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Abstract: Beech bark disease (BBD) is a significant threat to forests of North America and the impact
of BBD on radial growth in the American beech is substantial. We developed a novel hierarchical
Bayesian (HB) model to simultaneously model disease dynamics, tree growth, and the interaction of
the two. Our model can be adapted to both emerging and more mature forest–pathogen systems to
aid in ecosystem loss predictions. Long-term data from a single site minimized potential confounding
variables such as climate change, precipitation, land use history, and soil conditions that may influence
radial growth. Here, 206 beech trees were monitored over 15 years at an 85-acre site in southwestern
Vermont, measuring diameter at breast height (DBH) and progression of BBD. Our model allows us
to accurately estimate error rates in disease severity estimation and DBH measurements, and estimate
the true state based on environmental variables. As disease poses significant threats to many tree
species around the world, researchers can obtain more value and information from their datasets
utilizing an adapted HB model.

Keywords: Bayesian analysis; observer error; Fagus grandifolia; beech bark disease; radial growth;
diameter at breast height; disease ecology; tree growth modeling

1. Introduction

The economic and ecological impacts due to the introduction of non-native, invasive
pathogens is a concern and focus for foresters worldwide [1–4]. The decline in trees has
resulted in loss of habitat, flora, fauna, and ecosystem services, including carbon seques-
tration and ecological memory [1,5–7]. North America has been struck by multiple tree
diseases, including butternut canker Sirococcus clavigigneti-juglandacearum (Nair, Kostichka,
and Kuntz), chestnut blight Cryphonectria parasitica (Murr. Barr), Dutch elm disease Ophios-
toma ulmi ((Buisman) Melin and Nannf.), Ophiostoma. novo-ulmi (Brasier), and many others
that have killed millions of trees [6–8]. Santini et al. [3] showed that in the past two
hundred years, pathogen introduction to Europe has increased exponentially. Between
climate change-induced susceptibility and shifts in natural ranges and the documentation
of new pathogens, these trends show no sign of decline.

Beech bark disease (BBD), Cryptococcus fagisuga (Lindinger) and Nectria spp. (Woolen-
weber), is considered one of the most significant forest diseases in North America [8] and
is the most active and relevant pathogen in our region in the Northeastern United States.
In North America, BBD is caused by the pathogenic complex of an insect, the beech scale
Cryptococcus fagisuga, or the more recently recognized Xylococculus betulae, with different
neonectria fungi Neonectria ditissima and Neonectria faginata [9]. The scale is thought to
have been accidentally brought to North America by way of Canada with a shipment of
ornamental beech in the late 1800s [10]. In less than a century the disease managed to
spread to nearly the entire range of the American Beech (Fagus grandifolia, with projections
that the full range will be infected within the next couple of years [9,11,12].
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The American beech is considered foundational to the forests of Eastern North America.
This abundant, deciduous, late-successional species can live upwards of 400 years and grow
to more than 100 feet, contributing significantly to the canopy, while being notably shade
tolerant [13]. As one of a handful of prominent masting tree species in the region, American
beech helps to support small and large herbivores [14,15], while providing essential habitat
throughout its lifecycle. Despite BBD, climate change models support both the persistence
and prominence of American beech in the landscape [16] although the current range, from
northern Florida to Nova Scotia, is expected to shift northward [12]. Beech have been shown
to be resilient and adaptable to potential acid rain-induced changes both in soil pH [12,17]
and elevated aluminum [18]. Despite the hardiness of this hardwood, it has succumbed
quite seriously to BBD, one of the “ten most unwanted alien forest pathogens” [8].

The effects of BBD have been shown to be both acute and chronic. BBD has significant
ecological impacts, critical enough that work is being done to optimize the mast output
despite BBD [19]. In addition to the ecological impacts, the economic impact of BBD is
notable as it “stunts American beech . . . to unmerchantable size” [20] with some Canadian
sawmills harvesting beech ahead of BBD onset [21]. BBD initially compromises the bark
and cambium layers, but over time, the phloem, xylem, and heartwood are also impacted,
damaging the value of the resulting lumber. Resistance to BBD is at the level of the beech
scale. This insect bores a tiny hole into the outer bark of the beech tree and lays its eggs.
The scale life cycle typically includes an overwintering in which hatched nymphs secrete
a waxy protective layer that protects it from weather and predation. Once the nymphs
molt, they depend on wind to travel to other trees to begin the cycle again. The tiny holes
left behind by this process provides the ideal habitat for the Neonectria fungi ascospores to
propagate and eventually kill the tree. The potential molecular mechanism for resistance
to Neonectria ditissima remains elusive [22]. Proteomic and genomic studies in American
beech have provided some promising insights [23,24], but it is generally accepted that less
than 5% of beech are truly resistant to the beech scale, with some sites having fewer than
1% of trees being resistant [25,26].

Management is critical since BBD can also negatively impact other highly valued trees.
Unruly young beech thickets have taken over large forested areas that have highly infected trees,
out-competing both sugar maples (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis
Britt.) [20,27]. Although the role of BBD in this phenomenon is debated, it is agreed that disease
impact on propagation by seed and self sprouting may be regional and hard to predict [28].
The U.S. Forest Service and Canadian Ministries of Natural Resources provide management
suggestions [28,29], and selective breeding for resistance continues [30,31].

Many studies have examined the detrimental effects of BBD on forest systems and
structures [14,32–35], as well as economic consequences, but with less focus on the influence
of the disease on the growth of the tree itself. A recent article, “Not Dead Yet” captures the
phenomenon that BBD, in many cases, kills trees quite slowly, with beech hanging on for
decades after infection [36]. Some trees infected as early as the 1930s in Downeast Maine
were still alive 50 years later [37].

