
Citation: Lin, J.; Lin, H.; Wang, F. A

Semi-Supervised Method for

Real-Time Forest Fire Detection

Algorithm Based on Adaptively

Spatial Feature Fusion. Forests 2023,

14, 361. https://doi.org/10.3390/

f14020361

Academic Editor: Viacheslav

I. Kharuk

Received: 12 January 2023

Revised: 8 February 2023

Accepted: 9 February 2023

Published: 11 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Semi-Supervised Method for Real-Time Forest Fire Detection
Algorithm Based on Adaptively Spatial Feature Fusion
Ji Lin 1 , Haifeng Lin 1,* and Fang Wang 2,*

1 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
2 College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
* Correspondence: haifeng.lin@njfu.edu.cn (H.L.); wangfang0182217@njxzc.edu.cn (F.W.);

Tel.: +86-25-8542-7827 (H.L.); +86-25-8617-5539 (F.W.)

Abstract: Forest fires occur frequently around the world, causing serious economic losses and human
casualties. Deep learning techniques based on convolutional neural networks (CNN) are widely
used in the intelligent detection of forest fires. However, CNN-based forest fire target detection
models lack global modeling capabilities and cannot fully extract global and contextual information
about forest fire targets. CNNs also pay insufficient attention to forest fires and are vulnerable to the
interference of invalid features similar to forest fires, resulting in low accuracy of fire detection. In
addition, CNN-based forest fire target detection models require a large number of labeled datasets.
Manual annotation is often used to annotate the huge amount of forest fire datasets; however, this
takes a lot of time. To address these problems, this paper proposes a forest fire detection model,
TCA-YOLO, with YOLOv5 as the basic framework. Firstly, we combine the Transformer encoder
with its powerful global modeling capability and self-attention mechanism with CNN as a feature
extraction network to enhance the extraction of global information on forest fire targets. Secondly,
in order to enhance the model’s focus on forest fire targets, we integrate the Coordinate Attention
(CA) mechanism. CA not only acquires inter-channel information but also considers direction-related
location information, which helps the model to better locate and identify forest fire targets. Integrated
adaptively spatial feature fusion (ASFF) technology allows the model to automatically filter out
useless information from other layers and efficiently fuse features to suppress the interference of
complex backgrounds in the forest area for detection. Finally, semi-supervised learning is used
to save a large amount of manual labeling effort. The experimental results show that the average
accuracy of TCA-YOLO improves by 5.3 compared with the unimproved YOLOv5. TCA-YOLO
also outperformed in detecting forest fire targets in different scenarios. The ability of TCA-YOLO to
extract global information on forest fire targets was much improved. Additionally, it could locate
forest fire targets more accurately. TCA-YOLO misses fewer forest fire targets and is less likely to be
interfered with by forest fire-like targets. TCA-YOLO is also more focused on forest fire targets and
better at small-target forest fire detection. FPS reaches 53.7, which means that the detection speed
meets the requirements of real-time forest fire detection.

Keywords: forest fire detection; deep learning; adaptively spatial feature fusion; attention mechanism;
semi-supervised learning

1. Introduction

Forest fires occur frequently around the world these years, resulting in serious eco-
nomic losses and human casualties. Forest fires spread quickly and are difficult to fight.
Therefore, forest fire detection is especially important. Traditional forest fire detection meth-
ods mainly include manual inspection, sensor technology [1–3], infrared technology [4], and
remote sensing satellite [5] images for fire monitoring. Forest fire monitoring through man-
ual inspection requires huge human and material resources and is inefficient. Traditional
smoke and temperature sensors have a limited detection range and are difficult to deploy
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in large-scale forest areas due to problems with power, communication, and networking.
The traditional infrared monitoring technology is easily affected by the environment and
requires high monitoring distance, which is prone to omission and misdetection. Although
the monitoring of forest fires through remote sensing satellite images has a wide range, the
infrared band and visible light used by satellites are easily disturbed by clouds and fog
as well as weather conditions, making it difficult to detect forest areas around the clock
without any dead angle.

With the continuous development of image processing technology, the use of images
for forest fire detection has become a mainstream trend in forest fire monitoring. Traditional
image processing methods are mainly used for forest fire detection by extracting flame color
features, edge features, geometric features, etc. For example, Celik et al. [6] constructed a
flame color classification model based on YCbCr, separated brightness from chromaticity,
obtained flame color motion pixels using an adaptive background subtraction algorithm as
well as an RGB color model and used a statistical model to achieve flame color classification.
Habiboglu et al. [7] used color and spatial information and, using a covariance matrix
approach, achieved the detection of forest fire flames. Jin et al. [8] achieved fast detection
of forest fires using features such as the size and color of flames based on a logistic model
and time domain smoothing. Dimitropoulos et al. [9] used the linear dynamic texture
method for the calculation of flame regions of interest. In summary, the traditional image
processing methods mainly achieve forest fire detection by manually extracting forest fire
features, and the feature extraction directly determines the result of forest fire detection.
Traditional image processing methods are not only affected by human subjective factors,
but also by environmental factors, such as different lighting and weather conditions, which
can affect the comprehensive extraction of forest fire features.

