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Abstract: Biomass conversion and expansion factors (BCEFs) are widely utilized in national and
regional biomass estimates and greenhouse gas reporting, as they can be used to directly transform
the stocking volume into biomass. In this study, the power function was used as the basic model form
with biotic variables, and abiotic variables were considered to improve the fitting results. Then, the
random effects parameters were also introduced into the models to describe the variation of BCEFs

among different forest management units. Random sampling strategies were applied to calibrate
the random effects. The results showed that the stocking volume exhibited a negative proportional
relationship in the stem BCEF (BCEFst), the root BCEF (BCEFro) and the total tree BCEF (BCEFto)
models, and the quadratic mean diameter exhibited a positive proportional relationship in the branch
BCEF (BCEFbr) and the foliage BCEF (BCEFfol) models. In addition, the fitting effect of generalized
models with abiotic predictors was superior to that of the basic models. Considering the effects
of abiotic variables on the BCEFs of each component, the results showed that BCEFst and BCEFto

decreased as the mean annual precipitation increased; BCEFbr increased as the annual temperature
increased; BCEFfol gradually decreased as the elevation increased; and BCEFro first increased with
increasing mean annual temperature and then declined. In conclusion, abiotic factors explained the
variation in BCEFs for the biomass components of the natural white birch forest. Although the fitting
effect of generalized models with abiotic predictors was superior to that of the basic models, the
mixed-effects model was preferable for modeling the BCEFs of each component. In addition, the
prediction precision of the mixed-effects models enhanced gradually with increasing sample size,
and the selection of eight plots for calibration and prediction based on the mixed-effects model was
the best sampling strategy in this study of a natural white birch forest.

Keywords: natural white birch forest; BCEFs; mixed effects model; topographic conditions; climate variables

1. Introduction

As one of the crucial components of terrestrial ecosystems, forest ecosystems play
a significant role in the global greenhouse gas (GHG) balance because they can absorb
and store more carbon and mitigate the global environmental pollution caused by global
warming [1–3]. The method for estimating forest biomass carbon is the conversion of
widely available biomass into biomass carbon using the average carbon concentration for
forests [4–6]. Usually, a value of 45% or 50% is used as the common carbon concentration
for forests. This indicates that the average carbon concentration is generally constant.
Therefore, the assessment of biomass leads to an accurate biomass calculation of carbon
sequestration in the ecosystem. In the background of increasing concentrations of CO2 and
global warming [7], improving the accuracy of biomass estimation and using appropriate
estimation methods are essential for the assessment of biomass [8,9].
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Stand biomass estimation methods mainly include biomass allometric equations
based on measured attributes and biomass assessments using biomass conversion and
expansion factors (BCEFs) [10–13]. However, there are two drawbacks to the allometric
equation: (1) the variables influencing the stand biomass cannot be taken into account
comprehensively and the main independent variables are diameter, height, age or crown,
based on previous research [6,14–21]; and (2) we cannot use allometric equations for large-
scale assessments, because they are based on individual tree diameter at breast height
(DBH), height (H) and crown width (CW) that are not available in forest inventories of
large-scale measurements, especially H and CW. These two problems are common in most
forest types, especially in natural white birch forests.

Four parameters are normally used to convert stand biomass values: biomass con-
version and expansion factors (BCEFs), wood density (WD), biomass expansion factors
(BEFs) and root-to-shoot ratio (root: shoot ratio, R/S) [7,22]. However, compared with
other conversion factors, the BCEFs of each component are widely used in large-scale forest
carbon storage calculations [10,23]. BCEF is considered the correlation between the stocking
volume and the biomass of each component and is defined as the ratio of biomass of various
organs to the stocking volume; it can be used to directly convert the stocking volume data
into the biomass of various organs. BCEFs can be divided into two forms: constant BCEFs
defined from the mean or range of BCEFs for a certain forest type, and BCEFs which is
estimated through equation-based stand factors [11,24,25]. However, a large number of
studies have shown that BCEFs values can vary according to the origin and type of species,
climate change, tree size, and age [20,23,25].

Assuming a constant BCEFs can lead to large estimation errors [26,27]. To reduce the
uncertainty in the biomass and carbon storage estimation, variable BCEFs have been used
in numerous studies to account for variation in the allometry and ability of carbon storage
and fixation.

Age-sensitive exponential functions were developed in earlier studies to predict BCEFs
for biomass components; however, additional studies showed that the stand age could not
explain differences in stand growth conditions and stand biology [28,29]. An increasing
number of researchers have introduced the factors of stand growth, stocking volume,
quadratic mean diameter at breast height, and stand average height into the BCEFs model,
but their analyses did not consider the effect of abiotic factors on BCEFs [30,31]. With
further study, some scholars have also suggested that abiotic factors such as site index,
climate, and forest management intensity profoundly impact BCEFs, indicating that abiotic
factors should be considered in the BCEFs model [21,23,32].

In recent years, researchers used nonlinear mixed-effects models to construct forest
models [33–36]. Usually, datasets required for modeling BCEFs were derived from mea-
surements of sample plots randomly distributed in different regions, so that the nested
structure led to a high correlation between different regions and sample plots in different
regions [35,37,38]. In this case, the performance of the nonlinear mixed-effects model
surpasses the performance of ordinary least-squares regression by adding random effects
to the model [39,40]. Moreover, even though mixed-effects models are used to estimate
random effects, applying different strategies to confirm the optimal number of sampling
stands to achieve the required level of precision is necessary, so that the cost and time for
data collection can be reduced for forest managers [41,42].