Long and short-term monitoring of the impacts of disease on tree populations is taken on
by governmental agencies and academic research laboratories in conjunction with ecological
management and restoration efforts. Tree health monitoring efforts regularly record the radial
size or diameter at breast height (DBH) through tape measurement or calipers. Observational
errors can occur, independent of tree species and regardless of whether breast height has
been estimated or measured, with a root mean squared error of up to 10% [38,39]. The rate of
radial growth, in relation to tree fitness, has far-reaching implications since “many ecosystem
functions and services are depending on the course of tree growth” [40].

To explore the impact of beech bark disease (BBD) on radial growth, an earlier
study [37] analyzed potential differences in the annual ring measurements of paired re-
sistant and susceptible American beech at two different study sites in Maine. Growth
decline differences were noted between the two sites but conclusions were limited as the
climate varied and there were differences in the onset of the decline. The study revealed the
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complexity of trying to evaluate the potential effect of BBD on radial growth and ultimately
showed no statistically significant negative impact due to disease susceptibility, with some
years even showing a relative increase. For our study, we decided to stay within one smaller
forest system to minimize variation in climate, and in spatial and temporal disease spread.

Measuring DBH can become more complicated in trees inflicted with BBD, as bark
cankering increases as the trees become sicker. To be able to ascertain the impact of BBD
on radial growth, we developed a hierarchical Bayesian model that incorporates DBH
measurement error. We also used this model to account for observer error in determining
the level of BBD infection. The current ranking system for BBD requires direct observer
assessments of both qualitative and quantitative traits relating to the presence of disease
and the overall health of the tree [41]. The use of this ranking system by multiple observers
over multiple years can lead to significant inconsistencies [42]. The new model seeks to
address documented observer error both in DBH recording as well as disease ranking to
best ascertain the potential impact of BBD on radial growth in beech trees.

With its flexibility and ability to handle interdependent forms of uncertainty and variability,
hierarchical Bayesian modeling offers many advantages in applied ecology [43,44]. Bayesian
modeling has been used to describe the spatial dynamics of various ecological processes [45],
including disease transmission and progression [46]. Ellison [47]) provides a detailed overview
of the advantages and uses of Bayesian analyses as a tool for ecological modeling. In our
situation, traditional statistical methods face several challenges. Due to the extended nature
of the study and the inherent difficulties in studying 206 trees scattered through a forest, we
have missing data for some years. Furthermore, observer error merits extra consideration in
ecological fieldwork involving multiple researchers as crew turnover is expected [48].

Although we hypothesize that BBD, being pervasive and ultimately fatal, will nega-
tively impact the radial growth of infected trees in comparison to trees showing no sign
of infection, this study also aims to acknowledge and address observer error and other
sources of variability as well as their interactions. This will provide a model that can be
applied specifically to BBD and also to the many forest pathogens found in ecological
systems worldwide, with greater power and sensitivity than existing models.

2. Methods
2.1. Site Description

The 85-acre study site is located in southwestern Vermont in the northern range of the
Taconic Mountains and is characterized by slate bedrock from the Lake Saint Catherine
formation. This publicly accessible site, The Lewis Deane Nature Preserve, is known for its
ecologically diverse plant communities, and beech is one of many tree species that compose
the second-growth forest. Beech sprouting is minimal, and the study site, in regards to
BBD, is considered an aftermath forest (a forest in which significant mortality due to BBD
has occurred previously).The site is relatively homogenous with respect to soil quality. Soil
samples collected near infected and healthy trees (both the A and B horizons) showed no
significant variation in pH, percent organic matter, or available phosphorus, potassium,
calcium, sodium, or other common metals (Mg, Zn, Mn, Cu, Fe) (data not shown).

2.2. Monitoring of Beech Bark Disease and Radial Growth

The study site was completely traversed to locate all beech trees. Each study tree
(those with DBH > 5 cm) was numbered and marked with an identifying tag. The 1–5 BBD
ranking system developed by Griffin et al. [41] was used to evaluate the extent of BBD
presented by each beech tree over the course of the 15-year study. Examples of some
key characteristics of the onset and progression of the disease are shown in Figure 1. A
rank of 1 refers to little-to-no sign of either pathogen (beech scale or fungus), 2 represents
presence/sign of some scale and visible bark cracking, but a tree with vigor and a relatively
intact canopy. At a rank of 3, the bark is heavily cracked, with visible fungal colonies
and some crown or limb loss, with noticeable loss of canopy (25%–75% intact). Rank 4 is
characterized by severe cracking of bark, large girdling cankers, significant crown loss, and
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less than 25% of the canopy being intact; 5 means the tree is dead from BBD [41]. Rankings
were then converted to uninfected (rank = 1), infected (rank = 2, 3 or 4), or dead (rank = 5).
Trees were assessed seven times during the study, six times during the fall, and one year in
the winter, delayed due to weather conditions. A total of 206 total trees were included in
the study, yielding 1442 potential observations for which 22.2% have missing values.

Undergraduate researchers were individually trained each year by the same principal
investigator to maintain consistency in both ranking and measuring DBH from year to year.
Students would rank trees independently of the PI and values were compared to improve
consistency prior to independent data collection by students. Tree diameter was measured
with a steel tape. If the bark of trees was highly calloused or cracked (even almost girdled
at times), the DBH was taken as close to the estimated breast height as possible where the
bark was still smooth or less compromised.

Figure 1. Healthy beech trees (1) are becoming increasingly rare in the United States. During the
initial infection stage of BBD (2), Beech have small patches of white (sign of the overwintering beech
scale) that can eventually become quite large. Holes left by the boring insects are then colonized by
nectria fungi, showing characteristic rusty welts (3,4). Eventually, the tree is killed by BBD (5). Note
that both bark and canopy conditions influence the field rankings of BBD (despite these photos only
showing bark). Photos taken by Natalie Coe and Robin Sleith.

