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Abstract: Aboveground wood carbon (AWC) stocks in forest ecosystems are mediated by biotic
and abiotic variables. Understanding the internal regulatory mechanisms of forests is important for
future forest management and global climate change mitigation. However, how these factors affect
AWC in subtropical mixed forests remains poorly understood. Using a database from the National
Forest Inventory (NFI) from China, we observed the effects of climate variables (temperature and
precipitation), stand structure indices (stand density and DBH coefficient of variation and diversity),
stand diversity indices (taxonomic diversity, functional diversity, and phylogenetic diversity), and
stand functional indices on coniferous mixed forests (CMF), coniferous–broadleaf mixed forests
(CBMF), and broadleaf mixed forests (BMF). Meanwhile, we examined the AWC based on a linear
mixed model and a structural equation model for each mixed forest. We found that both stand
structure and stand diversity can affect the AWC through their indirect effects on the stand function,
aligning with the niche complementarity effect. Stand age is an important factor affecting AWC
because it interacts with stand structure and stand diversity. Our study highlights that AWC is
dependent on the regulation of stand age and structure, which can be crucial for boosting high carbon
stocks in subtropical forests.

Keywords: mixed forests; aboveground wood carbon; stand age; forest structure; stand diversity

1. Introduction

As an important component of the global terrestrial ecosystem carbon cycle, forests
store about 80% of aboveground biomass carbon and about 40% of belowground biomass
carbon in terrestrial ecosystems [1,2]. Forest ecosystems can reduce the concentration of
carbon dioxide (CO2) in the atmosphere, which mitigates global warming and has a large
environmental and economic impact [3], as well as promoting the functions, services, and
sustainability of trees [4]. Subtropical forest ecosystems occupy a large area in China, and
this was estimated to be 0.72 ± 0.08 Pg C yr−1, which contributes to about 8% of the global
net ecosystem productivity of forest ecosystems [5], therefore, their ecological value cannot
be ignored. At present, Zhejiang Province, which is located in a typical subtropical region,
has carried out a 5 year afforestation and reforestation project, and there are plans to afforest
120,000 hectares and for the province’s forest coverage rate to reach 60.8% [6]. Therefore, it
is necessary to monitor the effect of the driving factors on forest carbon accumulation.

However, forest carbon accumulation is driven by multiple abiotic and biotic factors,
such as stand structure [7,8], stand diversity [9–13], stand function [10,14,15], and abiotic
factors (topographic and environmental factors) [16–20]. Aboveground wood carbon
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(AWC) is another way to characterize the living tree biomass, which is an indicator of the
active capacity of the carbon pool [21].

Many studies have highlighted the importance of stand diversity for most forest
ecosystem functions and services [22–24]. Longer evolutionary divergence and richer func-
tional traits can be the main mechanisms by which stand diversity indices affect the forest
ecosystem’s stability and productivity [11,13,25]. Biodiversity (taxonomic, phylogenetic,
and functional diversity) can explain the main driving mechanism for the direct or indirect
effects on AWC [13]. Previous studies [26] found that during the succession of subtropical
forests, biodiversity was significant for explaining biomass. Two ecological hypotheses (the
niche complementarity effect and the mass ratio effect) explain this mechanism [27]. The
niche complementarity hypothesis suggests that more tree species, a better stand structure,
and functional diversity can promote forest functioning because of niche differentiation
and facilitation [7,27]. The mass ratio effect hypothesis states that the forest community
function is driven by the dominant, high-functioning tree species [18,28]. The positive
relationship between the community-weighted mean (CWM) of trait values and AWC also
indicates the mass ratio hypothesis [29]. A high CWM of acquisitive traits (e.g., maximum
tree height and specific leaf area) could result in high photosynthetic rates [9,15,30,31].
Previous studies [12,14,32] have shown that the community-weighted mean of leaf traits
could predict the aboveground biomass.

In addition to stand diversity, stand structure is also an important factor affecting
AWC [11,33,34]. Stand structural complexity, which is typically characterized by the coeffi-
cient of variation of individual trees diameters at breast height (DBH), trees heights, and
stand density [20,35,36], increases the niche complementarity effect to boost the forest’s pro-
ductivity [7,27]. Therefore, as competition intensifies, individual tree sizes become unequal,
and coexisting mixed tree species in the forest ecosystem can make more efficient use of the
resources and perform efficient light capture to promote the forest’s biomass [7,25,37].