In recent years, deep learning techniques based on convolutional neural networks
(CNNs) have developed rapidly, providing new ideas and methods for forest fire detection.
CNNs have a powerful feature extraction capability to obtain deeper semantic information
about images and have an end-to-end model training process, which effectively avoids
the complexity and limitations of manual feature selection. For example, Yin et al. [10]
improved the convolutional layer of traditional CNNs by batch regularization, which
solved the overfitting problem that traditional CNNs are prone to and improved the
detection accuracy. Zhang et al. [11] detected synthetic forest fire images with a Faster
R-CNN model, and they combined real fire images as well as simulated fire images with a
forest background. Avula et al. [12] used CNN for forest fire detection and improved the
accuracy of forest fire detection by introducing a spatial transformer network and entropy
function thresholding. Wang et al. [13] took SqueezeNet as the backbone feature extraction
network to segment forest fires, fused multi-scale context information to improve accuracy,
and solved the problem of the difficult segmentation of small targets in early forest fires.
Jiao et al. [14] detected forest fires based on the YOLOv3 [15] target detection network and
labeled the specific location of the fire area as well as the confidence probability of forest
fires, improving the accuracy and efficiency of UAV forest fire detection. Shamsoshoara
et al. [16] performed pixel-level segmentation based on the semantic segmentation network
U-Net [17] for forest fire images; however, semantic segmentation requires high accuracy
for dataset annotation.

Although CNNs have solved the problem of intelligent recognition of forest fires to
some extent, due to the limitations of convolutional operations, its extracted forest fire
image features are only limited to local regions, which lack long-range dependencies. Long-
range dependence is important for the network to focus on the forest fire target region and
ignore the noise in the whole feature map [18]. In addition, convolutional neural network
target detection models also have a small field of perception and lack sufficient global and
contextual information. While Transformer has recently made a big splash in the image
field [19–22], the key factor of its success is that Transformer’s self-attention mechanism
can capture long-range dependencies in images, has a powerful global modeling capability,
and can expand the receptive field to obtain more contextual information. Therefore,
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this paper proposes a forest fire target detection model, TCA-YOLO (T, C, and A are
the acronyms of the respective modules used for improvement), with the convolutional
neural network-based target detector YOLOv5 [23] as the basic framework and a series
of improvements. Firstly, in order to make up for the deficiency of CNNs in the global
feature extraction of forest fires, the Transformer encoder [24] is used in combination with
a CNN as a feature extraction network, which fully combines the advantages of CNN and
Transformer’s self-attention mechanism to enhance the extraction of global information
of forest fire targets and has a more powerful receptive field to obtain more contextual
information. Secondly, in order to enhance the model’s focus on forest fire targets, we
integrate the Coordinate Attention (CA) [25] mechanism in the neck part of YOLOv5.
CA not only obtains inter-channel information but also considers the information on the
direction-related location, which helps TCA-YOLO to better identify and locate forest fire
targets. In addition, we integrate the adaptively spatial feature fusion (ASFF) technique [26].
ASFF improves the multi-scale fusion of forest fire features by adaptive methods to adjust
the fusion ratio between different feature layers. It can effectively suppress the interference
of invalid features in the complex background of the forest area on forest fire detection,
which further improves the accuracy of TCA-YOLO. Since the model performance of forest
fire detection tasks using deep learning techniques depends on the number of training
forest fire image samples, and the samples need to be annotated [27], forest fire images are
obtained from a wide range of sources with a huge amount of data. Usually, the annotation
of forest fire images is mostly carried out manually [28–30]. Faced with a massive forest fire
image dataset, manual annotation takes a lot of time and requires specialized personnel to
perform the annotation. To solve the drawbacks of manual labeling, this paper adopts semi-
supervised learning to train the proposed forest fire target detection model TCA-YOLO.
Only a small number of manually labeled forest fire datasets are used for training. The
remaining unlabeled dataset is annotated by the proposed automatic annotation method
and filtered based on the confidence level as a pseudo-label [31] to the training set to retrain
the model. Continuous iteration improves accuracy and saves a lot of manual annotation
work. If new unlabeled forest fire datasets become available in the future, this strategy can
also be used to automatically label the unlabeled datasets and add them to the training set
to retrain the model so as to continuously improve TCA-YOLO’s detection accuracy.

2. Materials and Methods
2.1. Forest Fire Data Set

As shown in Figure 1, the dataset used in this paper includes 3000 forest fire images of
different scenes from forest fire images captured by video surveillance devices and drones
in forest areas, publicly available forest fire datasets, and forest fire datasets crawled from
the Internet using crawlers [32]. Of these, 1000 were manually labeled and converted
to YOLO dataset format. The 1000 labeled datasets were randomly divided into 700 for
training an initial forest fire target detection model. The remaining 300 were a test set to
verify the accuracy of the model. The unlabeled 2000 forest fire images were added to the
training by the semi-supervised learning method proposed in Section 2.4. This method
avoids a lot of manual annotation work.



Forests 2023, 14, 361 4 of 21Forests 2023, 14, x FOR PEER REVIEW 4 of 23 
 

 

 

Figure 1. Schematic diagram of forest fire data set. 

2.2. Data enhancement 

In this paper, we used the mosaic online data enhancement method in the training 

process. The data samples were processed before each epoch training; multiple forest fire 

images were randomly cropped, scaled, and rotated, and other operations were stitched 

into one image as training data, which enriches the background of the forest fire dataset. 

The mosaic online data enhancement method also increases the number of small target 

samples by randomly reducing the large target samples to small target samples. To a cer-

tain extent, this can improve the convergence speed of the model as well as the detection 

accuracy. The online data enhancement effect is shown in Figure 2. 

 

Figure 2. Schematic Diagram of Mosaic Online Enhancement Effect. 