2.3. Model Development

We developed a tree-specific hierarchical Bayesian model of growth and disease
transmission. The base model assumes log-normally distributed annual relative growth
rates that are correlated within year and proportional to a power function of tree DBH [49].
The base growth model is given by:

annual diameter growth = µ ∗DBHβ, (1)

where µ is the growth coefficient and β is the growth exponent. Tree growth is hypothesized
to be affected by the presence of BBD, thus the annual growth rate for infected trees is
multiplied by a BBD growth coefficient (φ):

annual diameter growth = φ ∗ µ ∗DBHβ. (2)

Trees that died from the disease were assumed to have zero growth. Uninfected trees
were assumed to have an annual probability of becoming infected that varied by year due
to variations in temperature and precipitation, fluctuations in scale migration, and other
environmental variables. Infected trees were assumed to have a fixed annual probability of
dying from the disease.

Tree DBH and infection status were modeled latently for every tree in the study based
on the preceding relationships. Observed values for these variables were modeled assuming
observer error. Observed DBH was modeled as a normal distribution with mean equal to
the latent DBH value and a common variance parameter representative of observer error.
Observed infection status (healthy, infected, or dead) was modeled as a multinomial distri-
bution with probabilities for each category determined by the latent infection status of the
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tree, P(Observed status | latent status). Model variables, latent and observed, and model
parameters are given in Table 1. A diagram of the dynamic process model is given in Figure 2.

Figure 2. Process model for the spread of BBD and its impact upon radial tree growth. The diagram
also shows the relationship between latent and observed values.

Table 1. Model variables and parameters.

Name Symbol Definition

Overall growth rate coefficient µ Mean growth rate coefficient (unitless) across all years.

Average growth rate coefficient by year µk Growth rate coefficient in year k.

Growth rate exponent β Exponent for growth model.

BBD coefficient φ
Proportion of average growth achieved by infected trees relative to
healthy trees.

Within year variability σ2
win Variability in growth rates within a year.

Between year variability σ2
btw Variability in growth coefficients (µk) between years.

Annual growth by tree by year gri,k Growth of tree i in year k.

Latent DBH DBHi,k Diameter at breast height in cm for tree i in year k.

Observer variability for DBH σ2
obs Variability in observer error when measuring DBH.

Observed DBH DBHobsi,j Observed DBH for tree i in year j.

Probability of infection by year pinfk Probability of a healthy tree becoming infected during year k.

Probability of death pdead Probability of an infected tree dying within the coming year.

Latent infection status Ii,k Infection status (healthy, infected, or dead) of tree i in year k.

Infection status observation probability matrix Σ 3 × 3 matrix. Σm,n = probability of observing infection status n given latent
status m where status ranges from 1 = healthy, 2 = infected, 3 = dead.

Observed Infection Status Iobsi,j Observed infection status of tree i in year j.

Tree number (i) ∈ {1 : 206}. Year of observation (j) ∈ {2005, 2007, 2008, 2009, 2011, 2016, 2019}. Year (k) ∈ {2005 :
2019}.

Following Hobbs and Hooten [43] a full model diagram is given in Figure 3.
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Figure 3. Full model diagram for the analysis following Hobbs and Hooten [43]. 1 ≤ i ≤ 206 is the
tree ID number and 05 ≤ k ≤ 19 is the year after 2000.

By applying Bayes’ Theorem to the observed data given the model likelihood, the full
posterior distribution for the latent variables and model parameters is given by Equation (3).
Beta distribution priors were set for the infection observation error matrix based on the judg-
ment of the investigators to represent approximately a 10–20% probability of identifying a
healthy tree as sick and vice versa. Errors for classifying a healthy tree as dead or a dead
tree as healthy were estimated to be significantly lower with prior probabilities centered
around 1%. Prior values for latent DBH and infection status for trees in 2005 were set based
on the observed values for those variables and the prior observer error parameters.

P
(

µk, µ, gri,k−1, σ2
ob, σ2

win, σ2
btw, φ, β, DBHi,j, Ii,k−1, pinfk, pdead|DBHobsi,j, Iobsi,j

)
∝

∏
i

∏
j

∏
k

Normal
(

DBHobsi,j|DBHi,j, σ2
obs

)
∗ LogNormal

(
gri,k−1|µk, σ2

win

)
∗ TruncNormal

(
µk|µ, σ2

btw

)
∗Multinomial

(
Ii,k|Ii,k−1, pinfk, pdead

)
∗Multinomial

(
Iobsi,j|Ii,j, Σ

)
∗Uniform(σwin|0.0001, 3) ∗Uniform(σbtw|0.0001, 3)

∗Uniform(σobs|0.0001, 3) ∗Uniform(φ|0, 2) ∗Uniform(β|0, 1)

∗Uniform(µ|0.0001, 10) ∗ Beta(pinfk|3, 11) ∗ Beta(pdead|14, 100) ∗ Beta(Σ)

(3)

2.4. Model Estimation, Specification, Validation, and Convergence

Posterior distributions were estimated using a Markov Chain Monte Carlo algorithm
(Gibbs sampling) [50,51]. Three chains were produced and the Gelman-Rubin R statistic [52]
was used to determine a sufficient number of iterations to achieve convergence (R < 1.01).
Chains of 600,000 iterations were run with the first 100,000 discarded for burn-in. The re-
maining 500,000 were thinned by a factor of 100, yielding three chains each with 5000 values
drawn from the joint posterior distribution.