Topographic factors (e.g., elevation, slope, and aspect) could influence the AWC,
especially on a large scale [19,37,38]. Previous studies have indicated that climatic factors
(e.g., precipitation and temperature) can indirectly and directly mediate the aboveground
biomass by changing the plant growth patterns, which in turn affects the stand diversity
and structure [38]. Previous studies have shown that appropriate precipitation and light
can regulate the plant growth rates [39,40]. Therefore, abiotic variables must be considered
when one is studying the driving mechanisms of AWC in different forest types.

It is generally clear that stand age increases the AWC stock, which might be due to
the large-size tree effect [41,42]. In different forest types, the redundant biodiversity and
structure of forests change, however, the internal regulation effect of stand age as the main
factor driving biomass/carbon storage has seldom been studied. Meanwhile, exploring the
mechanisms in subtropical forests is crucial for future forest management decision making.
Therefore, in this study, our objective was to integrate stand age along with climatic, stand
structure, and stand function indices to assess the drivers of AWC in subtropical mixed
forests across Lishui city, Zhejiang Province, south-eastern China, using a dataset from
268 permanent sample plots. We hypothesized that: (1) abiotic factors (topographic and
environmental factors) and biotic factors (stand structure, diversity, and function) have
direct and indirect effects on the AWC; (2) stand age is a key factor of the AWC through an
interaction effect with other factors (stand structure and diversity). Meanwhile, based on
this study of the driving mechanisms of each forest type, it provides an empirical basis for
forest management in the region.

2. Materials and Methods
2.1. Study Area and Forest Inventory Data

This study was conducted in Lishui (118◦41′–120◦26′ E and 27◦25′–28◦57′ N), Zhejiang
Province, south-eastern China. The area covers approximately 17,300 km2, of which 80.79%
is forested (Figure 1). This area is typical of the subtropical monsoon region, with a mean
annual temperature of 17.2 ◦C and a mean annual precipitation of 1468 mm. Lishui is rich
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in forest resources, and the main vegetation types are coniferous, coniferous–broadleaf,
broadleaf, and bamboo forests.
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mixed forest (BMF).

The dataset of the stand characteristics used in this study was retrieved from perma-
nent sample plots of the 10th National Forest Inventory (NFI) from 2019. The east–west
interval distance between the adjacent plots was 6 km, the south–north interval was 4 km,
and each plot covered an area of 800 m2 (28.28 m × 28.28 m). The selected forest types were
coniferous mixed forest (CMF), coniferous–broadleaf mixed forest (CBMF), and broadleaf
mixed forest (BMF) (48, 71, and 149 plots, respectively). Location (longitude and latitude),
elevation, slope, tree species, forest type, and individual trees with DBH > 5.0 cm were
recorded according to the protocols of the National Forest Inventory standards issued by
the State Forestry Administration of China. For the age of the forest, this can be obtained
by consulting historical information from the Zhejiang Forest Resources Monitoring Centre
or local forestry departments. However, for a few sample plots in remote mountainous
areas, it is necessary to obtain information manually in the field, for example, by drilling
the wood cores of three standard trees in the sample plots, obtaining their annual rings and
calculating their average value to conservatively estimate the age of the sample plots. The
stand characteristics of the forests in Lishui are listed in Table S1.

The aboveground biomass estimation model [43,44] was used to calculate the above-
ground wood biomass of the sample plots. The total AWC stocks were calculated by
multiplying the carbon conversion coefficients for each of the tree species [44]. The carbon
stocks of all of the individual trees in the sample plots were summed to obtain the AWC for
each sample plot, and these were converted to tons per hectare (Mg ha−1).

2.2. Environment Variables

In this study, we chose two topographic variables as predictors to explain the above-
ground forest carbon stocks, the elevation, and the slope for the plots. Furthermore,
elevation (0–300 m, 301–600 m, 601–900 m, 901–1200 m, and 1201–1500 m) and slope (0–5◦,
6–14◦, 15–24◦, 25–34◦, 35–44◦, 45–54◦) were classified in five categories.