Figure 1. Schematic diagram of forest fire data set.

2.2. Data Enhancement

In this paper, we used the mosaic online data enhancement method in the training
process. The data samples were processed before each epoch training; multiple forest fire
images were randomly cropped, scaled, and rotated, and other operations were stitched
into one image as training data, which enriches the background of the forest fire dataset.
The mosaic online data enhancement method also increases the number of small target
samples by randomly reducing the large target samples to small target samples. To a
certain extent, this can improve the convergence speed of the model as well as the detection
accuracy. The online data enhancement effect is shown in Figure 2.
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2.3. The Proposed Forest Fire Target Detection Model, TCA-YOLO
2.3.1. Basic Frame, YOLOv5

YOLOv5 is an excellent target detection model with high precision and fast detection
speed. In this paper, YOLOv5 was selected as the basic framework of the forest fire target
detection model. A series of improvements were made to propose an improved forest fire
target detection model, TCA-YOLO. The network structure of YOLOv5 is shown in Figure 3.
The whole network structure consists of the input, backbone, neck, head (prediction part),
etc. The backbone part mainly consists of basic network modules such as CBS, CSP and
SPPF, whose main function is to extract image feature information. The CSP module uses a
residual network structure to learn more feature information. The SPPF is a spatial pyramid
pooling module, which is also the output of the backbone network, and its main function
is to convert the extracted feature information of arbitrary size into a fixed-size feature
vector. The neck network mainly adopts a feature pyramid structure network based on
PAFPN [33], which can transfer the feature information of targets of different sizes. The
head part uses three feature layers to predict targets of different scales.
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2.3.2. Using Self-Attention Mechanism to Enhance the Extraction of Global Information of
Forest Fires

The main feature extraction network of YOLOv5 is a convolutional neural network
(CNN), which can extract the features of forest fires effectively to a certain extent. However,
due to the limitations of convolutional operations, the convolutional layer mainly focuses on
local information by establishing relationships between neighboring pixels; its perceptual
field size is limited, and it has limitations in capturing remote interaction information.
Therefore, the pure CNN architecture is not sufficient for the global feature extraction
of forest fires. In recent years, self-attention mechanisms have started to be introduced
into the field of computer vision in order to overcome the limitations of the inherently
local nature of convolutional operations. One of the best performers is Transformer, and
Transformer was first applied in natural language processing [34,35]. ViT first applied the
Transformer encoder to computer vision, and excellent results were achieved in various
target detection and segmentation tasks. The Transformer encoder can extract global image
information and rich contextual information. The Transformer encoder structure is shown
in Figure 4. Firstly, the image is sliced into patches of a given size and combined with
position encoding to obtain a one-dimensional vector, which forms the input to the encoder
module. The encoder consists of two layers, a multi-headed attention sub-layer consisting
of multiple self-attention mechanisms and an MLP fully connected sub-layer, each using
residual connections, and a norm layer before and after the two sub-layers to prevent the
overfitting of the network.
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The multi-headed attention mechanism is an important part of the encoder module,
which can compute multiple sets of data from the input in parallel. The self-attention
feature output is calculated by dot product attention, as shown in Equation (1).

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

V, Q, K are the input features, representing the value vector, query vector, and key
vector, respectively, and dk is the dimension of the input features. The correlation matrix of
the vectors is obtained by multiplying with the transposition Q and K. To avoid gradient
disappearance caused by the activation function of so f tmax, normalization is used, i.e.,
dividing by

√
dk. This is then multiplied with the matrix V to obtain the weighted output.

Thus, the multi-headed attention mechanism module not only focuses on the current pixel
but also fuses the features of other pixels in the context.
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In this paper, the Transformer encoder is embedded in the CSP module of the original
feature extraction network of YOLOv5 to form the Transformer module, which forms a
CNN+Transformer architecture in the original feature extraction network, which can make
up for the fact that the original CNN architecture cannot fully extract the global features
of forest fires. The Transformer module has a self-attention mechanism, which can solve
the problem of long-distance dependence and obtain global information and contextual
information on forest fire targets. Thus, it can enhance the extraction of global features of
forest fire targets and achieve better detection results for forest fire targets.

2.3.3. Using Coordinate Attention Mechanism to Focus on Forest Fire Targets

We integrated the Coordinate Attention (CA) mechanism into the forest fire target
detection model to further improve the attention on forest fire targets. CA is a lightweight
attention mechanism that considers the channel dimension and the spatial dimension in
parallel. The CA attention mechanism solves two problems: first, the SE [36] attention
mechanism, although excellent, only focuses on the information of channel dimension
and does not consider the spatial location information; second, the CBAM [37] attention
mechanism focuses on both the channel dimension and spatial dimension, but its spatial
note dimension branch attention does not address the long-distance dependence problem.
CA not only acquires inter-channel information but also considers the information of
direction-dependent location, which can help the model locate and identify forest fire
targets accurately. The specific flow of CA is shown in Figure 5.

Forests 2023, 14, x FOR PEER REVIEW 7 of 23 
 

 

avoid gradient disappearance caused by the activation function of softmax , normaliza-

tion is used, i.e., dividing by kd . This is then multiplied with the matrix V  to obtain 

the weighted output. Thus, the multi-headed attention mechanism module not only fo-

cuses on the current pixel but also fuses the features of other pixels in the context. 