Model validity and specification were checked using multiple methods from the
literature [43,53]. First, we produced a simulated dataset by taking random draws from the
joint probability distribution for the model in Figure 3 with known parameters. We then ran
our Bayesian analysis on the simulated data to compare posterior marginal distributions
with the known parameters. We also ran posterior probability checks using the following
statistics: mean, 10th percentile, 90th percentile, and variance for observed DBH in 2011,
2016, and 2019, and observed proportion of trees that were healthy, sick, and dead in 2011,
2016, and 2019. We used a pivotal discrepancy measure (PDM) by calculating standardized
values (z-scores) for the difference in observed and latent growth rates by tree for 2011,
2016, and 2019 [53]. Finally, we compared the probability distribution of the predicted
average annual relative growth rates from 2011 to 2019 to observed relative growth rates to
check for discrepancies between the predicted distribution and the observed distribution.
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3. Results
3.1. Overview of Data

Data were gathered for a population of 206 trees in the years 2005, 2007, 2008, 2009,
2011, 2016, and 2019. Of these, 24.7% of DBH measurements and 14.2% of infection status
assessments were missing. Furthermore, 71.5% of missing values were recorded in 2016
and 2019, due in part to the inability to locate trees that had likely fallen due to either
disease, high winds, or a combination of both, and to poor weather keeping researchers
from accessing the site. In 2005, 117 trees out of 198 assessed (59.1%) showed little to no
sign of infection, while the remaining 81 trees were in various stages of BBD. By 2011, only
12.6% of assessed trees were still determined to be uninfected.

The distribution of tree diameters for 2007 is shown in Figure 4.

Figure 4. Frequency histogram of DBH in 2007, the year with the most complete data. The distribution
of DBH did not change significantly over the period of the study.

Here, 190 growth rates were estimated from the data for observed DBH. Estimated
absolute growth rates ranged from 0 to 0.87 cm/yr for healthy trees and 0 to 0.69 cm/yr for
infected trees, while relative growth rates ranged from 0 to 0.048 cm/cm/yr for healthy
trees and 0 to 0.047 cm/cm/yr for infected trees. (Due to observer error, some trees were
estimated to have a negative growth rate. These are not reported here but are shown below.)
The distribution of growth rates for uninfected and infected trees is shown in Figure 5.

Figure 5. Distribution of relative growth rates for uninfected and infected trees.
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3.2. Model Validation, Specification, and Convergence

There was no evidence of model misspecification. The simulated distributions of DBH
in 2011, 2016, and 2019 did not differ significantly from the observed data. The observed
mean DBH, 10th and 90th percentiles for DBH, and variance for DBH were all within the
95% credible intervals for the posterior distributions. This was also true for the observed
proportions of healthy, infected, and dead trees in 2011, 2016, and 2019.

The joint posterior distributions estimated from the three sets of simulated data all
contained the known coefficient values for all important parameters within a 90% credible
interval. Annual average relative growth rates (µk) showed some variability, which is
expected given their collinearity (a higher average growth rate estimate in one year will
increase the probability of a lower growth estimate for the following year) and the high
number of missing DBH values, and observed error for infection status had some additional
variability in cases where the observer error rate was very low (<1%). Neither of these
problems should impact estimates of overall growth, disease transmission, or the impact
of BBD upon growth. Additionally, our PDMs (z-scores) were symmetric around zero
and similar to the standard normal distribution except they were marginally leptokurtic
(heavier tails). The Gelman–Rubin statistic to test for chain convergence was less than 1.01
for all parameters, indicating that the Markov chains had converged.

3.3. Parameter Estimates

Location statistics—mean, median, and 95% highest-density credible interval—for
key model parameters are reported in Table 2 and marginal posterior distributions are
shown in Figure 6. Figure 7 shows the posterior distributions for the observed infection
status probabilities along with the prior distributions, and Figure 8 shows the multinomial
probabilities for assessed infection status based on latent status.

Table 2. Parameter location statistics derived from the Monte Carlo Markov chain. The range from
the 2.5% value to the 97.5% value represents a highest-density 95% credible interval.

φ µ σbtw σwin σobs β pdead

Mean 0.494 6.18× 10−3 1.85× 10−2 0.610 0.595 0.864 1.99× 10−2

Sd 6.83× 10−2 5.03× 10−3 7.82× 10−3 5.03× 10−2 1.77× 10−2 9.46× 10−2 4.28× 10−3

2.5% 0.371 3.2× 10−4 8.39× 10−3 0.504 0.561 0.648 1.23× 10−2

Median 0.490 5.03× 10−3 1.68× 10−2 0.614 0.594 0.880 1.96× 10−2

97.5% 0.640 1.86× 10−2 3.8× 10−2 0.700 0.630 0.993 2.9× 10−2

The overall mean proportional growth rate for uninfected trees was 0.0062 yr−1, meaning
that trees on average added 0.62% to their DBH. There was little evidence of a power law
relationship with the 95% credible interval for β extending to 0.99. The impact of BBD infection
upon growth was significant (median for φ = 0.490, 95% credible interval = [0.371, 0.640]).
Trees that were infected but not dead saw an estimated reduction in growth of 51.0%.

There was significant variability between years in average proportional growth rates
with the standard deviation for the truncated normal distribution (σbtw) estimated to be
0.0168 (approximately three times the size of the mean). The variability between trees
in actual growth rates within a given year was also high, with the estimated standard
deviation for the lognormal distribution (σwin) equal to 0.614 cm.

The probability of a healthy tree becoming diseased in a given year varied between
an estimated low of around 4% in 2009 to as high as 40% in 2010 and 2011 (results not
displayed) with most years having a median estimate of around 15%. These estimates
have large bounds on them because of collinearity in these variables, the high number of
missing variables, and the observer error in determining infection status. Infected trees
were estimated to be dying at a rate of 2% per year.
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Figure 6. Marginal posterior distributions for model parameters. Distributions are estimated from
the joint posterior distribution as represented by the Monte Carlo Markov Chain. The x-axis shows
the likely range for each model coefficient.