The mean annual temperature (MAT), mean annual precipitation (MAP), and annual
heat-moisture index (AHM) were used as climatic data for the sample sites. Based on the
latitude, longitude, and elevation of the sample sites, we extracted the climatic data from
ClimateAP v2.30 [45]. Furthermore, we obtained the mean values of the variables from
1981 to 2019.
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2.3. The Stand Diversity, Structure, and Functional Variables

We calculated three components of the tree diversity indices in the sample plots:
taxonomic, phylogenetic, and functional diversity. Taxonomic diversity was determined
using Shannon’s tree diversity index. Phylogenetic diversity was determined using Faith’s
phylogenetic diversity [29], which was calculated as the sum of branch lengths of the
phylogeny among the tree species in each sample plot (Figure S10). Functional diversity
was determined as the functional dispersion index, which was calculated as the func-
tional divergence of the species in each sample plot. The functional diversity indices
included three functional traits: the tree wood density (WD, g cm−3), the specific leaf area
(SLA, m2 kg−1), and the maximum tree height (H, m). These functional traits profoundly
affect the trees’ growth, survival, reproduction, and carbon storage [32,46–48]. Furthermore,
wood density values were extracted from a global wood density database [49]. The specific
leaf area values were obtained from the study by Wang et al. [50]. The database compiles
the functional traits of Chinese land plants and contains information on the locations
where the data were collected, and the data we extracted were all from relevant species
in the Zhejiang region. The maximum tree height values were obtained from the Flora of
China [51] (http://www.iplant.cn/foc, accessed on 15 August 2022), a database of real
values obtained from specific areas, reflecting the regional variability of the habitats and
stands. Functional composition was defined as the mean community weight (CWM) of
each trait. We calculated three functional traits: CWMWD, CWMSLA, and CWMH.

We calculated three components of the stand structure indices in the sample plots: the
DBH coefficient of variation, the structural diversity, and the stand density (stem ha−1). The
DBH coefficient of variation values were calculated from the trees in the plot. The structural
diversity values were quantified based on the Shannon index of DBH [52], as follows:

ShannonDBH = −∑d
i=1 pi × ln(pi) (1)

where pi is the proportion of the ith DBH class, and the diameter class width was set to
2 cm.

2.4. Statistical Analysis

A one-way analysis of variance (ANOVA) and an LSD test were used to test for differ-
ences in the AWC at a significance level of 0.05. Prior to the following analysis, the values
of the aboveground wood carbon were log transformed to meet the normal distribution of
the residuals. All of the variables were standardized to have a mean of 0 and a standard
deviation of 1. Linear regression analyses were used to test the bivariate relationships
between the AWC and all of the variables in the three forest types. Furthermore, to reduce
multiple correlations and collinearity among the variables (Figures S4–S6), we performed a
principal component analysis (PCA), as suggested by previous studies on diversity indices,
stand structure indices, and stand functional traits of each forest type, respectively [37,53].
The first principal component of the results of the principal component analysis (PC1)
was used as an independent variable and in the statistical analysis. A summary of the
variables used in this study is provided in Table S1. We used a multiple linear mixed-effects
model to examine the effect of diversityPC1, stand structurePC1, stand functionPC1, stand
age and climatePC1 on the AWC of CMF, CBMF, and BMF. Additionally, diversityPC1,
stand structurePC1, stand functionPC1, stand age and climatePC1 were fixed effects, and
elevation and slope were random effects. We used the Akaike information criterion (AIC)
to correct and select the best-fit model (the lowest AIC). The model as follows:

lnAWC = β0 + β1 ∗ diversityPC1 + β2 ∗ structurePC1 + β3 ∗ functionPC1 + β4 ∗ age + β5 ∗ climatePC1 + belevation + celevation + ε

(2)
where AWC is aboveground wood carbon; diversityPC1 is the first multivariate axis of the
three diversity indices of the PCA; structurePC1 is the first multivariate axis of the three
stand structure indices of the PCA; functionPC1 is the first multivariate axis of the three

http://www.iplant.cn/foc
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CWM trait indices of the PCA; climatePC1 is the first multivariate axis of the three climate
indices of the PCA; age is stand mean age; elevation and slope are candidate variables, as
mentioned above; β0 is the estimated fixed intercept; β1, β2, β3, β4, and β5 are the model
coefficients estimated for diversityPC1, structurePC1, functionPC1, age, and climatePC1,
respectively; ε represents the error term.