In this paper, the Transformer encoder is embedded in the CSP module of the original 

feature extraction network of YOLOv5 to form the Transformer module, which forms a 

CNN+Transformer architecture in the original feature extraction network, which can 

make up for the fact that the original CNN architecture cannot fully extract the global 

features of forest fires. The Transformer module has a self-attention mechanism, which 

can solve the problem of long-distance dependence and obtain global information and 

contextual information on forest fire targets. Thus, it can enhance the extraction of global 

features of forest fire targets and achieve better detection results for forest fire targets. 

2.3.3. Using Coordinate Attention Mechanism to Focus on Forest Fire Targets 

We integrated the Coordinate Attention (CA) mechanism into the forest fire target 

detection model to further improve the attention on forest fire targets. CA is a lightweight 

attention mechanism that considers the channel dimension and the spatial dimension in 

parallel. The CA attention mechanism solves two problems: first, the SE [36] attention 

mechanism, although excellent, only focuses on the information of channel dimension and 

does not consider the spatial location information; second, the CBAM [37] attention mech-

anism focuses on both the channel dimension and spatial dimension, but its spatial note 

dimension branch attention does not address the long-distance dependence problem. CA 

not only acquires inter-channel information but also considers the information of direc-

tion-dependent location, which can help the model locate and identify forest fire targets 

accurately. The specific flow of CA is shown in Figure 5. 

 

Figure 5. CA Mechanism Schematic. 

As shown in the figure above, the CA attention mechanism includes two steps: coor-

dinate information embedding and coordinate attention generating. The output of the 

previous layer of convolution is used as the input feature map X of the CA attention mod-

ule for the information embedding operation. Using an average pooling operation of pool-

ing kernel size (H, 1) or (1, W) on the level, each channel in the vertical coordinate direc-

tion is encoded to obtain the output characteristic diagram with channel C , height H , 

Figure 5. CA Mechanism Schematic.

As shown in the figure above, the CA attention mechanism includes two steps: co-
ordinate information embedding and coordinate attention generating. The output of the
previous layer of convolution is used as the input feature map X of the CA attention module
for the information embedding operation. Using an average pooling operation of pooling
kernel size (H, 1) or (1, W) on the level, each channel in the vertical coordinate direction is
encoded to obtain the output characteristic diagram with channel C, height H, and channel
C width W. These two transformations lead to a feature map perceived for both spatial
orientations. This is very different from the SE attention mechanism, which produces a
single-channel attention feature map, as shown in Equations (2) and (3).

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (2)
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zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (3)

The above transformations can well obtain the global perceptual field and encode the
location information, then perform the coordinate attention generation operation. The two
spatially oriented perceptual feature maps transformed by the above two equations are
subjected to the concat join operation, and then the fused feature map of spatial information
in high and wide dimensions f is generated by a 1 × 1 convolution F1, whose feature
map size is C/r × 1 × (H + W), as shown in Equation (4), where δ is the nonlinear
activation function.

f = δ
(

F1

([
zh, zw

]))
(4)

f h and f w are two independent feature maps divided by f along the two spatial
dimensions of height and width, and then f h and f w are transformed using two convolution
kernels of size 1 × 1, Fh and Fw, to obtain feature maps of different spatial dimensions with
the same number of channels as the original input feature maps, as shown in Equations (5)
and (6), where σ is the Sigmoid activation function.

gh = σ
(

Fh

(
f h
))

(5)

gw = σ(Fw( f w)) (6)

According to the above calculation, the attention weight in the height direction gh and
the attention weight in the width direction gw are obtained, and finally, the input feature
map X is calculated by multiplicative weighting to obtain a feature map where the attention
weights have been rescaled in the height and width dimensions, as shown in Equation (7).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (7)

We insert the CA attention mechanism module after each CSP module in front of
YOLOv5’s head. The attention mechanism is computed for each CSP module before the
head part of YOLOv5 to adjust the weight of the target location information in the feature
map to enhance the extraction of the main location features of the forest fire target. The
position information bias is reduced, and the model’s attention to the forest fire target is
improved.

2.3.4. Multi-Scale Feature Fusion with Adaptively Spatial Feature Fusion

The forest fire targets in the images are often obscured, resulting in some features
being missed. The scale of forest fire targets also varies. In addition, the forest fire detection
process is also easily interfered with by forest fire-like targets. In order to improve the
feature extraction ability of multi-scale forest fire targets and effectively suppress the
interference of invalid features in the complex background of forest areas, it is necessary
to enhance the fusion of multi-scale features. The unimproved YOLOv5 mainly uses
PAFPN. PAFPN cannot fully utilize the features of forest fire targets at different scales
because PAFPN simply transforms the feature maps to the same size and then sums
them up. Therefore, in order to perform feature fusion more rationally, we integrate
adaptively spatial feature fusion (ASFF) technology, which can enhance the fusion of multi-
scale features, enhance the expression of relevant features and reduce the interference of
irrelevant features. It enables the model to learn how to retain only useful information
in space and filter out useless information from other layers. ASFF adaptively learns the
corresponding weights for each layer’s feature map, multiplies the feature map with the
obtained weights and then fuses them. The conflicting information can be spatially filtered
to suppress the inconsistency in gradient back-propagation, which can solve the problem
of conflicting image spatial information in the process of the multi-scale feature fusion of
forest fire targets.
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Figure 6 shows how to perform feature fusion. Taking ASFF-3 as an example, Level
1, Level 2, and Level 3 are the three feature layers output from the neck part of the YOLO
network. x1, x2, and x3 are the features of Level 1, Level 2, and Level 3, respectively. We
then multiply the parameters α3, β3, and r3 and sum them up to obtain the feature ASFF-3
after feature fusion. This process is shown in Equation (8).