3.4. Observed Error Estimates

Observed variability in estimating tree DBH was estimated to be 0.594 cm, which is reason-
able given the precision of the measurements (nearest cm) and the variability in determining
where to place the tape. The bounds on this parameter are relatively narrow (95% credible
interval = [0.561, 0.630]) because of the high number of observations giving us significant
confidence that observers are frequently off by more than 0.5 cm in measuring DBH.

Our work also yielded estimates of observer error when assessing tree infection status.
Figure 7 shows that the data were informative in many cases, as the posterior distribution
differs significantly from the prior distribution. Most notably, an observer had around a 10%
chance of determining a healthy tree to be infected and a 6% probability of determining that an
infected tree was healthy. Around 18% of the time, a tree that was still alive was determined
to be dead. Our model verification using simulated data suggests that these probabilities
are hard to estimate, but there is clear evidence that a modeling approach that incorporates
growth rates and infection status gives us the ability to assess observer error in both contexts.
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Figure 7. Posterior distributions for observed infection status probabilities conditional on the latent
infection status. Dashed lines show the prior distributions.

Figure 8. Mean observation probabilities for infection status based on latent infection status. Note
that the x-axis is the latent (true) value, while the y-axis is the observed value. For example, 20% of
trees that were infected were observed to be dead instead.
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4. Discussion
Observer Error and Missing Data

Tree growth can be impacted by multiple environmental factors such as solar radiation,
air temperature, rain/moisture, wind velocity, and competition [54,55]. Radial growth
has been shown to be directly impacted by precipitation and temperature [56] as well as
drought, the intensity of which can be site and species specific [57]. Studies on European
beech have also illustrated that radial growth rates, while historically most influenced by
soil conditions, are now more strongly influenced by climate change [58]. This drives the
need to evaluate trees (both free of disease and infected with BBD) in a context in which
rainfall is not a variable factor.

We chose a relatively homogenous study site to control for fluctuations in climate, soil
quality, and management practices to be able to examine the potential impact of BBD on
the radial growth of American beech. Additionally, American beech was the dominant tree
species throughout the study site, with little to no competition with other tree species.

Canopy health is related to overall leaf number and leaf area, which is in turn, con-
nected to radial growth [59]. Beech is noted for marcescence and can take many years to
succumb to BBD, maintaining reasonably large and healthy canopies in the earlier stages
of infestation. However, as BBD progresses, the canopy diminishes markedly. For this
reason, one might expect a consequential radial growth decline in infected trees. However,
in a recent study in European Beech, researchers did not find a relationship between leaf
phenology and radial growth [60]. Indeed, defoliation can result in an increase in photo-
synthetic rates. This is a potentially significant consideration in the progression of beech
bark disease and may explain in part the ability of many beech to remain alive for decades
after infection.

Given the previous consideration, a priori, it was unclear whether and to what degree
BBD would negatively impact radial growth. Our data show a 51% decrease in annual
radial growth as a direct result of disease infestation. The change is not only statistically
significant but substantial when one considers that nearly all of the American beech in
North America are currently at some stage of this disease.

Although ours is the first study to document the reduction of radial growth as a direct
consequence of pathogen infestation in the American beech, studies in other tree/pathogen
scenarios have also shown this. A study of the impact of Swiss-Needle Cast on growth
of Douglas-Fir in New Zealand places losses for mean top height, basal area, and stem
volume at 25%, 27%, and 32%, respectively. Although mortality rates were not affected, the
monetary loss due to these decreases is estimated to be approximately $NZ 1000/hectare
on average [61]. These impacts are clearly substantial, both from a forestry standpoint and
from the perspective of ecological services. Bert et al. [62] have made a similar argument in
regard to the effect of powdery mildew on oak trees, showing that radial growth not only
negatively correlated with infection severity but that the impacts of disease were seen even
after the infection was no longer prevalent. Interestingly, a study examining the impact
of woolly adelgid on the radial growth of eastern hemlocks showed some confounding
results. A negative impact of disease on growth was only seen at half of the sites monitored,
pointing again to the potential role of increased photosynthetic rates in survivors or perhaps
a reduction in competition brought by the death of neighboring trees [62].

The role of forest pests is just beginning to be integrated into forest growth models.
As explained by Dietze and Matthes, “the long-term growth reductions due to forests
insects and pathogens (FIPs) are absent from models, [which] could lead to the systematic
overestimation of carbon uptake and storage across wide regions” [63]. To this end, even
non-lethal pathogens could have measurable effects on overall tree health and should also
be considered in developing growth models [62].

To be able to discern the impact of BBD on radial growth, coring was not practical
due to bark damage that could disrupt the quality of the growth rings. Errors in recording
DBH can result from misreading of the tape, misrecording the data in the field, data entry
error, placement of the tape itself (not being perpendicular to the vertical axis of the tree),
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and even variation in the tension of the tape [64]. To avoid these errors, individuals were
trained directly by the same principal investigator throughout the course of this study,
but each academic year brings new students who, once trained, work independently. Butt
and colleagues [65] have gone so far as to compare the accuracy of DBH measurements by
trained volunteers versus experts to determine if these could lead to changes in biomass
estimates. They found a DBH sampling error with volunteers to be 2.3 mm versus 1.4 mm
for the experts, but only when excluding errors greater than one centimeter. If all data were
included, volunteer data had a mean sampling error of 9.9 mm.

