,52,53]. With the significantly increased light in the thinned
plots, the change in soil microbial activity led to the difference in the decomposition rate of
leaves in each plot. In a study that analyzed the effect of thinning in P. densiflora forests,



Forests 2023, 14, 217 8 of 12

the decomposition rate increased in the thinned plots, and soil temperature was the main
cause [54]. Increased organic matter decomposition will be a stepping stone to promote the
growth of residual trees by improving soil fertility. The remaining mass of branches was
64% in the Con, 66% in the LT, and 62% in the HT after 548 days, showing no significant
differences among treatments. Branches have a relatively long nutrient retention time due
to a slower decomposition rate than leaves [55] because of their high lignin content [56]. In
this study, the half-life of leaves was less than 1 year in all plots, whereas the half-life of
branches was more than 2 years.

3.2.3. Soil Respiration

From February 2019 to December 2020, annual soil respiration (Mg CO2·ha−1·year−1)
was 9.15 ± 0.10 in the Con, 10.86 ± 0.09 in the LT, and 13.88 ± 0.82 in the HT treatments,
and as thinning intensity increased, the annual soil respiration also increased significantly
(p < 0.01; Figure 1c). In the LT, it increased by about 18.7% compared to the Con, and in the
HT, by about 51.8%. Changes in soil respiration are determined by various factors such as
changes in soil temperature, climate variability, and changes in the decomposition rates
of leaves, branches, and dead roots. Thinning can increase soil temperature variability
because it reduces canopy densities and increases the area exposed to direct sunlight [57].
In addition, an increase in soil temperature and solar radiation promotes the growth of
understory vegetation and promotes microbial enzyme activity to promote decomposition
and soil microbial respiration [15,58]. In this study, soil disturbance by thinning, harvested
residual materials returned to forests, and increased soil microbial activity due to increased
availability of dead roots are considered to be the causes of the observed increased soil
respiration [59]. In addition, understory vegetation can make substantial contributions
to soil respiration [60]. In this study site, the UVB of HT (0.43 ± 0.02 Mg·ha−1) was
significantly higher than those of Con (0.02 ± 0.002 Mg·ha−1) and LT (0.06 ± 0.01 Mg·ha−1)
(Table 1). As a result of thinning effect on UVB, soil respiration increased by accelerating
the decomposition of the forest floor. A meta-analysis of the effects of thinning intensity
on soil C and C dynamics reported that thinning generally increased soil respiration,
especially in the early stages after thinning [15]. The present study is consistent with the
mentioned study’s finding because soil respiration was measured one to two years after
the second thinning in 2018. Converting annual soil respiration to annual C emissions
(Mg·C·ha−1·year−1) showed releases of 2.49 in the Con, 2.96 in the LT, and 3.79 in the HT
treatments. Therefore, the amounts of organic C released through root respiration and
microbial respiration (Mg·C·ha−1·year−1) were estimated to be 1.15 and 1.35 in the Con,
1.36 and 1.60 in the LT, and 1.74 and 2.04 in the HT treatments, respectively.

3.3. C cycle by Thinning Intensity of Cypress Forest

Total C storage (the sum of the C storage of trees, FF, and soil) decreased significantly
as thinning intensity increased (p < 0.01; Figure 2). Total C storage of the LT treatments
decreased by about 7.4% compared to the Con, and that of the HT treatments decreased by
about 13.9% compared to the Con. Of the total C storage, C storage in trees accounted for
about 63.1%, FFCS for about 2.3%, and SCS for about 34.6%. In all treatments, it was found
that trees stored the most C. This is consistent with previous studies, which also found that
total C storage in unthinned plots was higher than that in thinned plots (about 13%, a 19%
decrease compared to unthinned plots) and that trees accounted for the highest proportion
of C storage [61].

As the thinning intensity increased, the amount of light increased and the growth
environment of trees was improved, promoting the DBH growth of trees. The NPP thus
increased as the thinning intensity increased, as it was more affected by the promotion of
DBH growth than the decrease in stand density. The increase in the amount of light and
the increase in microbial activity caused by the increase in thinning intensity raised the soil
respiration rate and the amount of CO2 released from the soil to the atmosphere. In this
study, NEP (Mg·C·ha−1·year−1), estimated by the difference between annual C storage of
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trees and microbial respiration, increased in the thinned plots compared to the unthinned
plots (1.95), but the HT (2.11) decreased C absorption compared to the LT (2.49; Figure 3).
Therefore, appropriate thinning enhances the net C sequestration of the C. obtusa forest
ecosystem, but excessive thinning of 50% or more impairs the C sequestration capacity.
This suggests that a 30% thinning is an appropriate thinning intensity to minimize the
decrease in C storage in C. obtusa forests and to improve the C absorption capacity. In
addition, although the C storage of a forest decreases immediately after thinning, the net C
absorption of thinned plots increases compared to that of unthinned plot, and it can be said
that the C absorption capacity is maintained in the long term.
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4. Conclusions

This study was conducted to investigate the effects of changes in stand density on the C
cycle in C. obtusa forests. For this reason, we observed the changes in C storages and C cycle
after thinning in a C. obtusa forest. As the thinning intensity increased, the stand density
decreased, and as a result, the total C storage decreased. However, thinning alleviated
between-tree competition, increasing the DBH growth and annual C storage of trees. On
the other hand, the decrease in the number of trees decreased litterfall production. In
addition, as the soil was disturbed by thinning and soil microbial activity increased, the rate
of leaf decomposition and soil respiration increased. By estimating the difference between
the annual C storage of trees and the annual C emissions through microbial respiration,
this study showed that the net C uptake increased with the 30% thinning compared to the
unthinned control and the 50% thinning. These results can be used as appropriate basic
data for establishing the appropriate thinning intensity of C. obtusa forests and estimating
changes in forest C storage in the future. Periodic observation is required because the
factors affecting forest ecosystem changes are complex and diverse. To more accurately
analyze the storage and movement of forest C, long-term, repetitive measurements of
changes in soil as well as in trees should be performed.
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