White birch (Betula platyphylline Suk.) has strong natural regeneration and is the main
component species of forest vegetation in northeast China [43,44]. It can often be found
in pure forests or mixed forests with other coniferous and broad-leaved species, and is
a major pioneer tree species in the process of forest succession in natural forests [45,46].
Natural white birch forests were formed after the disturbance of the native top community
of broad-leaved red pine forests in early northeastern China, which played a transitional
role in community succession [43,45]. Natural birch forests are important for soil and water
conservation, improving soil fertility, storing carbon, and regulating and maintaining an
ecological balance in northeast China [44]. However, there have been relatively few reports
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on the BCEFs of natural white birch forests in China. Although many models of BCEFs
have been developed for other tree species, they were based on small sample size, and the
generalizability was poor. In addition, studies have shown that the carbon neutrality of
white birch mainly occurs in living trees, so it is crucial to select suitable forest biomass
estimation methods [47,48].

The objectives of the study were as follows: (1) to present a generalized model for
BCEFs including abiotic factors; (2) to quantify changes in BCEFs on regional scales using
a mixed-effects model; (3) to compare the performances of the basic model, generalized
model, and mixed-effects model, examining them with the jackknife approach and deter-
mining an appropriate sample size that considers both prediction accuracy and sampling
cost; and (4) to analyze the BCEFs differences among different conditions, including differ-
ent biotic and abiotic conditions. In summary, our goal was to determine the reason for
BCEFs differences and obtain a practical model to predict natural white birch carbon sinks.

2. Materials and Methods
2.1. Study Area

The study area is distributed in northeast China across three mountains in Heilongjiang
Province and Jilin Province: the Daxing’an Mountains (121◦12′~127◦00′ E, 50◦10′~53◦33′ N,
100~1400 m a.s.l.), Xiaoxing’an Mountains (127◦42′~130◦14′ E, 46◦28′~49◦21′ N, 600~1000 m a.s.l.)
and Changbai Mountains (121◦08′~134◦00′ E, 38◦46′~47◦30′ N, 500~1000 m a.s.l.). The
study area is found in the temperate continental climate zone. The annual average temper-
ature in northeast China varies from −7 to 6 ◦C, and the annual precipitation varies from
179 to 1189 mm (Figure 1).
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Figure 1. Study area showing the sample plot locations.

2.2. Forest Survey and Design Data

The survey data were from rectangular permanent sample plots (PSPs) in natural
white birch forests in China’s National Forest Inventory across the Daxing’an Mountains,
Xiaoxing’an Mountains and Changbai Mountains, northeast China (Figure 1). The rect-
angular PSPs were managed by 31 different forestry management units (FMUs). This
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subsample of data used for the analysis included 1035 plots. A total of 723 PSPs in 24 forest
bureaus of Heilongjiang Province were studied during the period from 2005 to 2010, and
measurements from 412 other PSPs located in seven forest bureaus of Jilin Province were
taken between 1990 and 2010. In total, the inventory data included 173 unique plots and
962 cases repeated (second) measurements. Each plot comprised an area of 30 m × 20 m.
The data in this study were surveyed in the field using a diameter tape and a Blume–Leiss
Hypsometer. The DBH of all standing living trees with DBH ≥ 5 cm in the sample plot
was measured and the tree height of three to five standard trees was measured in each plot.
DBH and H were used in the calculation of stand variables.

In addition, the topographic factors such as elevation (ELV/m), slope (◦) and slope
direction (SLP) were recorded for each sample plot. To facilitate the study of topographic
factors, they were converted into continuous variables for calculation in this study [49,50].
Table 1 lists the specific calculation formulas and descriptions for the stand variables and
topographic factors used in our study. The descriptive statistics of stand variables and
topographic conditions are listed in Table 2.

Table 1. Units and descriptions of available variables for models of biomass conversion and
expansion factors.

Attribute Variable Units Descriptions

Stand
attributes

Ha m The average tree height is the average height of 3 to 5 standard
trees in the stand.

Dq cm The quadratic mean diameter:
√

∑ DHB2
i /n,

Ddom cm The quadratic mean diameter of dominant species

G m2 hm−2 The quadratic mean dominant diameter:
n
∑
1

πDBH2
i /4000

NHa tree·hm−2 The number of trees per hectare

M m3 hm−2 stand volume: M = Σvi; vi is individual tree volume: vi = aDBHb

a and b are model coefficients based on [51]

Wi Mg hm−2 Biomass: Wi = aDBHb; a and b are model coefficients based on
Dong, et al. [16]

BCEFi Mg m3 Biomass conversion and expansion factor: BCEFi = Wi/M

Topographic
conditions

ELV m Elevation
SL The slope rate value: SL = tan(SLP)

SLP Slope direction
SLC The slope rate value multiplied by the slope cosine value.
SLS The slope rate value multiplied by the slope sine value

2.3. Climate Data

A large number of studies have shown that climate factors have significant effects
on the BCEFs of larch, eucalyptus and other tree species [23,52]. To further investigate the
influence of climate on the BCEFs of different components of natural white birch forests, the
ClimateAP database was used to obtain all the PSPs, for which the altitude ranged from 122
to 1150 m, longitude ranged from 121◦64′46′ ′ E to 31◦01′56′ ′ E, and latitude ranged from
41◦63′98′ ′ N to 453◦47′75′ ′ N [53,54]. ClimateAP is available at UBC server in both desktop
and Google Map-based web formats. It is a software application for extracting climate
data for past and future periods in the Asia-Pacific region, which can output scale-free
and downscaled monthly, seasonal, and annual climate variables for the corresponding
years based on latitude, longitude, and elevation interpolation [54]. The downscaled grids
of climate data were provided at the resolution of about 4 × 4 km [54]. In this study,
sixteen annual climatic variables were used as candidate bioclimatic variables for model
fitting. The observations of the variables were summarized for the annual climatic variables
averaged from 1981 to 2010. The names and abbreviations of the full list of climate variables
used for analysis are shown in Table 3.
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Table 2. Descriptive statistics of the stand variables and topographic conditions for birch.