Our model acknowledges observer error in both disease assessment and measured
DBH and minimizes its impact upon parameter estimates. Regardless of the monitoring
data collected, there are sources of observer error that can be considered independent of
the ecological system. These include the training and expertise of student researchers, time
taken to ascertain a ranking or measurement, and the difficulty of finding or reaching a
particular plot or tree based on physical, environmental, and weather conditions [66]. Burg
and colleagues [67] point to observation bias in reference to high-alpine summits, noting
the influence of a demanding climb on “observer-dependent factors”. Within our study,
although the change in elevation was quite small, relatively speaking, this phenomenon
was also observed. Missing data is a common occurrence in forestry research, and looking
to find ways to both minimize the instances but also deal with the inevitability of gaps
has gained increasing interest over the past decade, especially as researchers consider
combining multiple types of data, with various observations made over large areas by
multiple means (e.g., data gathered through remote sensing as well as in the field) [68].

Longer-term studies similar to ours may also help to minimize the effect of observer
errors that could result in potentially biased or erroneous short-term changes. While this
does not override the existence of such errors, it does minimize their impact upon model
predictions and parameter estimation [69].

5. Conclusions

It is critical to now factor in the effects of pathogens when modeling forest production,
especially in light of climate change [70]. We agree with Pinkard and colleagues that “some
models can encapsulate some of the processes, but no model can comprehensively account
for the range of physiological responses to pest attack experienced by trees.” It is essential to
develop models that can accurately predict the impacts of forest pathogens on tree growth to
be able to ascertain short and long term effects on woody biomass and ecosystem services.

We have been able to develop a model that predicts the average probability of a
healthy tree becoming infected, and the reduction in annual radial growth rate. We can
also predict the number of trees that will die from BBD. By incorporating observer error
in assessing both the DBH and the status of the tree, we have increased both the rigor
and applicability of our new modeling approach. “Methods research usually addresses
either the improvement of data-gathering so as to reduce biases or increase precision, or the
development of statistical methods that can account for biases or uncertainty in the collected
data” [71]. We have attempted to do both in how our study has been designed and how our
data have been evaluated. Ecological statistics are simultaneously empowered and limited
by the care and accuracy of collected field data. Working in concert, the statistician and
field researcher can develop models that utilize all available data without being hampered
by missing data points. As invasive pathogens become more persistent and additional
pathogens emerge [72], it is critical to be able to optimize currently available approaches to
new threats in projecting the impact of disease on tree health, growth, and biomass.

Author Contributions: Conceptualization, all authors; methodology, all authors; validation, K.M.
and O.M.; formal analysis, K.M. and O.M.; data collection, N.C.; resources, N.C. and K.M.; data
curation, N.C. and O.M.; writing—original draft preparation, N.C. and K.M.; writing—review and
editing, all authors; visualization, O.M.; supervision, N.C.; project administration, N.C. All authors
have read and agreed to the published version of the manuscript.



Forests 2023, 14, 312 13 of 15

Funding: This research received no external funding.

Data Availability Statement: Data are available from the Zenodo repository 10.5281/zenodo.6348119 [73].

Acknowledgments: We would like to acknowledge the students and staff at Green Mountain College
that were involved in mapping, measuring, and ranking the American beech population at the Lewis
Deane Nature Preserve. Contributors over the past 15 years include Bailey Aaron, Brendan Beaudoin,
Kenneth Coe, John Gallagher, Jennifer Hertzer, Brenda Nsambu, Krisitina Seitler, Carol Shaw, Robin
Sleith, and Julia Worland. We acknowledge and respect that our study site is on land indigenous to
the Abenaki people.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klopfenstein, N.B.; Juzwik, J.; Ostry, M.E.; Kim, M.S.; Zambino, P.J.; Venette, R.C.; Richardson, B.A.; Lundquist, J.E.; Lodge, D.J.;

Glaeser, J.A.; et al. Invasive forest pathogens: Summary of issues, critical needs, and future goals for forest service research and
development. In A Dynamic Invasive Species Research Vision: Opportunities and Priorities 2009-29; Gen. Tech. Rep. WO-79/83; Dix,
M.E., Britton, K., Eds.; US Department of Agriculture, Forest Service, Research and Development: Washington, DC, USA, 2010;
Volume 79, pp. 23–33.

2. Fisher, M.C.; Gow, N.A.; Gurr, S.J. Introduction: Tackling emerging fungal threats to animal health, food security and ecosystem
resilience. Philos. Trans. R. Soc. Biol. Sci. 2016, 371, 1–6. [CrossRef] [PubMed]

3. Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.;
Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013,
197, 238–250. [CrossRef] [PubMed]

4. Santini, A.; Battisti, A. Complex insect–pathogen interactions in tree pandemics. Front. Physiol. 2019, 10, 550. [CrossRef]
[PubMed]

5. Fleming, P.A.; Wentzel, J.J.; Dundas, S.J.; Kreplins, T.L.; Craig, M.D.; Hardy, G.E.S.J. Global meta-analysis of tree decline impacts
on fauna. Biol. Rev. 2021, 96, 1744–1768. [CrossRef] [PubMed]

6. Webster, C.R.; Dickinson, Y.L.; Burton, J.I.; Frelich, L.E.; Jenkins, M.A.; Kern, C.C.; Raymond, P.; Saunders, M.R.; Walters, M.B.;
Willis, J.L. Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change
and the loss of ecological memory. For. Ecol. Manag. 2018, 421, 98–108. [CrossRef]

7. Prospero, S.; Botella, L.; Santini, A.; Robin, C. Biological control of emerging forest diseases: How can we move from dreams to
reality? For. Ecol. Manag. 2021, 496, 119377. [CrossRef]

8. Lamarche, J.; Potvin, A.; Pelletier, G.; Stewart, D.; Feau, N.; Alayon, D.I.; Dale, A.L.; Coelho, A.; Uzunovic, A.; Bilodeau, G.J.;
et al. Molecular detection of 10 of the most unwanted alien forest pathogens in Canada using real-time PCR. PLoS ONE 2015,
10, e0134265. [CrossRef]

