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Abstract: Understanding species response to climate change is essential for the conservation and
utilization of species resources under rapid climate change in the future. In this study, the present and
future suitable distribution range of Keteleeria davidiana, a tertiary relict gymnosperm, was predicted
based on the maximum entropy model (MaxEnt). A total of 158 occurrence records were collected
after removing the duplicated records. Six low-correlation climate variables were used to predict
species distributions. The three key climate factors that affect the distribution of K. davidiana were
temperature seasonality (34.96%), mean temperature of the coldest quarter (28.30%) and precipitation
seasonality (13.58%). The most suitable zone of the temperature seasonality for K. davidiana was
between 377.4 and 843.4. The highly suitable area was located in the mountainous regions of central
and southeast China, which accounted for 13.39% of the whole study area. With climate warming
in the future, the highly suitable distribution area of K. davidiana was estimated to decrease by 35%
(SSP1-2.6 scenario) or 85% (SSP5-8.5 scenario). This study has provided a sufficient scientific basis for
the future in situ and ex situ conservation of K. davidiana.

Keywords: MaxEnt model; Keteleeria davidiana; suitable habitat; climate change

1. Introduction

A species distribution area reflects the variations in dispersal potential, ecological
tolerance and historical evolution among various species [1]. The Sixth Assessment Report
(AR6) of the Intergovernmental Panel on Climate Change (IPCC) established that the global
surface temperature increased by 1.09 ◦C in 2011–2020 compared to 1850–1900. By the
end of the 21st century, under low greenhouse gas emission scenarios (SSP1-2.6) and high
emission scenarios (SSP5-8.5), the global average surface temperature was predicted to
increase by 1.3–2.4 ◦C and 3.3–5.7 ◦C, respectively, throughout 1850–1900 [2]. The global
surface temperature is increasing continuously, accompanied by an increase in annual
precipitation [3–5]. The distribution range of ubiquitous species has continued to expand
and shrink with climate change, mainly contributed to by temperature and precipitation [6].
Previous research related to the impact of climate change on plants has shown that this
anthropogenic climate change might reduce the habitat suitability of plants and even lead
to the risk of species becoming endangered [7,8]. Mountainous flora is considered very
sensitive to climate change and more vulnerable to the effects of rising temperatures [9].

With declining suitability, the relict plant must evolve to adapt to climate warming [10].
However, the evolution of climate-sensitive arbor is slow due to the long generation time.
Rapid climate change will negatively affect the plant population in the original habitat
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with reduced suitability. In the long process of natural diffusion, the population may have
gone extinct before finding a future highly suitable habitat. If plants can spread quickly
to the suitable habitats in the future, the risks of plant habitat contraction and population
extinction will be greatly decreased. Compared to inefficient natural migration or diffusion,
ex situ conservation is a better way to preserve plant population genetic diversity and
minimize plant inadaptations to future climates [11–13]. Therefore, predicting the future
potential suitable distribution areas under extreme climatic conditions can provide a basis
for the ex situ conservation of plants.

Species distribution models (SDMs) are numerical tools used frequently to estimate
current geographic distributions of species and to assess the effects of climate change
on species distributions [14], as well as habitat suitability [15]. The Maximum Entropy
(MaxEnt) model has been widely used in SDMs mainly due to its highly accurate and
intuitive predictions [16,17], especially on predicting the impacts of climate change on the
potential distribution of relict plants, such as Thuja sutchuenensis (Cupressaceae), Taiwania
cryptomerioides (Cupressaceae) and Taxus wallichiana (Taxaceae) [18–20].

Keteleeria davidiana (Bertrand) Beissner (Pinaceae) is a Tertiary relict gymnosperm
which prefers a warm and humid subtropical climate [21]. It is also a significant part
of the forest vegetation during the transition process of the Yunnan–Guizhou Plateau to
the foothills of northwest Guangxi in China [22]. As a tree with mycorrhizal roots, K.
davidiana has high adaptability and a straight trunk, which is suitable for ornamental
purposes. It is a better afforestation pioneer and landscape garden tree species [23]. K.
davidiana has become an endangered plant due to artificial logging, habitat fragmentation
and low reproductive capacity [24–26]. Therefore, it is necessary to carry out scientific
conservation and management. The goals of this study were to: (1) identify and quantify
the critical climatic variables that influence the distribution of K. davidiana; (2) determine the
potential geographic distribution of K. davidiana in China under current and two future (the
2090s) scenarios and explore the trends of the suitable habitats for K. davidiana under the
“optimistic” SSP1-2.6 scenario and the “extreme worst” SSP5-8.5 scenario; and (3) propose
alternatives for the preservation and sustainable management of the germplasm resources
of K. davidiana.