Based on our conceptual model (Figure 2), we used structural equation modelling
(SEM) to test the direct and indirect effects of the drivers mentioned above on the AWC.
The model was evaluated using the chi-squared (χ2) test, the comparative fit index (CFI),
the goodness-of-fit index (GFI), and the standardized root mean square residuals (SRMR).
We selected the best SEM with CFI > 0.95, GFI > 0.95, SRMR < 0.08, the lowest AIC value,
and the highest explained variation (R2) [54,55].
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Figure 2. Conceptual models indicating how diversityPC1, structurePC1, functionPC1, stand age
and climatePC1 affect aboveground wood carbon. PC1 refers to the first principal component of the
results of principal component analysis.

All of the analyses were performed using R 4.1.2 [56]. Diversity indices were calculated
using the vegan package [57]. The PCA was performed using the Stat software package.
Multiple linear mixed-effects models were evaluated using the nlme package, and the SEM
was performed using the lavaan package [58].

3. Results
3.1. The Bivariate Relationships between Abiotic Factors and AWC in Three Different Kinds of
Mixed Forests

The AWC stock in the BMF (63.44 Mg ha−1) was significantly higher compared to the
those of CBMF (45.82 Mg ha−1) and CMF (46.44 Mg ha−1) (p < 0.01) (Figure 3). However,
the AWC values in the CMF were not significantly different from those in the CBMF
(Figure 3). Of all of the variables, only the mean annual temperature and stand age were
not significantly different across the forest types, while all of the other variables showed
differences (Figure 4).

When the bivariate relationships between the abiotic variables and the AWC were
examined, the stand age and elevation were significantly positively correlated with the
AWC (Figure 5, p < 0.05) but not with the slope (Figure 5, p > 0.05). Furthermore, the
relationship between the AWC and the stand age increased in three different kinds of
mixed forests (R2 = 0.126, p < 0.05; R2 = 0.525, p < 0.001; R2 = 0.483, p < 0.001, Figure 5).
The slope displayed a weaker/non-significant linear fit with the AWC. For the correlation
between the other variables and the AWC, please refer to the Supplementary Material
(Figures S1–S3).
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p > 0.05.
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3.2. Changes and Interactions of Drivers in Three Different Kinds of Mixed Forests

In each mixed forest type, we performed a PCA on the stand diversity indices, stand
structural indices, functional indices, and climate indices (Figures S7–S9). We selected the
best-fit model (Table 1). Furthermore, we constructed a linear mixed model with the first
principal components (diversityPC1, structurePC1, functionPC1, and climatePC1) in each
forest type.

Table 1. SEMs of aboveground wood carbon (AWC) of mixed coniferous forests (CMF), coniferous–
broadleaf mixed forest (CBMF), and broadleaf mixed forests (BMF). Model in bold font represents the
final causal model used in this study.

Forest Type Models df
Model Fit Statistics Summary

CFI GFI RMSEA SRMR Chi-Square AIC p Value

CMF

Model 1 (Full model) 0 1 1 0 0 0 714.534 0.083
Model 2 [Model 1:
(ClimatePC1→FunctionPC1)] 1 1 1 0 0.002 0.008 712.542 0.927

Model 3 (Model 1: (Age→FunctionPC1)) 1 0.965 0.967 0.296 0.04 5.219 717.753 0.022
Model 4 (Model 1: (Cli-
matePC1→FunctionPC1&Age→FunctionPC1)) 2 0.973 0.966 0.185 0.04 5.274 715.808 0.072

CBMF

Model 5 (Full model) 0 1 1 0 0 0 1032.232 0.096
Model 6 (Model 5:
(ClimatePC1→FunctionPC1)) 1 0.987 0.983 0.197 0.04 3.744 1033.976 0.053

Model 7 (Model 5: (Age→FunctionPC1)) 1 0.998 0.994 0.072 0.016 1.373 1031.605 0.241
Model 8 (Model 5: (Cli-
matePC1→FunctionPC1&Age→FunctionPC1)) 2 0.989 0.98 0.133 0.039 4.502 1032.734 0.105

BMF

Model 9 (Full model) 0 1 1 0 0 0 2232.194 0.079
Model 10 (Model 9:
(ClimatePC1→FunctionPC1)) 1 1 0.999 0 0.008 0.265 2230.459 0.607