Attribute Variable Mean Min. Max. SD.

Stand
attributes

Dg 13.51 5.50 27.20 4.91
G 12.64 0.55 33.19 7.08
Ha 12.52 5.00 22.70 3.44
M 82.62 2.50 247.30 54.01
N 1125.20 200.00 3467.00 617.46
Dq 12.12 5.50 21.70 3.39

BCEFst 0.5687 0.4549 0.7183 0.0449
BCEFbr 0.1076 0.0524 0.1785 0.0248
BCEFfol 0.0255 0.0180 0.0322 0.0026
BCEFro 0.2117 0.1610 0.2907 0.0235
BCEFto 0.9139 0.7473 1.1250 0.0719

Topographic
conditions

ELV 582 122 1150 200
SL 0.0888 0 0.488 0.0723

SLP 5.0473 0 26.000 4.0071
SLC 0.0106 −0.364 0.404 0.0785
SLS 0.0016 −0.330 0.488 0.0827

Note: st: stem, fol: foliage, br: branch, ro: root, to: total, SD: the standard deviation.

Table 3. List of abbreviations and explanation of available climate variables for BCEFs models. The
mean values of climate variables over each survey interval (30 years) for the period from 1981 to 2010
were used.

Variable Units Description

MAT ◦C Mean annual temperature
MWMT ◦C Mean warmest month temperature
MCMT ◦C Mean coldest month temperature
DD.0 ◦C Degree-days below 0 ◦C, chilling degree-days
DD.5 ◦C Degree-days above 5 ◦C, growing degree-days

DD.18 ◦C Degree-days below 18 ◦C, heating degree-days
DD.18.1 ◦C Degree-days above 18 ◦C, cooling degree-days

TD ◦C Temperature difference between MWMT and MCMT, or
continentality (◦C)

MAP mm Mean annual precipitation
AHM — Annual heat (MAT + 10)/(MAP/1000)
NFFD The number of frost-free days

PAS mm Precipitation as snow (mm) between August in previous
year and July in current year

EMT ◦C Extreme minimum temperature over 30 years
EXT ◦C Extreme maximum temperature over 30 years
Eref mm Hargreaves reference evaporation

CMD mm Hargreaves climatic moisture deficit

2.4. Methods
2.4.1. Basic and Generalized Model

Power functions, hyperbolic functions and reciprocal equations have been widely
used to simulate the BCEFs of each component [10,12,29]. Basic models were implemented
in R with the package “nls”. Based on a preliminary analysis, the power function was
determined as the basic model. The equation is as follows:

BCEFi = a Xb (1)

where X is the characteristic (Dq, Ha, M or G), i denotes each component (stem, branch,
foliage, root or total), and a and b are model coefficients. We used iterative least-squares
regression to implement the function [55,56].

In addition to biotic factors, BCEFi are affected by climate factors and topographic
factors [21,23,52]. Therefore, to evaluate the variation in BCEFi due to different abiotic
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factors, generalized models of biomass constituents were developed by reparameterization.
The coefficient b was not influenced by abiotic factors in the preliminary analysis. Therefore,
we adopted coefficient a of the generalized models, which was represented as a linear
function of abiotic variables [57,58]:

a = a0 + ∑ aixi (2)

where a0 is the intercept; ai are the coefficients; and xi are the environmental factors,
including topographic variables and climate variables. The study included 21 abiotic
factors with 16 climate variables and five topographic variables. To unify the dimensions,
MAP, AHM and ELV were divided by 1000, and MAT was standardized: MATstandardized =
(MAT − (−7))/(6− (−7)). The average annual temperature range is−7 to 6 ◦C in northeast
China. In addition, to avoid multicollinearity among variables and a decline in model
accuracy due to the redundancy of independent variables, the variance inflation factor (VIF)
was used to preselect all concomitant variables in the study. Covariates with statistically
significant VIF (p < 0.05)and VIF < 5 were retained in the model [59]. The parameters of the
prediction models were estimated by R, and a t test was performed on all parameters [53].

2.4.2. Mixed-Effects Models

Since the survey data were from 31 different forest management units, we used
nonlinear mixed-effects models to develop BCEFi. Both random- and fixed-effect variables
were included in the mixed-effects models. The general expression of the nonlinear mixed-
effects model is shown in Equation (3). The mixed-effects model of each component was
implemented in R using the package “nlme”, and the parameter estimation of the model
was based on the restricted maximum likelihood (REML) method [41]. Although the
location and number of random effect parameters were unknown, we assumed that all
parameters had random effects, and all models had different random effect parameter
combinations [3]. In the converged model, by comparing the Bayesian information criterion
(BIC), Akaike information criterion (AIC), and−2log-likelihood (−2LL), the optimal random
effect parameters were determined [3,41] as follows:

yi = f (Φi, xi) + ei , i = 1, 2, . . . , M (3)

where yi represents the vector of response variable (BCEFi) in the i-th FMU; M is the number
of FMUs; f is a nonlinear function of the FMU-specific parameter vector Φi and predictor
variable xi; and ei is the within-FMU independent random error vector, which follows a
multivariate normal distribution with a mean value vector of 0 and variance–covariance
matrix of R. Φi is given as:

Φi = Aiβ + Bibi ; bi ∼ N(0, D) (4)

where β is a p-dimensional fixed-effect parameter vector; bi is a q-dimensional random-
effect parameter vector, which is assumed to have a multivariate normal distribution with a
mean value vector of 0 and variance-covariance matrix of D; and Ai, and Bi are the incidence
matrices of the appropriate dimensions of fixed- and random effect, consisting of 0 or 1.

ei ∼ N
(

0, σ2G0.5
i ΓiG0.5

i

)
(5)

σ2 is the scaling factor of error dispersion, which is derived from the residuals of the
estimated model. Gi is a matrix that represents the heterogeneity of the residual variance
within-FUM and its diagonal elements were provided by the variance function. Through
the preliminary data analysis, we found no heteroscedasticity in the mixed-effects model, so
that the unit matrix Gi was set by default to 1. Matrix Γi represents the residual correlation
within the FUM, which was defined as the identity matrix I in our study.
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2.4.3. Model Assessment and Calibration Prediction

The root mean square error (RMSE), AIC, and adjusted coefficient of determination
(R2

a) were used as the main criteria for evaluating the fitting performance. The model with
the largest R2

a, and the smallest RMSE and AIC, were selected as the final model [6,15,16].

R2
a = 1−

(
n− 1
n− p

)
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ŷi)

2 (6)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/(n− p− 1) (7)

AIC = −2LL + 2p (8)

In this study, we fitted the models using the whole dataset and used the jackknife
technique to test the predictive performance of the models [60]. Mean absolute error (MAE),
mean absolute percent error (MAPE%) and model efficiency (FE) were used as the main
criteria for evaluating the performance of model validation.

MAE =
∑n

i=1|yi − ŷi|
n

(9)

MAPE =
∑n

i=1|yi − ŷi|
n

× 100 (10)

FE = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷi)

2 (11)

The fixed-effects parameters of the nonlinear mixed-effects model can be tested in the
traditional way, while the random-effects parameters require some a priori information.
The calculation of random-effects parameters in the mixed-effects models was based on
the best linear unbiased predictions (BLUPs) method [61–63]. The specific computation
formula is as follows:

b̂k = D̂ZT
k (ZkD̂ZT

k + R̂k)
−1

êk (12)

where b̂k is a vector of random effects parameters of sampled FUM k calculated by all
sampled plots; D is the variance–covariance matrix estimated in the modeling process; R̂k
is the corresponding variance–covariance matrix of within-group errors; Zk is the matrix
of the partial derivatives of the nonlinear function with respect to its random parameters;
and êk is the error term of observed BCEFs response and predicted by the fixed-effects
parameters in the mixed-effects model.

3. Results
3.1. Basic and Generalized Model

The influence of the stand variables in Table 2 on the BCEFs of different compositions
was assessed based on Equation (1); the variables M, which were strongly correlated with
BCEFst, BCEFro and BCEFto were chosen as the basic variation to establish the basic model
of BCEFst; BCEFro and BCEFto, and the variables Dq, which were strongly correlated with
BCEFfol, and BCEFbr was selected as basic variation to fit the basic model of BCEFfol, and
BCEFbr. The fit statistics based on power functions for BCEFs of biomass components are
shown Table 4.

To accurately reflect the influence of abiotic factors on the BCEFs of different compo-
nents, we introduced abiotic factors into the basic models to improve the basic models
and build generalized models. No noticeable correlation was detected among the inde-
pendent variables in the generalized models, and the VIF values of all the variables were
less than 5, indicating collinearity in these five BCEFs models. Table 5 shows the final
forms of the generalized models, where a1 and a2 are the coefficients to be estimated in the
generalized model.
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Table 4. Fitting Statistics of the Basic Model.

Predictors

Component Component BCEFbr BCEFfol BCEFro BCEFto

M (m3 hm−2) Dq (cm) Dq (cm) M (m3 hm−2) M (m3 hm−2)

parameter a 0.668 0.021 0.018 0.284 1.019
b −0.040 0.662 0.134 −0.073 −0.027

statistical index

R2
a 0.206 0.692 0.155 0.365 0.104

−2LL −3719.254 −5935.322 −9577.212 −5307.534 −2732.799
AIC −3713.254 −5929.322 −9571.212 −5301.534 −2726.799

RMSE 0.040 0.014 0.001 0.019 0.065

Table 5. Generalized models of biomass conversion and expansion factor of each component.

Generalized Model Model

BCEFst = (a + a1 ×MAP/1000)×Mb (1)
BCEFbr = (a + a1 × AHM/1000)× Dqb (2)
BCEFf ol = (a + a1 × ELV/1000)× Dqb (3)
BCEFro = (a + a1 ×MATstandardized + a2 × lnMATstandardized)×Mb (4)
BCEFto = (a + a1 ×MAP/1000)×Mb (5)

We developed the generalized model of the BCEFs for each component, including
two different variables, as well as basic variables (stand variables) and covariates (abiotic
factors). The fitting results in Tables 4 and 6 show that generalized models with abiotic
factors were better than the basic models, indicating that the abiotic variables can explain
the variation in BCEFs.

Table 6. Fit Statistics of the Generalized Model.