yl
ij = αl

ij ∗ x1→l
ij + βl

ij ∗ x2→l
ij + rl

ij ∗ x3→l
ij (8)

where yl
ij denotes the new feature map obtained by ASFF. al

ij, βl
ij, rl

ij are the weight parameters
of the three feature layers, which are made to satisfy Equation (9) by the Softmax function:

a1
ij + β1

ij + r1
ij = 1 (9)Forests 2023, 14, x FOR PEER REVIEW 10 of 23 
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α1
ij satisfies Equation (10):

a1
ij =

eλ1
aij

eλ1
aij + eλ1

βij + eλ1
γij

(10)

al
ij, βl

ij, and rl
ij range from 0 to 1. x1→l

ij , x2→l
ij , and x3→l

ij denote the features of layers 1,
2, and 3, respectively.

Since the summation operation is performed, it is necessary to ensure that Level 1,
Level 2, and Level 3 have the same features and the same number of channels in each
layer, so up-sampling or down-sampling is needed to adjust them. Taking ASFF-3 as an
example, two rounds of upsampling are needed to make the results of Level 1 and Level 2
have the same size as level 3. First, Level 1 and Level 2 need to be compressed by a 1 × 1
convolution to the same number of channels as Level 3, and then quadruple and double
upsamplings are performed using interpolation to obtain the same dimension as Level 3.
Finally, the summation is performed.
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In this paper, the integration of the ASFF technique into the forest fire detection model
can improve the multi-scale feature fusion of forest fire targets, which can more fully utilize
the underlying fine-grained features as well as the semantic information of high-level
features. It enhances the ability of the model to represent the forest fire target features in
the complex environment of the forest area and effectively suppresses the interference of
invalid features in the complex background of the forest area for forest fire detection, thus
improving detection accuracy.

2.3.5. The General Framework of the Proposed Forest Fire Target Detection
Model TCA-YOLO

In this paper, a forest fire target detection model, TCA-YOLO, is proposed with the
following improvements using the framework of YOLOv5. Figure 7 shows the overall
framework of TCA-YOLO. Firstly, the Transformer module (the module obtained by em-
bedding the Transformer encoder in the original CSP module of YOLOv5) was integrated
into the original feature extraction network of YOLOv5 to form a feature extraction net-
work with CNN+ Transformer architecture. The self-attention mechanism of Transformer
enables the model to obtain a larger receptive field and more contextual information, which
enhances the model’s global feature extraction of forest fire targets. Secondly, in order to
make the model imitate human vision to selectively focus on the forest fire target and ignore
other invalid features, this paper inserted the Coordinate Attention mechanism module
before the Head of YOLOv5 so that the CSP module of each one before the head of YOLOv5
performs an attention mechanism calculation to adjust the weight of the target location
information in the feature map and enhance the model’s attention to forest fire targets.
Finally, in order to make up for the deficiencies in the original multi-scale feature fusion
of YOLOv5, this paper uses the ASFF technique in the head part of the model to improve
the multi-scale feature fusion of forest fire targets. It suppresses the interference of invalid
features in the complex environment of forest areas for forest fire detection and improves
the accuracy of TCA-YOLO in detecting forest fire targets in the complex environment of
forest areas.
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2.4. The Proposed Semi-Supervised Learning Method for Training TCA-YOLO

Although the proposed TCA-YOLO has greatly improved YOLOv5, its performance
also depends on the number of forest fire samples used for training. Manually labeling
a large number of forest fire images takes a lot of time and requires professionals to do
the labeling. In addition, although a certain number of labeled forest fire samples exist on
the Internet, there are almost hundreds of times more unlabeled forest fire samples than
labeled ones, and various forest fire videos can also be framed into unlabeled forest fire
samples for exploitation. Making full use of the unlabeled samples can further improve the
accuracy of the model. Therefore, this paper proposes a semi-supervised strategy to train
the proposed forest fire target detection model. Only a small number of manually labeled
forest fire samples are needed, and the remaining unlabeled samples are automatically
labeled using the proposed method, saving a lot of manual labeling work and improving
the accuracy of TCA-YOLO through a reasonable training strategy.

We found through preliminary experiments that using different numbers of manually
labeled forest fire datasets has a certain impact on the accuracy of TCA-YOLO. We trained
TCA-YOLO with 50 to 1000 manually labeled forest fire datasets, respectively, and found
that the accuracy of the model improves with the increase in the number of samples. When
the number of manually labeled forest fire samples reaches 700, the average accuracy
of TCA-YOLO reaches 75%, but it starts to converge slowly thereafter. Therefore, using
700 manually labeled forest fire samples can stabilize the accuracy of the model at more
than 75% and minimize the manual labeling effort.