Model 11 (Model 9: (Age→FunctionPC1)) 1 0.95 0.971 0.296 0.054 14.084 2244.278 0.243
Model 12 (Model 9: (Cli-
matePC1→FunctionPC1&Age→FunctionPC1)) 2 0.947 0.967 0.216 0.064 15.951 2244.145 0.135

Note: the minus sign means that this path relationship goes out in SEMs. CMF, CBMF, and BMF represent
coniferous mixed forests, coniferous–broadleaf mixed forests, and broadleaf mixed forests, respectively.
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In the results of the linear mixed model of the CMF (Table 2), structurePC1 and age
significantly affected the AWC (p < 0.001), while diversityPC1, functionPC1, and climatePC1
also exhibited significant effects on the AWC (p < 0.01). Furthermore, we found that stand
age and the interaction between stand age and structurePC1 influenced the AWC (p < 0.01).
In the results of the linear mixed model of the CBMF (Table 3), we found that diversityPC1
was a new component that was capable of significantly and strongly interacting with stand
age, thus influencing the AWC (p < 0.001). In the results of the linear mixed model of
the BMF (Table 4), we found that stand age, structurePC1, and diversityPC1 significantly
affected the AWC (p < 0.001). Furthermore, the interaction of stand age with structurePC1
and diversityPC1 significantly affected the AWC (p < 0.001). Our results reveal a change in
the driving factors in three different kinds of mixed forests.

Table 2. Summary of the linear mixed-effect model of the effects of age, diversityPC1, structurePC1,
functionPC1, and climatePC1 on aboveground wood carbon, which were analyzed for coniferous
mixed forests (CMF). PC1 refers to the first principal component of the results of principal component
analysis. The colons represent interactions between the components. Only significant components
(p < 0.05) are reported, and the green areas are the highly significant influence components.

numDF denDF F Value p Value Remark

(Intercept) 1 12 4757.35 p < 0.001 ***
StructurePC1 1 12 132.45 p < 0.001 ***

Age 1 12 89.44 p < 0.001 ***
Age: StructurePC1 1 12 15.79 0.0018 **

FunctionPC1 1 12 15.14 0.0021 **
DiversityPC1 1 12 12.98 0.0036 **
ClimatePC1 1 12 10.97 0.0062 **

DiversityPC1: ClimatePC1 1 12 8.38 0.0134 *
Age: StructurePC1: FunctionPC1: ClimatePC1 1 12 8.09 0.0148 *

Age: DiversityPC1 1 12 7.04 0.0211 *
Age: ClimatePC1 1 12 6.25 0.0279 *

DiversityPC1: StructurePC1 1 12 5.24 0.0410 *

Note: The symbols * denotes significant at the 0.05 alpha level, ** denotes significant at the 0.01 level and
*** denotes significant at the 0.001 level

Table 3. Summary of the linear mixed-effect model of the effects of age, diversityPC1, structurePC1,
functionPC1, and climatePC1 on aboveground wood carbon, which were analyzed at for coniferous–
broadleaf mixed forests (CBMF). PC1 refers to the first principal component of the results of principal
component analysis. The colons represent interactions between the components. Only significant com-
ponents (p < 0.05) are reported, and the green areas are the highly significant influence components.

numDF denDF F Value p Value Remark

(Intercept) 1 35 2356.02 p < 0.001 ***
Age 1 35 219.37 p < 0.001 ***

DiversityPC1 1 35 58.66 p < 0.001 ***
StructurePC1 1 35 33.64 p < 0.001 ***

Age: DiversityPC1 1 35 27.01 p < 0.001 ***
ClimatePC1 1 35 14.22 0.0006 ***

FunctionPC1: ClimatePC1 1 35 4.59 0.0392 **

Note: The symbols ** denotes significant at the 0.01 level and *** denotes significant at the 0.001 level