Index Model (1) Model (2) Model (3) Model (4) Model (5)

parameter

a 0.746 0.018 0.018 0.554 1.131
a1 −0.214 0.227 −0.003 −0.356 −0.311
a2 0.151
b −0.023 0.640 0.172 −0.048 −0.011

statistical
index

R2
a 0.393 0.709 0.264 0.561 0.295

−2LL −3997.374 −5994.685 −9721.432 −5692.578 −2982.493
AIC −3989.374 −5986.685 −9713.432 −5682.578 −2974.493

RMSE 0.035 0.013 0.002 0.016 0.057

3.2. Mixed-Effects Models

Accounting for the random effects of FMU, we added random effects to the different
parameters in the model, and mixed-effects models of position combinations of all random
effects parameters were fitted. The UN structure was selected for the random effect
variance–covariance matrix. For models with two or more random effects parameters,
either the parameters were insignificant, or the models did not converge. In the convergent
model, the AIC and −2LL values were compared to determine whether the parameter
estimation reached a significant level (Table 7). In addition to the BCEFro, we added
random parameters to the intercept term in the model, and the mixed-effects models are
given by:

Table 7 shows the final forms of the mixed-effects models, where a1 and a2 are the
fixed-effects coefficients, u1 is the random-effects coefficient. The model performance
from the mixed-effects models significantly improved with a lower AIC and a larger R2

a
than generalized models or basic models (Tables 4, 6 and 8). Obviously, the mixed-effects
model performed better when dealing with hierarchical and nested data. There was no
more obvious deviation of the residuals among the predicted BCEFs, which used the
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generalized models and mixed-effects models. Therefore, it was not necessary to eliminate
heteroscedasticity (Figure 2).

Table 7. Mixed-effects model of biomass conversion and expansion factor of each component.

Mixed-Effects Model Model

BCEFst = (a + u1 + a1 ×MAP/1000)×Mb (6)
BCEFbr = (a + u1 + a1 × AHM/1000)× Dqb (7)
BCEFf ol = (a + u1 + a1 × ELV/1000)× Dqb (8)
BCEFro = (a + a1 ×MATstandardized + (a2 + u1)× lnMATstandardized)×Mb (9)
BCEFto = (a + u1 + a1 ×MAP/1000)×Mb (10)

Forests 2023, 14, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 2. Standardized error plots for the mixed-effects models for 𝐵𝐶𝐸𝐹𝑠 of five biomass compo-

nents ((A): stem, (B): branch, (C): foliage, (D): root and (E):total) of the natural white birch forest. 

Figure 3 presents trends of 𝐵𝐶𝐸𝐹𝑠  for biomass components for different levels of 

model abiotic variables, which were the main effects, and the prediction of 𝐵𝐶𝐸𝐹 of each 

component was performed via the fixed-effects model. The results showed that the differ-

ent component 𝐵𝐶𝐸𝐹𝑠  displayed significant relationships with different stand factors. 

𝐵𝐶𝐸𝐹𝑠𝑡, 𝐵𝐶𝐸𝐹𝑟𝑜 and 𝐵𝐶𝐸𝐹𝑡𝑜 values began at a high level and decreased with increasing 

stocking volume. However, 𝐵𝐶𝐸𝐹𝑏𝑟 and 𝐵𝐶𝐸𝐹𝑓𝑜𝑙  were positively correlated with 𝐷𝑞 . In 

addition to biological factors, the 𝐵𝐶𝐸𝐹𝑠 were sensitive to 𝑀𝐴𝑇, 𝑀𝐴𝑃, 𝐴𝐻𝑀 and 𝐸𝐿𝑉. In 

view of the effects of abiotic variables on the 𝐵𝐶𝐸𝐹𝑠  of each component, 𝐵𝐶𝐸𝐹𝑠𝑡  and 

𝐵𝐶𝐸𝐹𝑡𝑜  decreased with increasing 𝑀𝐴𝑃 . 𝐵𝐶𝐸𝐹𝑏𝑟  increased with increasing 𝐴𝐻𝑀 . 

𝐵𝐶𝐸𝐹𝑓𝑜𝑙  decreased with increasing 𝐸𝐿𝑉. The responses of 𝐵𝐶𝐸𝐹𝑟𝑜 to 𝑀𝐴𝑇 increased at 

first, and then decreased when 𝑀𝐴𝑇 increased above −0.5 °C. 

Figure 2. Standardized error plots for the mixed-effects models for BCEFs of five biomass components
((A): stem, (B): branch, (C): foliage, (D): root and (E):total) of the natural white birch forest.



Forests 2023, 14, 362 10 of 17

Table 8. Fitting Statistics of the Mixed-Effects Model.

Index Model (6) Model (7) Model (8) Model (9) Model (10)

fixed-effect

a 0.656 0.013 0.016 0.317 1.020
a1 −0.083 0.161 −0.001 −0.081 −0.156
a2 0.039
b −0.016 0.760 0.193 −0.043 −0.004

random-
effect

σu1 0.031 0.001 0.001 0.043 0.048
σ 0.026 0.011 0.002 0.012 0.041

statistical
index

R2
a 0.676 0.791 0.445 0.749 0.648

−2LL −4478.723 −6201.959 −10048.370 −6070.187 −3533.493
AIC −4468.723 −6191.959 −.370 −6058.187 −3523.493

RMSE 0.026 0.011 0.002 0.012 0.041
Note: σu is the standard deviation of the random effect parameter, and σ is the residual standard deviation.