2. Materials and Methods
2.1. Information Collation
2.1.1. Occurrence Records of K. davidiana

The occurrence records of K. davidiana used in this study were obtained from the
National Plant Specimen Resource Center (NPSRC; http://www.cvh.ac.cn (accessed on 7
May 2022)) and the Global Biodiversity Information Facility (GBIF; http://www.gbif.org
(accessed on 20 May 2022)). A total of 212 occurrence records of K. davidiana were obtained
between 1939 and 2018 after eliminating duplicate samples (same sampling point and time),
ambiguous geographic locations and unnatural specimen data. To reduce the sampling
deviation, in each 0.2◦ × 0.2◦ grid, only one record with the closest distance from the center
point was selected as the sample distribution record. Finally, 158 valid occurrence records
were selected (Figure 1).

http://www.cvh.ac.cn
http://www.gbif.org
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Figure 1. The 158 distribution records of K. davidiana in China.

2.1.2. Collection and Selection of Climatic Variables

The bioclimatic variables (Table 1) at 2.5′ spatial resolution for the current (1970–
2000) and two future (the 2090s) scenarios were collected from the World Climate Version
2.1 released in 2020 (http://www.worldclim.org/ (accessed on 1 July 2022)). Since the
distributions of K. davidiana are mainly in the provinces of Hunan, Sichuan, Chongqing,
Guizhou, Yunnan, Guangxi and Hubei, at 200–1500 m elevation [27], with little human
activity (HA), topography and soil characteristics are not anticipated to change significantly
in the coming decades. Assuming that the land was not used in the short term, the BCC-
CSM2-MR climate system model was selected as the Global Climate Model (GCM) [28,29].
The climate change scenarios were SSP1-2.6 and SSP5-8.5 for both socio-economic pathways.
The low greenhouse gas emission scenario, SSP1-2.6, has a radiation intensity limit of
2.6 W m−2 for 2100, while the high greenhouse gas emission scenario, SSP5-8.5, has a
radiation intensity limit of 8.5 W m−2 for 2100 [2].

In order to avoid the potential correlation between climate variables affecting pre-
diction accuracy, we used R 4.1.1 (https://cran.r-project.org/src/base/R-4/ (accessed
on 10 July 2022)) calculations to conduct variance inflation factors (VIFs) and Spearman
correlation analysis to screen climatic variables with VIFs less than 10 and correlation
coefficients less than 0.8 [30]. A total of six crucial climate variables were kept for predicting
the suitable habitat of K. davidiana (Table 1).

http://www.worldclim.org/
https://cran.r-project.org/src/base/R-4/
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Table 1. Climatic variables used for modeling the potential suitable habitat of K. davidiana in China.
The six selected climate variables in modeling are shown in bold.

Variables Description Units Range Mean ± Std Error

BIO1 Annual mean temperature ◦C 2.09–22.08 15.37 ± 0.23
BIO2 Mean diurnal range ◦C 5.26–13.12 8.13 ± 0.09
BIO3 Isothermality / 23.28–49.84 29.62 ± 0.44
BIO4 Temperature seasonality / 443.29–908.53 721.61 ± 8.18
BIO5 Max temperature of warmest month ◦C 16.30–33.67 28.81 ± 0.24
BIO6 Min temperature of coldest month ◦C −14.08–10.78 1.07 ± 0.28
BIO7 Temperature annual range ◦C 17.85–34.53 27.73 ± 0.21
BIO8 Mean temperature of wettest quarter ◦C 9.97–28.16 22.20 ± 2.58
BIO9 Mean temperature of driest quarter ◦C −7.09–16.09 6.50 ± 0.29
BIO10 Mean temperature of warmest quarter ◦C 10.60–28.22 23.85 ± 0.24
BIO11 Mean temperature of coldest quarter ◦C −7.09–14.62 6.09 ± 0.26
BIO12 Annual precipitation mm 716–3198 1281.75 ± 24.66
BIO13 Precipitation of wettest month mm 118–448 225.62 ± 4.15
BIO14 Precipitation of driest month mm 3–163 24.72 ± 1.32
BIO15 Precipitation seasonality / 35.82–101.07 68.06 ± 0.85
BIO16 Precipitation of wettest quarter mm 338–1196 605.37 ± 10.93
BIO17 Precipitation of driest quarter mm 12–522 87.38 ± 4.54
BIO18 Precipitation of warmest quarter mm 330–1044 553.36 ± 8.44
BIO19 Precipitation of coldest quarter mm 12–522 93.16 ± 5.18