3.3. The Direct and Indirect Effects of Driving Factors on AWC

The best SEMs for testing the direct and indirect effects of stand age, diversityPC1,
structurePC1, functionPC1, and climatePC1 on the variables showed that all of the predictor
variables together explained 73.8%, 77%, and 66.7% of the variance in the AWC, respectively
(Figure 6). However, the pathways of these effects in three different kinds of mixed forests
were different. There was a clear pattern in the strength of the stand age effect on the
AWC after controlling for stand diversity, structure, function, and climate within the mixed
forests. The climatePC1 factor had a negative direct effect on the AWC, and its strength
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decreased with the change in the forest type (β = −0.174, β = −0.237, and β = −0.081 in
CMF, CBMF, and BMF types, respectively; Figures 6 and 7). Meanwhile, the direct effect of
stand age on the AWC increased with the change in the forest type (β = −0.022, β = 0.151,
and β = 0.425 in CMF, CBMF, and BMF types, respectively; Figures 6 and 7). Additionally,
the positive effect of stand structurePC1 on the AWC decreased with the change in the
forest type (β = 0.744, β = 0.534, and β = 0.228 in CMF, CBMF, and BMF types, respectively;
Figures 6 and 7).

Table 4. Summary of the linear mixed-effect model of the effects of age, diversityPC1, structurePC1,
functionPC1, and climatePC1 on aboveground wood carbon, which were analyzed for the broadleaf
mixed forests (BMF). PC1 refers to the first principal component of the results of principal component
analysis. The colons represent interactions between the components. Only significant components
(p < 0.05) are reported, and the green areas are the highly significant influence components.

numDF denDF F Value p Value Remark

(Intercept) 1 114 2221.85 p < 0.001 ***
Age 1 114 440.65 p < 0.001 ***

DiversityPC1 1 114 66.17 p < 0.001 ***
Age: DiversityPC1 1 114 55.77 p < 0.001 ***

StructurePC1 1 114 33.42 p < 0.001 ***
Age: StructurePC1 1 114 16.39 p < 0.001 ***

StructurePC1: ClimatePC1 1 114 11.09 0.0012 **
Age: DiversityPC1: StructurePC1: ClimatePC1 1 114 11.08 0.0012 **

StructurePC1: FunctionPC1 1 114 10.26 0.0018 **
Age: ClimatePC1 1 114 7.32 0.0079 **

Age: DiversityPC1: StructurePC1 1 114 6.73 0.0107 *
Age: DiversityPC1: ClimatePC1 1 114 6.27 0.0137 *

ClimatePC1 1 114 6.00 0.0158 *
FunctionPC1 1 114 5.27 0.0235 *

Age: FunctionPC1 1 114 4.20 0.0427 *
Age: StructurePC1: FunctionPC1: ClimatePC1 1 114 4.10 0.0452 *

Note: The symbols * denotes significant at the 0.05 alpha level, ** denotes significant at the 0.01 level and
*** denotes significant at the 0.001 level

In addition, stand diversityPC1 directly and indirectly affected the AWC via stand
functionPC1, and the total effect increased with the change in the forest type. Meanwhile,
functionPC1 had a direct effect on the AWC, and its strength increased with the change
in the forest type (β = −0.270, β = 0.144, and β = 0.078 in CMF, CBMF, and BMF types,
respectively; Figures 5 and 6). Interestingly, climatePC1 had a significant negative effect
only on stand diversityPC1, and stand age had a significant negative effect only on stand
functionPC1 in the BMF (Figure 6).
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Figure 6. Structural equation models for testing the direct effects of climate and stand age versus
indirect effects mediated by stand structure, stand diversity, and stand function on aboveground
wood carbon with the change in forest types. CMF, CBMF, and BMF represent coniferous mixed
forests, coniferous–broadleaf mixed forests, and broadleaf mixed forests, respectively. PC1 refers to
the first principal component of the results of principal component analysis. Numerical values under
each graph refer to comparative fit index (CFI), goodness-of-fit index (GFI), standardized root mean
square residuals (SRMR), and Akaike information criteria (AIC). The dashed lines represent non-
salient paths (p > 0.05), while the solid lines represent significant paths (p < 0.05). The standardized
coefficients are marked (see Table S2 for statistics). Positive and negative pathways are shown in
green and red colors, respectively. R2 represents the proportion of explained variance.
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Figure 7. Beta coefficients of stand age, climatePC1, structurePC1, diversityPC1, and functionPC1 on
aboveground wood carbon. CMF, CBMF, and BMF represent the coniferous mixed forests, coniferous–
broadleaf mixed forests, and broadleaf mixed forests, respectively. PC1 refers to the first principal
component of the results of principal component analysis. Filled and dotted bars indicate the direct
and indirect effects of abiotic and biotic factors on aboveground wood carbon, respectively.