As shown in Figure 8, 700 unlabeled forest fire samples are first selected from a
large number of unlabeled forest fire samples with high training values for the model to be
manually and accurately labeled. This small number of manually labeled forest fire samples
is used to train TCA-YOLO to derive an initial model weight, M. Forest fire detection with
weight M can achieve certain accuracy, but the accuracy needs to be further improved.
The supervised model weight M is used to predict the unlabeled forest fire dataset. If the
forest fire target can be detected, the prediction probability (confidence), target category
and boundary box for locating the forest fire target will be output. bx, by, bh, and bw are
parameterized representations of the boundary box of the detected forest fire target. The
label file obtained from the manually labeled forest fire dataset contains only the positioning
coordinates of the forest fire target bounding box and the judgment result of whether it is a
forest fire target or not, which can also be obtained when the unlabeled forest fire dataset is
predicted using weight M. Therefore, we wrote a program to automatically save the fire
target bounding box information obtained when the unlabeled fire dataset is predicted by
the weight M and save the information in the YOLO dataset format. Automatic labeling of
forest fire datasets is thus achieved. Then, the labels with high confidence are screened and
added to the training set as pseudo-labels to train TCA-YOLO to obtain the new model
weights M’. We replace M with M’ and repeat the above steps until the model effect does
not appear to be boosted, or the unlabeled dataset is empty. If new unlabeled forest fire
datasets become available in the future, the strategy described above can also be used to
automatically label and add labeled datasets to the training to continuously improve the
accuracy of TCA-YOLO. The specific algorithm flow for training TCA-YOLO using the
proposed strategy is shown in Algorithm 1.
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Algorithm 1: The semi-supervised algorithm for training TCA-YOLO

1: The total number of forest fire samples is I + J, where the total number of manually labeled

samples is I, the number of unlabeled samples is J, and J >> I. DL =
{(

xi, yi
)}I

i=1
is the set

of labeled forest fire datasets, DU =
{(

xi
)}J

j=1
is the set of unlabeled forest fire datasets,

and x and y are the true and predicted values of forest fire datasets, respectively.
2: Pre-training: Using a small number of manually labeled forest fire datasets DL to train the

proposed forest fire target detection model TCA-YOLO in this paper yields an initial
supervised model weight M.

3: Input: DL, DU , and the initial weight M of TCA-YOLO.
4: Output: The final weight file F for the forest fire target detection model TCA-YOLO.
5: Repeat:

1. Predictions are made on the unlabeled forest fire dataset DU using M to obtain the set

of pseudo-labeled dataset DP =
{(

xj, yj
)}J

j=1
and the predicted probability

(confidence) pj corresponding to each label. J is the total number of all pseudo-labeled
samples.

2. The samples with predicted probability pj > predetermined probability P in DP are
filtered as high-confidence samples to be used as pseudo-labeled samples for training.
The set of pseudo-labeled samples for training is denoted as DPT= {(xe, ye)}E

e=1. E is
the total number of samples with confidence higher than the predetermined value P.

3. Add DPT to DL. The original dataset of DPT (unlabeled) is noted as DUP ={(xe)}E
e=1.

Remove DUP from DU . Update DL and DU . Clear DP′ , DPT , and DUP.
4. Train TCA-YOLO with the new DL to obtain the new model weight M′ and replace M

with M′.

6: Until: No forest fire samples are available in DU , or the accuracy of TCA-YOLO is no longer
improved.

7: Return: F
8: End.
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2.5. Experimental Environment and Parameters

In this paper, model training and testing were performed on a Windows 64-bit operat-
ing system. The CPU of the computer was an AMD R7 5800H with 32G of running memory,
and the GPU was an NVIDIA GeForce RTX 3060 with 6G of video memory. The model was
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programmed in Python 3.8 and built and improved using the deep learning framework
Pytorch, with an AMD R7 5800H CPU, 32G of running memory, and an NVIDIA GeForce
RTX 3060 GPU with 6G of video memory. The CUDA version is 11.1, and the CUDNN
version is 8.0.5.

The input images during training were uniformly adjusted to 640 × 640 pixels, and
the batch size was 8.

3. Results
3.1. Model Evaluation and Ablation Experiment

The detection effectiveness of the model was evaluated by the precision, recall, and
average precision, using FPS to evaluate the detection speed. Average precision (AP) is the
integral of the P-R curve constructed from precision (P) as the vertical axis and recall (R) as
the horizontal axis. As shown in Figure 9, the value of AP is the area under the P-R curve,
and the closer the P-R curve is to the upper right, the better the model performance is.
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Recall reflects the ability of the forest fire detection model to find positive sample
targets; precision reflects the ability of the model to classify samples, and mean average pre-
cision reflects the overall performance of the model to detect and classify targets. The mean
average precision (mAP) represents the average of the average precision of all categories.
Its calculation formulas are as follows (Equations (11)–(14)).

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

AP =
∫ 1

0
P(R)dR (13)

mAP =
1
N

N

∑
i=1

APi (14)

TP represents the number of positive samples detected correctly. FP represents the
number of positive samples detected incorrectly. FN represents the number of negative
samples detected incorrectly. N represents the number of categories of data.

In this paper, IoU (intersection over union) is introduced to calculate the average
accuracy of the model in accordance with the evaluation requirements of the target detection
model. IoU is used to calculate the ratio of intersection over the union between the predicted
bounding box and the true bounding box.
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mAP0.5 is the mean mAP obtained by evaluating the forest target detection model at
an IoU threshold of 0.5. mAP0.5:0.95 is the mean mAP obtained by evaluating the model
at different IoU thresholds (0.5 to 0.95, step 0.05), which is a more stringent indicator of
model accuracy.

To verify whether TCA-YOLO can detect forest fire targets in real time, the detection
speed of TCA-YOLO was evaluated using FPS (frames per second), i.e., the number of
forest fire images that can be processed within each second.