9. Cale, J.A.; Garrison-Johnston, M.T.; Teale, S.A.; Castello, J.D. Beech bark disease in North America: Over a century of research
revisited. For. Ecol. Manag. 2017, 394, 86–103. [CrossRef]

10. Ehrlich, J. The beech bark disease: A Nectria disease of Fagus, following Cryptococcus fagi (Baer.). Can. J. Res. 1934, 10, 593–692.
[CrossRef]

11. Houston, D.R.; O’Brien, J. Beech Bark Disease; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2003.
12. Stephanson, C.A.; Coe, N.R. Impacts of beech bark disease and climate change on American beech. Forests 2017, 8, 155. [CrossRef]
13. Tubbs, C.H.; Houston, D.R. Fagus grandifolia Ehrh. American beech. Silvics N. Am. 1990, 2, 325.
14. Garneau, D.E.; Lawler, M.E.; Rumpf, A.S.; Weyburne, E.S.; Cuppernull, T.M.; Boe, A.G. Potential effects of beech bark disease on

small mammals and invertebrates in northeastern US forests. Northeast. Nat. 2012, 19, 391–410. [CrossRef]
15. McCullough, D.G.; Heyd, R.L.; O’Brien, J.G. Biology and Management of Beech Bark Disease; Extension Bulletin E-2746; Michigan

State University: East Lansing, MI, USA, 2001. Available online: https://www.canr.msu.edu/uploads/files/e2746.pdf (accessed
on 3 January 2023).

16. Nevins, M.T.; D’Amato, A.W.; Foster, J.R. Future forest composition under a changing climate and adaptive forest management
in southeastern Vermont, USA. For. Ecol. Manag. 2021, 479, 118527. [CrossRef]

17. Burns, R.M.; Honkala, B. Summary of tree characteristics. Silvics N. Am. 1990, 2, 846–849.
18. Halman, J.M.; Schaberg, P.G.; Hawley, G.J.; Hansen, C.F.; Fahey, T.J. Differential impacts of calcium and aluminum treatments on

sugar maple and American beech growth dynamics. Can. J. For. Res. 2015, 45, 52–59. [CrossRef]
19. Hamelin, P.L. VT ANR Management Guidelines for Optimizing Mast Yields in Beech Mast Production Areas; Vermont Fish & Wildlife

Department: Waterbury, VT, USA, 2011.
20. Dracup, E.C.; MacLean, D.A. Partial harvest to reduce occurrence of American beech affected by beech bark disease: 10 year

results. For. Int. J. For. Res. 2018, 91, 73–82. [CrossRef]
21. Bernard, A.; Gélinas, N.; Duchateau, E.; Durocher, C.; Achim, A. American beech in value-added hardwood products: Assessing

consumer preferences. BioResources 2018, 13, 6893–6910. [CrossRef]

http://doi.org/10.1098/rstb.2016.0332
http://www.ncbi.nlm.nih.gov/pubmed/28080997
http://dx.doi.org/10.1111/j.1469-8137.2012.04364.x
http://www.ncbi.nlm.nih.gov/pubmed/23057437
http://dx.doi.org/10.3389/fphys.2019.00550
http://www.ncbi.nlm.nih.gov/pubmed/31133880
http://dx.doi.org/10.1111/brv.12725
http://www.ncbi.nlm.nih.gov/pubmed/33955144
http://dx.doi.org/10.1016/j.foreco.2018.01.010
http://dx.doi.org/10.1016/j.foreco.2021.119377
http://dx.doi.org/10.1371/journal.pone.0134265
http://dx.doi.org/10.1016/j.foreco.2017.03.031
http://dx.doi.org/10.1139/cjr34-070
http://dx.doi.org/10.3390/f8050155
http://dx.doi.org/10.1656/045.019.0303
https://www.canr.msu.edu/uploads/files/e2746.pdf
http://dx.doi.org/10.1016/j.foreco.2020.118527
http://dx.doi.org/10.1139/cjfr-2014-0250
http://dx.doi.org/10.1093/forestry/cpx033
http://dx.doi.org/10.15376/biores.13.3.6893-6910


Forests 2023, 14, 312 14 of 15

22. Gómez-Cortecero, A.; Saville, R.J.; Scheper, R.W.; Bowen, J.K.; Agripino De Medeiros, H.; Kingsnorth, J.; Xu, X.; Harrison, R.J.
Variation in host and pathogen in the Neonectria/Malus interaction; toward an understanding of the genetic basis of resistance to
European canker. Front. Plant Sci. 2016, 7, 1365. [CrossRef]

23. Mason, M.E.; Koch, J.L.; Krasowski, M.; Loo, J. Comparisons of protein profiles of beech bark disease resistant and susceptible
American beech (Fagus grandifolia). Proteome Sci. 2013, 11, 1–21. [CrossRef]

24. Seitler, K.; Coe, N.R. cDNA primers for quantitative analysis of protective compounds implicated in beech bark disease resistance
in American beech, Fagus grandifolia. Conserv. Genet. Resour. 2015, 7, 689–691. [CrossRef]

25. Kasson, M.; Livingston, W. Relationships among beech bark disease, climate, radial growth response and mortality of American
beech in northern Maine, USA. For. Pathol. 2012, 42, 199–212. [CrossRef]

26. Houston, D.R. American beech resistance to Cryptococcus fagisuga. In Sponsored by the USDA Forest Service, Northeastern Forest
Experiment Station, Proceedings of the IUFRO Beech Bark Disease Working Party Conference, Hamden, CT, USA, 26 September–8 October
1982; Gen. Tech. Rep. WO-37; US Department of Agriculture, Forest Service: Washington, DC, USA, 1983; Volume 37, pp. 38–42.