4. Discussion
4.1. Different Effects of Abiotic Factors on AWC in Three Different Kinds of Mixed Forest Types

We found that the AWC stock of the broad-leaved mixed forest (BMF) was significantly
higher than those of the coniferous mixed forest (CMF) and coniferous–broadleaf mixed
forest (CBMF), which is consistent with the results of previous studies [43,59]. In our
results, evergreen broad-leaved mixed forest as the dominant forest community in the
subtropical region had the highest mean AWC value (63.44 Mg ha−1), which was already
higher than the mean AWC values of Zhejiang Province (55.70 Mg ha−1), but it was lower
than the global mean AWC values (94.2 Mg ha−1) [60,61]. Tree species conversion is
recognized as an important factor affecting the soil properties with the change in the
forest type [32,62]. Changes in the composition of tree species (from coniferous species
dominated to broadleaf species dominated) with different functional traits may result in
different carbon stocks [63–65]. Broadleaf trees species (e.g., Cyclobalanopsis glauca and
Cinnamomum camphora) are considered to be suitable for planting in Lishui because it is
located in the subtropical monsoon region [66]. Previous studies suggest that an increase in
the number of highly productive tree species may lead to an increased community AWC [67].
This indicates that changes in the tree species can promote niche complementarity, improve
nutrient utilization, and enhance the influence of niche differentiation on AWC [28,68,69].

Topography (elevation and slope) is a common factor influencing both the tree species
and the environmental patterns [19,38,70]. Our results indicate that elevation has a signifi-
cant positive effect on the AWC in three different kinds of mixed forests. This suggests that
the AWC increases along an altitudinal gradient. In contrast to our results, many studies
have reported a decreasing trend in the forest AWC along an altitudinal gradient [8,70–72].
At higher altitudinal gradients, less human disturbance is assumed to be a possible reason
for the increasing trend of AWC along the altitudinal gradients because forest growth is
promoted by less human disturbance [16,28,73]. Previous studies evaluating the effects of
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elevation on AWC partly agree with our results [17,74]. However, we found that slopes had
no significant positive effect on the AWC. The reason for this could be that the relationship
between slopes and the AWC is not simple or linear; rather, it may be influenced by other
factors. Previous studies have reported that slopes play a significant role in changing the
soil properties [62,75], as slopes affect the growth of trees by indirectly altering the soil
physicochemical properties and microenvironments [38,76]. However, the impact of steep
and gentle slopes on forest carbon storage remains controversial. Forests on steep slopes
experience fewer human disturbances since the site environment is harsh and difficult
to access. Forests on gentle slopes are often disturbed or managed since they are easily
accessible. Furthermore, the influence of slopes on the AWC may be masked by spatial and
temporal heterogeneity [43].

The forest environment (MAT, MAP, and AHM) can significantly influence the mixture
of tree species, which indirectly affects the AWC [77,78]. As noted in previous studies,
the water availability can have a significant influence on the AWC because it can directly
affect tree growth, seedling recruitment, and survival [79]. We found that the climate had
a significant negative total effect on the AWC in broadleaf mixed forests (BMF), which
is consistent with previous findings [20], in that climate change will have an impact on
the stand structure as the forest types change. Similarly, the climate regulates large-scale
patterns of AWC and productivity through direct effects, as well as indirect effects, such as
stand structure, stand diversity, and function [80]. Based on our results, we found that the
impact of climatePC1 on the AWC gradually weakened with the change in the forest type,
which suggests that more advanced forest ecosystems are less affected by the climate.

4.2. The Effects of Stand Age on AWC Depends on Interactions with Stand Structure and Diversity

Our study provides comprehensive evidence for the importance of stand age as a
driver of the AWC in three mixed forests. This is consistent with the results of previous
studies, which found that the relative contribution of stand age to the forest aboveground
biomass was 31% [81]. Stand age can promote biomass and carbon stock via an increase in
the tree size variation (indirect effect) [14,25,82].

In three mixed forests, we found that stand structurePC1 significantly affected the
AWC directly, which is consistent with Ullah et al. [8], who reported that stand structure
(stand density, species richness, and tree size variation) determined the aboveground
biomass. However, we found that the impact of stand structurePC1 on the AWC gradually
weakened in the BMF. This may be because BMF are still in the stage of young and middle-
aged forests, and the internal structure of the forest ecosystem has not yet been established.