We used the proposed semi-supervised strategy to train the unmodified YOLOv5 and
TCA-YOLO. We used the same test set to verify the detection accuracy of YOLOv5 and
TCA-YOLO, and we used the above indicators to perform the evaluation. An ablation
experiment was performed to verify the effectiveness of each module of TCA-YOLO. The
model evaluation results and ablation experiment results are shown in Table 1.

Table 1. Results of the experiment.

Model mAP0.5
(%)

mAP0.5:0.95
(%)

P
(%)

R
(%) FPS

YOLOv 5 79.26 54.38 78.98 79.19 55.3
YOLO v5 + Transformer 81.56 56.01 82.45 81.23 54.5

YOLO v5 + Transformer + CA 82.78 56.45 84.37 83.01 54.0
YOLO v5 + Transformer + CA + ASFF

(TCA-YOLO, ours) 84.56 57.38 85.26 83.37 53.7

The evaluation shows that the detection accuracy of TCA-YOLO for forest fire targets
is significantly improved after the improvement; in particular, mAP0.5 is 5.3 higher than
YOLOv5. Although the FPS (the test set contains images of different resolutions) is slightly
decreased, it still reaches 53.7, i.e., TCA-YOLO can detect 53.7 forest fire images per second.
The video of real-time surveillance is usually 25 frames per second to 30 frames per
second, so the detection speed of TCA-YOLO is much higher than the requirements for
real-time detection.

Since the pixel sizes of the images in the test set vary, we also tested the detection
speed of TCA-YOLO for forest fire images of different resolutions, as shown in Table 2
below. It can be seen that the detection speed of TCA-YOLO meets the requirement of
real-time detection even for high-definition images.

Table 2. The detection speed of TCA-YOLO for images of different resolutions.

Resolution FPS

256 × 400 73.93
334 × 500 69.43
720 × 1280 55.82

2160 × 3840 46.51

3.2. Forest Fire Target Detection Performance and Comparative Analysis

By comparing the forest fire target detection results of the proposed model, TCA-
YOLO, with the unimproved YOLOv5, we find that the detection effect of TCA-YOLO is
greatly improved over the original unimproved YOLOv5. In particular, the resistance to
complex background interference and the ability to extract the global information of forest
fire targets are much improved. The number of missed and false detections of forest fire
targets is also less. The focus on forest fire targets is higher, and the detection of small target
forest fires is better. This further validates the effectiveness of each module of TCA-YOLO.
Some of the identification results are shown below.

As shown in Figure 10, when disturbed by similar forest fire targets, YOLOv5 in-
correctly treats forest fire-like targets as forest fire targets, while TCA-YOLO is able to
distinguish them.
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Figure 10. Comparison of anti-interference capability. (a) Two targets were misdetected by YOLOv5.
(b) Our model has no misdetected targets.

As shown in Figure 11, YOLOv5 fails to effectively extract the global information of
the forest fire target in the figure; only the local area of the forest fire target is framed. It
cannot effectively localize the forest fire target. In contrast. TCA-YOLO can effectively
extract the global information of the forest fire target, and the receptive field is much larger.
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Figure 11. Comparison of global information extraction ability for forest fires. (a) YOLOv5 locates
only a local area of the fire target. (b) Our model locates the global area of the fire target.

As shown in Figure 12, YOLOv5 has multiple missed targets when facing forest fire
targets at different scales, while TCA-YOLO has no missed targets.
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The timely detection of initial small target forest fires is crucial for forest fire detection.
As shown in Figure 13 below, YOLOv5 fails to detect a small target forest fire at a long
distance, while TCA-YOLO can accurately detect it in the image and has a confidence level
of 0.90.
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Figure 13. Comparison of small target forest fire detection. (a) YOLOv5 fails to detect the small target
forest fire at a distance. (b) Our model can detect the distant small target forest fire.

As shown in Figure 14 below, TCA-YOLO detects better than YOLOv5 in most cases.
However, similar to YOLOv5, TCA-YOLO also has some very small fire points that cannot
be detected because the features of these small fire points are not very similar to the flame
features in most forest fire datasets (including our self-built dataset and most publicly
available datasets), which is something we need to improve in the future.
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Figure 14. Comparison of the detection effect of YOLOv5 and TCA-YOLO. (a) YOLOv5’s performance
in detecting small fire points. (b) Our model’s performance in detecting small fire points.

In this paper, we also tested the detection effect of TCA-YOLO on the publicly available
fire video dataset VisiFire [38] and compared it with the mainstream target detection models.
A total of 11 positive sample videos of fire in forest scenes and other scenes are included
in VisiFire. The slices of the proposed TCA-YOLO detection results for the 11 videos are
shown in Figure 15a–k.
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We evaluate the detection accuracy of TCA-YOLO and other mainstream target detec-
tion models for each frame of the open fire video dataset VisiFire using TPR (true positive
rate) and FNR (false negative rate), and the results are shown in Table 3 below. It can
be seen that the detection accuracy of TCA-YOLO is ahead of other mainstream target
detection models.

Table 3. Performance when detecting open forest fire video dataset VisiFire.