Figure 3 presents trends of BCEFs for biomass components for different levels of
model abiotic variables, which were the main effects, and the prediction of BCEF of each
component was performed via the fixed-effects model. The results showed that the different
component BCEFs displayed significant relationships with different stand factors. BCEFst,
BCEFro and BCEFto values began at a high level and decreased with increasing stocking
volume. However, BCEFbr and BCEFfol were positively correlated with Dq. In addition to
biological factors, the BCEFs were sensitive to MAT, MAP, AHM and ELV. In view of the
effects of abiotic variables on the BCEFs of each component, BCEFst and BCEFto decreased
with increasing MAP. BCEFbr increased with increasing AHM. BCEFfol decreased with
increasing ELV. The responses of BCEFro to MAT increased at first, and then decreased
when MAT increased above −0.5 ◦C.

3.3. Model Assessment and Calibration Prediction

Model validation was implemented using the jackknife residuals of the generalized
models and mixed-effects models. The test results show that, for MAPE and FE, the
prediction performance of the mixed-effects models was better than that of the generalized
models (Table 9). The predicted value was closer to the real observed value after being
corrected by the random effect parameter.

Table 9. Testing Results of the Model of BCEFs for Natural White Birch Forest.

Component
Generalized Model Mixed-Effect Model

MAE/Mg m−3 MAPE/% FE MAE/Mg m−3 MAPE/% FE

stem 0.028 4.851 0.361 0.019 3.275 0.671
breach 0.011 10.138 0.689 0.009 8.033 0.790
foliage 0.002 7.297 0. 233 0.002 6.011 0.436

root 0.012 5.808 0.522 0.009 4.167 0.742
total 0.046 5.050 0.254 0.032 3.487 0.643

The calculated random effect parameters differed depending on the size of the sample
when the mixed-effects model was used for prediction. We randomly selected 1 to 16 plots
from each FMU for FMU-level local calibration using BLUPs theory, which was repeated
continuously 500 times to calculate the average. Figure 4 displays that the MAPE (%)
changes across varied sample size for the mixed-effects model of each component. When
the size of the sample was 0, it meant that only fixed parameters were used to calculate
the predicted results. As seen in Figure 4, the MAPE (%) of BCEFs of each component
showed a decreasing trend with increasing sample numbers. However, when eight plots
per FMU were sampled, the MAPE (%) of the mixed-effects models tended to be stable. Our
results indicated there were nonsignificant discrepancies among the evaluation statistical
indicators, when the sampling number was larger than eight plots (Figure 4). Therefore, if
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the survey cost and the prediction accuracy were comprehensively considered, eight plots
would be selected from each FMU to correct the BCEFi of all plots of the FMU.
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4. Discussion

In northeast China, natural white birch is one of the most dominant broad-leaved
tree species, with a wide distribution and a fast growth rate as well as the potential to
absorb large amounts of carbon, playing a significant role in the carbon balance of forest
ecosystems [64–66]. The importance of the natural white birch forest in the carbon budgets
and climatic system of northeastern China cannot be ignored. In the present study, the
median value of the natural white birch forest total BCEFs for northern China was 0.7473
to 1.125 Mg m−3, while a study in northern parts of Pakistan revealed that in the white
birch forest the total BCEFs was 1.34 to 1.5 Mg·m−3 [67]. The values obtained in the study
in the northern parts of Pakistan were slightly greater than those obtained in our study.
However, a few studies in China [6,23] reported BCEFs of white birch and corroborated our
observations. The study revealed that total BCEFs did not fall within the range specified
by the IPCC for white birch trees. The total BCEFs ranged from 1.15 to 4.2 Mg·m−3, with a
mean value of 1.3 Mg·m−3 [22]. However, the BCEFs is defined by the IPCC as the direct
conversion of marketable growing stock into above-ground biomass, while the whole stem
volume and whole biomass were used for calculation in our study, so that they cannot be
compared directly [68]. If the IPCC default values were used, they would have produced
varying degrees of error for estimates of China’s forest carbon stocks. Consequently, we
developed a variable BCEFs for biomass components suitable for northern China.

To improve the accuracy of carbon storage estimation in natural white birch forest
in northeast China, in this paper, we first investigated the effect of stand characteristics
on BCEFs for biomass components of natural white birch forest. Previously, a number of
studies used age as an independent variable in the BCEFs model, but it cannot be easily
measured in natural forests [29,69]. The major feature affecting BCEFbr and BCEFfol was
the quadratic mean diameter (Dq), and the most important feature influencing BCEFst,
BCEFro and BCEFto was stocking volume (M) (Table 4). To a certain extent, the stand
variables used in the model system of this paper were not only indirect substitutes for
stand development but could also effectively reflected the growth differences of stands
and the site index; this was also confirmed by Dong, et al. [6] and Jagodziński, et al. [69].
Table 4 shows that the parameter estimates for stocking volume (M) for the BCEFst, BCEFro
and BCEFto models were negative and had the opposite sign as that for the quadratic
mean diameter (Dq) for the BCEFbr and BCEFfol models. It showed that BCEFst, BCEFro and
BCEFto values decreased with increasing M. Figure 3B–D shows the decrease in BCEFst,
BCEFro and BCEFto with tree size as the stand developed, tending to a constant value
as the stand grew, which was also in agreement with the findings reported by other
authors [23,29,52]. However, Jagodziński, et al. [10] used stocking volume (M) as the young
naturally regenerated white birch for the BCEFs modeled independent variable, which
led to the conclusion that BCEFs values had a preliminary increase in the stem biomass,
and beyond the break point, the BCEFs stabilized and remained constant. This may be
because the forest data we used were more mature than those used in his research, due to
the differences of biomass allocation patterns during stand development and tree aging,
the values formulated by old trees were not applicable for young trees [28,70]. In addition,
Figure 3A,B shows that the BCEFbr and BCEFfol values of the natural white birch forest
increased with increasing quadratic mean diameter (Dq). Jagodziński, et al. [29] provided
an overview of aboveground biomass estimates of young Scots pine in lowlands of western
and central Poland and their results indicated that BCEFbr and BCEFfol decreased with
increasing age and tree diameter as the stand developed. This viewpoint is contrary to the
research results on branches and foliage in this paper. In a study on biomass estimation of
major forest types in the eastern Daxing’an Mountains, Dong, et al. [6] found that natural
hardwood species biomass allocation, especially natural white birch forest, showed that
the average proportion of stems and roots increased with decreasing diameter, while the
average proportion of branches and leaves increased with increasing diameter.