Meanwhile, we also found the stand diversityPC1 can enhance the AWC, which
is consistent with Kunwar et al. [30], who reported that evolutionary diversity boosts
the aboveground biomass across the tropical forests in Nepal. In large-scale studies,
the mass ratio hypothesis suggests that dominant tree species also dominate the forest
ecosystem’s properties [54]. Meanwhile, we found the AWC is also correlated with the
stand functionPC1 because of the dominant tree species’ functional variables [14].

We also found that the interaction between the factors increased from a single variable
to multiple variables, with the interaction between the factors being the main influencing
factor [22,25]. Furthermore, the interactions between stand age and stand structure emerged
in the BMF. The introduction of broad-leaved tree species changes the stand structure and
promotes light capture and light-use efficiency within the forest community [9,25,83].
Stand age stimulates the niche complementarity effect to increase the biomass with the
change in the forest type in our study, which resulted in high AWC values in the BMF. The
interaction of stand age and diversityPC1 can significantly positively affect carbon stocks
in the CBMF and BMF, which is consistent with the results of Ren et al. [28], who reported
that superior competitive tree species dominate the community and significantly limit the
relative abundance of other tree species.

Our findings suggest that stand age can increase the AWC by increasing the stand
diversityPC1, not only through niche complementarity effects, but also selection effects,
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which is consistent with previous studies [77,81,84]. Similar results were reported for the
productivity or aboveground biomass in subtropical forests [9,10,82], indicating that the
selection effect also caused a positive relationship between diversityPC1 and the AWC in
three mixed forests. A higher species diversity increases the probability of high-functioning
tree species, which in turn improves community productivity [28].

4.3. Implications for Management of Subtropical Forest

We found that the climatic factors can influence the AWC, which could inform forest
management practices in the future [40]. With the change in the forest type, the environ-
mental impact on the AWC gradually decreases, which means that the ability of the BMF to
resist climate change is relatively high [26]. Future studies should test how forest structure
boosts the aboveground biomass or carbon of subtropical forests among different ecological
gradients [75,83], which could have crucial implications for promoting a high biomass,
especially considering the climate change that will occur in the future.

The results of this study show that stand age improved the stand structure and
diversity. Moreover, stand structure and stand diversity simultaneously and indirectly
drive the AWC through the stand function [40,82,85]. Our results provide additional
evidence regarding the significance of stand age in boosting the AWC in subtropical forests.
Further studies are needed to test whether these variables (stand age, structure, diversity,
function, and climate) drive mature subtropical broadleaf mixed forests [9,24,86].

The findings of this study revealed that both stand structure and stand diversity
play an important role in enhancing the AWC stocks [80]. These results provide inspira-
tion for future forest management projects, particularly in plantation forests where the
artificial replanting of multiple species should be practiced to benefit from multi-species
mixing [19,20,22]. In natural forests, tending management should be practiced, weak trees
should be felled over time, and the dominant trees should be protected [61,74]. In sub-
tropical forests, our results suggest that management should be directed towards a mix of
broad-leaved species and a complex forest structure [53,75]. Therefore, the implementation
of multi-species afforestation can adjust the internal control mechanism of the forest, and
this should be considered as an essential part of future forest management plans [74].
Extending the stand age and protecting the dominant tree species is essential for meeting
the goals of increasing the forest carbon sinks and biodiversity conservation of subtropical
forests in China [9,12].

5. Conclusions

This study suggests that stand age improves the link with stand structure and diversity,
promotes the interaction of the three components, and positively promotes the AWC in
broadleaf mixed forests more than other stands do. Meanwhile, stand age in our study was
the dominant variable of mixed forest ecosystems, probably because the study site is located
in the subtropical forest of Zhejiang Province, China, and most of these forests are still in
the middle and young stand age stage. Meanwhile, both the stand structure and stand
diversity can affect the AWC indirectly through their effects on the stand function. The
mechanisms regulating the AWC in broadleaf mixed forests are more complex than those in
the other two forest types are. Our results suggest that broadleaf mixed forests reserve more
biodiversity, a more complex stand structure, and a greater ability to tolerate the challenges
of climate warming. Therefore, our findings provide a new sight for policy makers and
highlight the importance of the biodiversity of forests, especially stand structure and stand
diversity, to achieve sustainable forest management goals in the future.
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