27. Hane, E.N. Indirect effects of beech bark disease on sugar maple seedling survival. Can. J. For. Res. 2003, 33, 807–813. [CrossRef]
28. Petrillo, H.A.; Witter, J.A. Regeneration of American beech (Fagus grandifolia Ehrh.) in Michigan: Interactions of beech bark

disease and management practices. In Beech Bark Disease: Proceedings of the Beech Bark Disease Symposium; Gen. Tech. Report
NE-331; USDA, Forest Service: Washington, DC, USA, 2005; pp. 142–145. Available online: https://www.fs.usda.gov/ne/
newtown_square/publications/technical_reports/pdfs/2005/331papers/petrillo331-3.pdf (accessed on 3 January 2023).

29. McLaughlin, J.; Greifenhagen, S. Beech bark disease in Ontario: A primer and management recommendations. For. Res.-Note-Ont.
For. Res. Inst. 2012, 71, 1–8.

30. Koch, J.L.; Carey, D.W.; Mason, M.E.; Nelson, C.D. Assessment of beech scale resistance in full-and half-sibling American beech
families. Can. J. For. Res. 2010, 40, 265–272. [CrossRef]

31. Koch, J.L.; Mason, M.E.; Carey, D.W. Screening for resistance to beech bark disease: Improvements and results from seedlings and
grafted field selections. In Disease and Insect Resistance in Forest Trees, Proceedings of the Fourth International Workshop on the Genetics
of Host-Parasite Interactions in Forestry; Gen. Tech. Rep. PSW-GTR-240; Sniezko, R.A., Yanchuk, A.D., Kliejunas, J.T., Palmieri, K.M.,
Alexander, J.M., Frankel, S.J., Eds.; Pacific Southwest Research Station, Forest Service, US Department of Agriculture: Albany, CA,
USA, 2012; Volume 240, pp. 196–208.

32. Bose, A.K.; Weiskittel, A.; Wagner, R.G. Occurrence, pattern of change, and factors associated with American beech-dominance in
stands of the northeastern USA forest. For. Ecol. Manag. 2017, 392, 202–212. [CrossRef]

33. Forrester, J.A.; McGee, G.G.; Mitchell, M.J. Effects of beech bark disease on aboveground biomass and species composition in a
mature northern hardwood forest, 1985 to 2000. J. Torrey Bot. Soc. 2003, 130, 70–78. [CrossRef]

34. Latty, E.F. Stand-level patterns and ecosystem consequences of beach bark disease. In Proceedings of the Beech Bark Disease
Symposium, Saranac Lake, NY, USA, 16–18 June 2004; General Technical Report NE-331; USDA Forest Service, Northern Research
Station: Newtown Square, PA, USA, 2005; pp. 36–42.

35. Rumble, L.; Taylor, G.; Grinath, J.B.; Morris, A.B. Measuring spatial and temporal shifts in forest structure and composition in
high elevation beech forests in response to beech bark disease in Great Smoky Mountains National Park. For. Ecol. Manag. 2020,
461, 117954. [CrossRef]

36. Cale, J.A.; McNulty, S.A. Not dead yet: Beech trees can survive nearly three decades in the aftermath phase of a deadly forest
disease complex. For. Ecol. Manag. 2018, 409, 372–377. [CrossRef]

37. Gove, J.; Houston, D.R. Monitoring the growth of American beech affected by beech bark disease in Maine using the Kalman
filter. Environ. Ecol. Stat. 1996, 3, 167–187. [CrossRef]
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60. Čufar, K.; De Luis, M.; Prislan, P.; Gričar, J.; Črepinšek, Z.; Merela, M.; Kajfež-Bogataj, L. Do variations in leaf phenology affect
radial growth variations in Fagus sylvatica? Int. J. Biometeorol. 2015, 59, 1127–1132. [CrossRef]

61. Kimberley, M.; Hood, I.; Knowles, R. Impact of Swiss needle-cast on growth of Douglas-fir. Phytopathology 2011, 101, 583–593.
[CrossRef]

62. Bert, D.; Lasnier, J.B.; Capdevielle, X.; Dugravot, A.; Desprez-Loustau, M.L. Powdery mildew decreases the radial growth of oak
trees with cumulative and delayed effects over years. PLoS ONE 2016, 11, e0155344. [CrossRef]

63. Dietze, M.C.; Matthes, J.H. A general ecophysiological framework for modelling the impact of pests and pathogens on forest
ecosystems. Ecol. Lett. 2014, 17, 1418–1426. [CrossRef]

64. Elzinga, C.; Shearer, R.C.; Elzinga, G. Observer variation in tree diameter measurements. West. J. Appl. For. 2005, 20, 134–137.
[CrossRef]

65. Butt, N.; Slade, E.; Thompson, J.; Malhi, Y.; Riutta, T. Quantifying the sampling error in tree census measurements by volunteers
and its effect on carbon stock estimates. Ecol. Appl. 2013, 23, 936–943. [CrossRef]

66. Morrison, L.W. Observer error in vegetation surveys: A review. J. Plant Ecol. 2016, 9, 367–379. [CrossRef]
67. Burg, S.; Rixen, C.; Stöckli, V.; Wipf, S. Observation bias and its causes in botanical surveys on high-alpine summits. J. Veg. Sci.

2015, 26, 191–200. [CrossRef]
68. Barrett, T.; Maltomo, M. Missing data in forest ecology and management: Advances in quantitative methods [Preface]. For. Ecol.

Manag. 2012, 572, 1–2. [CrossRef]
69. Futschik, A.; Winkler, M.; Steinbauer, K.; Lamprecht, A.; Rumpf, S.B.; Barančok, P.; Palaj, A.; Gottfried, M.; Pauli, H. Disentangling
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