Video Total
Frames

TCA-YOLO (Ours) YOLO Fast R-CNN [39] EffcientDet [40]

TPR (%) FNR (%) TPR (%) FNR (%) TPR (%) FNR (%) TPR (%) FNR (%)

Video 1 293 97.43 2.57 95.23 4.77 94.32 5.68 94.75 5.25
Video 2 510 97.98 2.02 96.99 3.01 93.66 6.34 94.01 5.99
Video 3 318 98.78 1.22 98.43 1.57 96.13 3.87 95.78 4.22
Video 4 1655 97.79 2.21 95.49 4.51 94.99 5.01 95.01 4.99
Video 5 2406 97.21 2.79 96.23 3.77 93.87 6.13 94.02 5.98
Video 6 258 98.23 1.77 97.31 2.69 95.95 4.05 94.76 5.24
Video 7 547 97.35 2.65 96.01 3.99 94.18 5.82 94.01 5.99
Video 8 513 98.19 1.81 96.63 3.37 95.11 4.89 95.01 4.99
Video 9 663 98.81 1.19 98.79 1.21 95.33 4.67 94.84 5.16
Video 10 235 98.35 1.65 97.01 2.99 96.01 3.99 95.87 4.13
Video 11 178 98.24 1.76 96.11 3.89 95.03 4.97 94.88 5.12
Average 728.3 98.03 1.97 96.75 3.25 94.96 5.04 94.81 5.19

4. Discussion and Conclusions

Forest fires occur frequently around the world, causing serious economic losses and
human casualties. Therefore, forest fire detection is particularly important. The use of
images for forest fire detection has become a mainstream trend. The intelligent recognition
of forest fire images is mainly based on the deep learning technique of CNNs. Although
the deep learning techniques based on CNNs have solved the problem of the intelligent
recognition of forest fires to a certain extent, the extracted features of forest fire images are
only limited to local regions due to the limitations of convolutional operations and their
lack of global modeling capabilities. Therefore, CNNs have difficulty capturing global
and contextual information on forest fire targets, which greatly affects the performance of
forest fire detection. CNN-based forest fire target models also do not pay enough attention
to forest fire targets and are susceptible to the interference of complex backgrounds in
forest areas, treating invalid forest fire-like features as forest fire targets. In addition, CNN-
based forest fire detection techniques require a large number of manually labeled forest
fire datasets. This requires a lot of manual labeling work by professionals and is very
time-consuming.

Therefore, this paper proposes a solution to these problems and designs an improved
forest fire target detection model, TCA-YOLO, using the convolutional neural network-
based target detector YOLOv5 as the basic framework and a series of improvements. Firstly,
to make up for the deficiency of CNNs in the global feature extraction of forest fires, we use
a Transformer encoder with a self-attention mechanism and CNN junction as the feature
extraction network, which enhances the extraction of the global information of forest fire
targets and has a more powerful receptive field to obtain more contextual information.
Secondly, in order to enhance the model’s focus on forest fire targets, we integrate the
Coordinate Attention (CA) mechanism in the neck part of YOLOv5. CA not only obtains
inter-channel information but also considers the information of direction-related location,
which helps the model to better locate and identify forest fire targets. In addition, we
also integrate the adaptively spatial feature fusion (ASFF) technique. ASFF improves the
multi-scale fusion of forest fire features by adaptive methods to adjust the fusion ratio
between different feature layers. It thus effectively suppresses the interference of invalid
features in the complex background of forest areas for forest fire detection and further
improves the detection accuracy of TCA-YOLO. Finally, this paper adopts semi-supervised
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learning to train the proposed forest fire target detection model, TCA-YOLO, using only a
small number of manually labeled forest fire datasets to obtain the initial model weights,
and the rest of the unlabeled datasets are automatically labeled using an automatic labeling
method to filter out those with high confidence labels as pseudo-labels to join the training
set to retrain TCA-YOLO. The model then continuously iterates to improve the accuracy
step by step, saving a large amount of manual annotation time.

The average accuracy of forest fire target detection (mAP0.5) reaches 84.56, which is
5.3 higher than the unimproved YOLOv5. The FPS reaches 53.7, which means TCA-YOLO
can quickly detect forest fire targets in real-time. By comparing and analyzing the detection
results, TCA-YOLO also outperformed the unimproved YOLOv5 in detecting forest fire
targets in different scenarios. The ability of TCA-YOLO to extract global information on
forest fire targets was much improved, and it could locate forest fire targets more accurately.
TCA-YOLO misses fewer forest fire targets and is less likely to be interfered with by forest
fire-like targets. The focus on forest fire targets is higher, and the detection of small target
forest fires is better. If new unlabeled forest fire datasets are available, the unlabeled
datasets can also be automatically labeled to join the training using the strategy proposed
in this paper to continuously improve the detection accuracy of TCA-YOLO.

The proposed forest fire target detection model is mainly used for the real-time auto-
matic detection of forest fire targets on watchtowers, forest video surveillance equipment
and UAVs deployed in place of manual inspection. The model can mark the bounding
box of the fire target in the image to determine the location of the fire target in the image.
Since these video surveillance deployments capture small forest fire targets at long dis-
tances and take images with low numbers of pixels, it is not possible to segment the fire
targets pixel-by-pixel with flame edges (the function of the semantic segmentation model)
in most cases, so we only design a forest fire target detection model instead of a semantic
segmentation model in this stage of work. Although it outputs a rectangular bounding
box, it is as capable of localizing forest fire targets as the semantic segmentation model.
However, both the semantic segmentation and target detection models require excellent
feature extraction networks, and usually, the semantic segmentation model also has a target
detection branch and shares the same feature extraction network with the target detection
branch. Although this model is only a target detection model at this stage, the improved
feature extraction network has good performance. In future work, we will continue to use
the feature extraction network of the proposed model and add a semantic segmentation
branch to share the same excellent feature extraction network with the proposed model to
further improve the functionality of the model.
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