Many studies have shown that temperature and precipitation can affect the distribu-
tion pattern of forest biomass [71,72]. As indicated by Luo, et al. [23], biomass conversion
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and expansion factors have also been influenced by climate change. However, in our study,
we found that the relationships between BCEFs and abiotic variables varied within different
tree components (Figure 3). BCEFst and BCEFto generally decreased with increasing MAP.
Similar results were reported by Luo, et al. [23], which can be explained by the fact that
higher precipitation favors greater tree growth, lower wood density and leads to more
increments allocated to tree stems. With the increasing of MAT, BCEFro increased and
then decreased. This result differed from that of Luo’s study [23], which suggested that
BCEFro decreased with increasing MAT. The possible reason for this difference may be
that with increasing temperature, the activity of microorganisms and the decomposition of
forest litter can be promoted, thus promoting the growth of the root system [73]. However,
the proportion of stem dry allocated biomass increased with the continued increase in
temperature because the root biomass ratio was relatively reduced [74]. In the different
compartments of biomass, the characteristics of branches determine the quantity of light
interception and carbon dioxide assimilation, which are closely related to productivity [75].
The increasing trend of BCEFbr with AHM (Figure 3) in the study can be attributed to the
fact that an increase in AHM can lead to excessive temperature or increased evaporation,
resulting in an increase in CMD, which limits the water absorption efficiency of vegeta-
tion [76]. This ultimately leads to a decline in the stem biomass and an increase in the
branch biomass [23,77,78]. In addition, the elevation is an important topographic factor
that indirectly affects stand growth and biomass allocation through its effects on water,
nutrients, light, and topographic conditions [79,80]. The decreasing trend of BCEFfol with
ELV (Figure 3) in the study suggested that the proportion of leaf biomass to total biomass
decreased with increasing altitude, which was consistent with the findings of many earlier
studies [81,82].

To derive strong inferences, we used the power function to describe the variations
of BCEFs for different biomass components in the natural white birch forest. But the base
model did not yield expected results. To further improve the performance of the model, we
constructed the generalized model. In addition, this was because measurements were taken
from the great mass of the sampling unit in the study. These measurements of different FUM
were statistically correlated or different, not statistically independent; hence, the variance
of the parameter may be underestimated using the ordinary least-squares techniques [3].
We used the nonlinear mixed-effects model to process the data in this paper. According
to Tables 4, 6 and 8, the nonlinear mixed models for different components outperformed
the base and generalized models in validation and fitting. FMU-level random effects in
nonlinear mixed-effect models were suitable for explaining the high variability in BCEFs
among FMUs. Fu, et al. [41] clarified that the difficulty for convergence of the mixed-effects
model increases with the number of random parameters. In this study, when there were two
or more random effect parameters, the convergence of the model was difficult to achieve,
so that all models in this paper contained only a random parameter. There was not enough
attention given to the nonlinear mixed-effects model of BCEF in previous studies [83–88].
Generally, all the measured data were used to evaluate the prediction accuracy of the model
and calculate the random effect parameters. However, it is challenging to measure BCEFs
in all stands over a large area, while selecting a few stands for BCEFs measurement would
be more convenient and efficient in forestry surveys and applications. Thus, the nonlinear
mixed effect model was calibrated by random sampling. Many studies have found that
larger sample sizes lead to better model performance [42]. Based on the significance test in
Figure 4, when the sample size was eight, the prediction results achieved high accuracy.
Therefore, when the sample size is limited to eight, the prediction accuracy can be ensured,
and the workload can be reduced.

5. Conclusions

Understanding the sources of change in BCEFs can effectively reduce the uncertainties
of stand biomass carbon estimates, which is a prerequisite for carbon stock estimation on a
large regional scale.
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We investigated for the first time the relationship between changes in BCEFs of natural
white birch forest and stand development, climate, and topographic factors, and developed
a nonlinear mixed-effects model including FMU random effects. The results showed the
following: (i) there were significant variations between BCEFs and stand development
(the quadratic mean diameter and standing volume), climate (mean annual temperature,
mean annual precipitation and annual heat) and topographic factors (elevation), which
should be considered when building the prediction model of BCEFs; and (ii) the fitting
results of the mixed-effects model outperformed the basic and generalized models. The
biomass conversion and expansion factors (BCEFs) presented here may be a beneficial tool
for appraising the forest biomass and carbon sequestration of natural white birch forest.