2.2. Modeling Process
2.2.1. Modeling Optimization

The MaxEnt model analyzes and integrates incomplete data to draw inferences or
predictions through machine learning and the principle of maximum entropy. Based on the
environmental variables and data on species distributions, it simulates species actual and
potential distribution areas [31,32]. The MaxEnt was usually run with default parameters
when evaluating species distribution. However, this could lead to overfitting and high com-
plexity, which would decrease the accuracy of the study results, thus requiring improved
models [33,34]. ENMeval, an R package that can optimize MaxEnt model, regulated two
constraint parameters of the model: feature combination (FC) and regularization multiplier
(RM). It evaluated the complexity of the model under different parameter combinations
and selected a combination of low complexity [35].

The 158 K. davidiana occurrence records were divided into four equal parts where
possible; three of which were used for training and the remaining part was used for
testing [35]. There were a total of 8 RM parameters set: 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 [36].
The MaxEnt model automatically adjusted to the following five characteristics for the FC
parameters: linear (L), quadratic (Q), hinge (H), product (P) and threshold (T) [31]. The six
feature combinations were L, LQ, H, LQH, LQHP and LQHPT. The ENMeval package was
used to test 48 combinations of the above-mentioned parameters. The Akaike information
criterion correction (AICc) was used to evaluate the fitting degree and complexity of the
model, and the 10% training omission rate (OR10) and the difference between training and
testing the area under the curve (AUC.DIFF) were used to assess the extent of the excessive
fitting of the model. The combination of parameters as the minimum value of AICc was
used as the optimal parameters for constructing the model [35].

2.2.2. Model Simulation

Understanding how well the already available distribution data match future climatic
conditions is significant because one crucial reason to consider in modeling is whether the
chosen model could reasonably anticipate future habitats using available information. This
study imported 158 occurrence records of K. davidiana into MaxEnt 3.4.3 [37], along with
six bioclimatic variables. The test set was extracted using cross validation. All occurrence
records were separated into ten subsets, with one subset serving as the test set and the
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other nine serving as the training set. The RM parameter was set to 2, the FC parameter
was LQHPT, and the maximum number of iterations was 10,000. The data output format
was set to logistic and run 10 times repeatedly, and the value of the final output result file
was the average of 10 times. MaxEnt generated a raster plot of the distribution probabilities,
and the values of each grid cell were expressed in floating point format from 0 to 1 for the
occurrence probabilities. The results of the model runs were transformed using ArcGIS 10.8
and classified using the natural discontinuity method to divide suitable habitats into four
classes based on gradients: unsuitable habitats (<0.11), lowly suitable habitats (0.11–0.30),
moderately suitable habitats (0.30–0.51) and highly suitable habitats (>0.51).

2.2.3. Model Evaluation

The model accuracy was assessed using the receiver operator characteristic curve
(ROC) and the area under the ROC curve (AUC). The value of AUC ranged from 0 to
1 [38,39]. The model prediction results were more accurate with the higher value of
AUC [40]. An AUC value less than 0.8 indicated low reliability, 0.8–0.9 indicated good
accuracy and 0.9–1.0 indicated excellent accuracy [41,42].

2.3. Changes in the Spatial Layout of Suitable Habitats for K. davidiana

A matrix of possible changes in the geographic range of K. davidiana under future
climate change scenarios was created based on the classification of suitable habitats. We
assigned corresponding values to each suitable habitat. Further, according to the matrix,
we analyzed the changes in the spatial pattern of the suitable habitat for K. davidiana
under future SSP1-2.6 and SSP5-8.5 scenarios. Based on the changes in the area of suitable
habitats in the present and future, we classified nine types of changes: no change in the
area of unsuitable and lowly suitable habitats, no change in the area of moderately suitable
habitats, no change in the area of highly suitable habitats, decrease in the area of moderately
suitable habitats, drop in the area of highly suitable habitats, the transition from unsuitable
and lowly suitable habitats to moderately suitable habitats, the transition from unsuitable
and lowly suitable habitats to highly suitable habitats, the transition from highly suitable
habitats to moderately suitable habitats and the transition from moderately suitable habitats
to highly suitable habitats. ArcGIS 10.8 was used to calculate the number of grids for each
suitable habitat and obtain the specific values of the area change [43].

