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Cities are composed of different types of urban obstacles such as buildings, cars, trees,
hedgerows, etc. The interaction of the atmosphere with urban morphology and the different
urban surface properties gives rise to complex atmospheric processes on different scales in
the urban canopy layer (UCL).

Spatial distributions of atmospheric pollutants observed in urban environments are
also related to these processes. The interactions between the atmosphere and buildings
induce reduced ventilation in the streets and, this fact, together with high emission rates of
pollutants from road traffic (NO2, PM10, PM2.5, etc.), induce heterogeneous distributions
of pollutants and high levels of pollution in the streets [1–4]. It should also be considered
that indoor air quality is influenced by outdoor air pollution. Hence, populations are
exposed to these high air pollutant concentrations both indoors and outdoors. Nevertheless,
estimating population exposure to atmospheric pollution in both scenarios remains a major
challenge [5–7].

Measures for improving air quality in cities are necessary and they are usually based
on reducing pollutant emissions or implanting passive mitigation air pollution strategies,
such as the so-called green infrastructures (GI). However, how do GI influence air quality?
The main effects are [8,9]:

− Aerodynamic effects: trees, hedges, bushes, etc.; are porous obstacles, which modify
airflow around them and consequently, the pollutant dispersion.

− Deposition effects: vegetation removes a fraction of pollutants from the air through
deposition on leaves and absorption through stomata.

− Emission source of biogenic volatile compounds and pollen.

Deposition effects on air quality are always positive; however, aerodynamic effects might
be positive or negative depending on vegetation types and their location and arrangement
regarding emission sources and pedestrians. For instance, whereas a vegetation barrier in
an open road usually contributes to improving air quality behind the barrier [8,10–12], the
effects of street trees depend on several factors such as urban morphology, trees layout, or
meteorology and are not always positive [13–17]. Therefore, analyzing the impact of GIs on
air quality remains a major challenge due to the complex atmospheric processes involved in
urban environments.

On the other hand, cities produce air overheating inside UCL. Urban overheating is
driven by reduced ventilation within the streets due to building configurations, together
with the spectral response of urban surfaces (which absorb much of the solar radiation)
and the thermal storage capacity of urban materials, these processes favor the increase of
air temperatures affecting human thermal comfort. This urban overheating has a negative
impact on health causing general discomfort, respiratory problems, dehydration and
fatigue. Even, in certain meteorological situations, for example, the increasing mortality
rate from heat stroke during heat wave episodes. These situations, which are also becoming
more frequent due to climate change, often trigger energy consumption in cities due to the
massive use of air conditioning systems. In this context, urban vegetation, either integrated
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into the environment as GI or on the buildings as green facades or green roofs, mitigate
urban overheating improving thermal comfort and promote energy savings. Thermal
comfort is related to air temperature, mean radiant temperature, wind speed and related
humidity. However, how does vegetation affect air temperature and thermal comfort? The
main effects are [18,19]:

− Shading and/or isolation effects: trees provide shade to urban surfaces (e.g.; building
façade, roads, etc.) decreasing their surface temperature. In addition, green facades
and green roofs might act as a protection element for buildings since, on the one hand,
they reflect a large part of solar radiation and store little heat and, on the other, their
substrates act as thermal insulation for buildings.

− Cooling effects: vegetation provides transpiration cooling because the absorbed solar
energy causes an increase of latent heat (water from vegetation is evaporated into the
atmosphere) and thus cooling the leaf surfaces and the air around them.

Various experiences show how urbanization exacerbates heat stress increasing day-
time mean temperature and green spaces counterbalance this effect providing energy
savings [20]. However, the effectiveness of nature-based solutions to reduce air tempera-
ture, improve thermal comfort and decrease energy consumption in urban environments
depends on many factors and is still a challenge.

In addition to microclimate regulation and air quality services, GIs provide more
environmental benefits such as noise reduction or rainwater drainage [18–20], and other
benefits such as aesthetic, recreational, psychological or improving perceived mental
health [21–23]. GI design should be addressed to obtain a trade-off solution between
the different ecosystem services and disservices provided [17]. In general, theoretical
studies at the microscale, considering all thermal effects and impacts of urban vegetation
on air quality, are not very common in the literature and only a few of them include all
vegetation performance [9]. A better understanding of the global effects of vegetation
in cities is needed to design effective strategies that contribute to improving air quality,
thermal comfort and energy efficiency in cities. In this context, original research articles
related to the impact of urban vegetation on air quality, local climate and energy saving
in urban environments are welcomed to the current Special Issue entitled “Influence of
Vegetation and Forest on Urban Air Quality and Thermal Comfort—Series II”. In a previous
Special Issue of this journal [24], several novel studies were presented. Zheng et al. [25]
evaluated, through microscale modeling, the effects of roof greening on the indoor thermal
environment finding that increased roof greening coverage improved the indoor thermal
perception. Zhang and Zhao [26] investigated the cooling effects of several species of trees.
Regarding the air quality effects, Yin et al. [27] computed the effects of urban park green
spaces in Beijing on PM2.5 retention at multiple scales. De la Paz et al. [28] studied air
quality and meteorological changes induced by future vegetation in Madrid at the city scale.
This study highlights the need to combine nature-based solutions with emission-reduction
measures. Santiago et al. [17] simulated at the microscale the impact of a wide set of GI
scenarios on traffic-related pollutant concentrations at the pedestrian level. It was found
that using GI alone is ineffective as a general air quality mitigation measure, but selecting
an appropriate layout of GI elements, GI can also help to reduce exposure to air pollution
even in a scenario with high buildings. The contributions of the present Special Issue can
address modeling studies at micro- and/or mesoscale (e.g.; computational fluid dynamics
models, urban canopy models or mesoscale models), new parameterizations on the effects
of urban vegetation and/or experimental works from field and laboratory experiments.
Different configurations of trees in the streets, urban parks or vegetation barriers and green
facades and roofs will be investigated in relation to their effects on pollutant concentration
(aerodynamic effects, pollutant deposition, biogenic emissions, etc.) and/or on local climate
and energy efficiency (cooling, shading, etc.). In addition, review papers focused on the
current knowledge and future studies about this topic are also welcomed to the current
Special Issue.
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