When compared with earlier methods for estimation of BCEFs, the strength of this
study is as follows: (i) abiotic factors should be taken into account in developing predictive
models of BCEFs; (ii) equations for estimating natural white birch forest biomass and
BCEF for northern China were developed, which have lower uncertainties and are more
systematic, because the mixed-effects model with random effects was used instead of least
squares to estimate the model; and (iii) we can use a small sample size (sample size of
eight sample) for prediction. However, the limitation of the present study is that it focused
only on a natural white birch forest, and other species remain to be examined. We suggest
that a dependable model of FUM-level BCEFs for different species be formulated based on
existing data.
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69. Jagodziński, A.M.; Dyderski, M.; Gęsikiewicz, K.; Horodecki, P. Tree and stand level estimations of Abies alba Mill. aboveground
biomass. Ann. For. Sci. 2019, 76, 56. [CrossRef]

70. Wirth, C.; Schumacher, J.; Schulze, E.D. Generic biomass functions for Norway spruce in Central Europe—A meta-analysis
approach toward prediction and uncertainty estimation. Tree Physiol. 2004, 24, 121–139. [CrossRef]

71. Yu, M.; Liu, X.; Xue, L. Progress on effects of temperature and precipitation on forest biomass allocation patterns. Ecol. Sci. 2021,
40, 204–209.

72. Guo, J.; Guo, Y.; Chai, Y.; Liu, X.; Yue, M. Shrubland biomass and root-shoot allocation along a climate gradient in China. Plant
Ecol. Evol. 2021, 154, 5–14. [CrossRef]

73. Zhou, L.; Li, B.G.; Zhou, G.S. ADVANCES IN CONTROLLING FACTORS OF SOIL ORGANIC CARBON. Adv. Earth Sci. 2005, 20,
99–105.

74. Fang, Y.; Zou, X.; Lie, Z.; Xue, L. Variation in Organ Biomass with Changing Climate and Forest Characteristics across Chinese
Forests. Forests 2018, 9, 521. [CrossRef]

75. Poorte, A.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients
and water: A quantitative review. IMF Occas. Pap. 2000, 27, 595–607.

76. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al.
Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [CrossRef]
[PubMed]

77. He, X.; Lei, X.; Zeng, W.; Feng, L.; Zhou, C.; Wu, B. Quantifying the Effects of Stand and Climate Variables on Biomass of Larch
Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China. Sustainability 2022, 14, 5580.
[CrossRef]

78. Luo, Y.; Wang, X.; Zhang, X.; Ren, Y.; Poorter, H. Variation in biomass expansion factors for China’s forests in relation to forest
type, climate, and stand development. Ann. For. Sci. 2013, 70, 589–599. [CrossRef]

79. Wang, G.; Guan, D.; Xiao, L.; Peart, M.R. Forest biomass-carbon variation affected by the climatic and topographic factors in Pearl
River Delta, South China. J. Environ. Manag. 2019, 232, 781–788. [CrossRef]

80. Konopka, B.; Pajtik, J.; Seben, V. Biomass functions and expansion factors for young trees of European ash and Sycamore maple
in the Inner Western Carpathians. Austrian J. For. Sci. 2015, 132, 1–26.

81. Zhang, W.; Li, H.; Li, J.; Lu, Z.; Liu, G. Individual and modular biomass dynamics of Kingdonia uninflora population in Qinling
Mountain. J. Appl. Ecol. 2003, 14, 530–534.

82. Guo, Z.; Lin, H.; Chen, S.; Yang, Q. Altitudinal Patterns of Leaf Traits and Leaf Allometry in Bamboo Pleioblastus amarus. Front.
Plant Sci. 2018, 9, 1110. [CrossRef]

83. Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [CrossRef]
84. Turner, D.P.; Koerper, G.J.; Harmon, M.E.; Lee, J.J. A Carbon Budget for Forests of the Conterminous United States. Ecol. Appl.

1995, 5, 421–436. [CrossRef]
85. Schroeder, P.; Brown, S.; Mo, J.; Birdsey, R.; Cieszewski, C. Biomass estimation for temperate broadleaf forests of the United States

using inventory data. For. Sci. 1997, 43, 424–434.
86. Albaugh, T.J.; Bergh, J.; Lundmark, T.; Nilsson, U.; Stape, J.L.; Allen, H.L.; Linder, S. Do biological expansion factors adequately

estimate stand-scale aboveground component biomass for Norway spruce? For. Ecol. Manag. 2009, 258, 2628–2637. [CrossRef]
87. Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual tree biomass

equations or biomass expansion factors for assessment of carbon stock changes in living biomass—A comparative study. For. Ecol.
Manag. 2012, 270, 78–84. [CrossRef]

88. Soares, P.; Tomé, M. Biomass expansion factors for Eucalyptus globulus stands in Portugal. For. Syst. 2012, 21, 141–152. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s13595-019-0842-y
http://doi.org/10.1093/treephys/24.2.121
http://doi.org/10.5091/plecevo.2021.1570
http://doi.org/10.3390/f9090521
http://doi.org/10.1038/nature03972
http://www.ncbi.nlm.nih.gov/pubmed/16177786
http://doi.org/10.3390/su14095580
http://doi.org/10.1007/s13595-013-0296-6
http://doi.org/10.1016/j.jenvman.2018.11.130
http://doi.org/10.3389/fpls.2018.01110
http://doi.org/10.1016/S0269-7491(01)00212-3
http://doi.org/10.2307/1942033
http://doi.org/10.1016/j.foreco.2009.09.021
http://doi.org/10.1016/j.foreco.2012.01.004
http://doi.org/10.5424/fs/2112211-12086

	Introduction 
	Materials and Methods 
	Study Area 
	Forest Survey and Design Data 
	Climate Data 
	Methods 
	Basic and Generalized Model 
	Mixed-Effects Models 
	Model Assessment and Calibration Prediction 


	Results 
	Basic and Generalized Model 
	Mixed-Effects Models 
	Model Assessment and Calibration Prediction 

	Discussion 
	Conclusions 
	References