2.4. Assessment of the Importance of Climatic Variables

Using contribution rate (CR), the permutation importance value (PI) and Jackknife,
important climatic variables influencing the potential geographic distribution of K. davidiana
were evaluated. The MaxEnt model recorded the climatic variables with a high contribution
rate to the adaptation model in the model during training, improved the gain value of
the model by gradually correcting the coefficient corresponding to each eigenvalue and
assigned the increased gain value to the dependent value of each eigenvalue, finally
expressing the climate contribution as a percentage [19]. The value of the randomly chosen
variable at the training point and the ensuing drop in the training AUC value determined
the contribution of each climatic variable. The more significant the decline in the AUC
value, the more dependent the model was on this climatic variable [44]. After a Jackknife
test on a single climate variable, when all-important climatic variables were combined to
produce results, the training gain values, test gain values, and AUC values were compared
to assess the importance of climatic variables [19].

2.5. Analysis of Multiple Environmental Similarity Surface (MESS) and the Most
Dissimilar (MoD)

The magnitude of current and future climate anomalies was evaluated using MESS,
and the key factors influencing likely changes in regional distribution were analyzed using
MoD. MESS measured how similar the climatic conditions of a certain point in a given
period were to the reference layer (S). When S > 0, the smaller the value of S, the more
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significant the difference between the climatic variables at that point and the reference layer
was. S = 100 indicated that there was no difference between the reference layer and the
climatic variables; S ≤ 0 showed that at least one climatic variable value was outside of the
reference point’s climate range, and the larger the negative value, the greater the degree of
climate anomaly [45]. The most dissimilar (MoD) was the climatic variable with the lowest
S value for a given position on the reference layer. MoD denoted the variable with the
highest degree of abnormality and might be the primary cause of the shift in geographic
distribution [45].

3. Results
3.1. Optimization and Accuracy Evaluation of the Model

The model had the minimum AlCc value when RM = 2 and FC = LQHPT, i.e., AICc = 0,
using the ENMeval program to optimize the parameter of the MaxEnt model (Figure 2).
This parameter setting significantly decreased the complexity of the model and enhanced
the fitness, as indicated by the fact that AUC.DIFF and OR10 were 13.72% and 42.86%
less than the default values (RM = 1 and FC = LQHPT). As a result, in this study, RM = 2
and FC = LQHPT were selected as ideal model parameters. According to the receiver
operator characteristic curves (ROCs), the model mean training AUC was 0.8771 (with
a standard error of 0.0016), and its mean test AUC was 0.8479 (with a standard error of
0.0105), suggesting the accuracy of the prediction.

Figure 2. OR10, AUC.DIFF and delta.AICc for K. davidiana from MaxEnt model under different
parameter combinations.

3.2. Assessment of Crucial Climatic Variables

Table 2 displays the crucial elements of six climatic variables in determining the poten-
tial suitability of the current habitat for K. davidiana. Temperature seasonality (BIO4), the
mean temperature of the coldest quarter (BIO11) and precipitation seasonality (BIO15) were
the three variables with the highest contribution rate (CR), with a combined contribution
rate of 76.84%. The BIO4, BIO11 and the mean temperature of the wettest quarter (BIO8)
were the three variables with the highest permutation importance (PI), with a cumulative
value of 87.36%. Three variables with the highest regularized training gain and test gain
during the univariate simulation period were BIO4, BIO11 and the precipitation of the
warmest quarter (BIO18), and the three highest AUC values were those of BIO4, BIO15
and BIO18. These climatic variables showed a good fit to the model and contained more
valid information. The BIO4, BIO8 and BIO15 had the most significant decreases in the
regularized training gain, test gain and AUC values when simulated for a non-specific
variable, indicating that these variables contained information that was not present in the
other variables. According to the above analysis, BIO4, BIO8 and BIO11 were the main
temperature factors which affect the current geographical distribution of K. davidiana, while
BIO18 was the main precipitation factor.
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Table 2. The contribution rate and value of gain of climatic variables.

Variables CR (%) PI (%) RTGW RTGO TGW TGO AUCW AUCO

BIO4 34.96 31.72 0.6870 0.4129 0.7536 0.4669 0.8248 0.7636
BIO8 7.63 18.87 0.7780 0.2362 0.7984 0.2955 0.8370 0.7184

BIO11 28.30 36.77 0.7735 0.3437 0.8514 0.3660 0.8415 0.7088
BIO14 2.67 4.32 0.8193 0.2120 0.8688 0.2481 0.8460 0.7045
BIO15 13.58 3.99 0.7872 0.3008 0.8343 0.3264 0.8411 0.7257
BIO18 12.87 4.33 0.8275 0.3205 0.8965 0.3521 0.8517 0.7242

CR: contribution rate, PI: permutation importance value; RTGw: regularization training gain without this variable;
RTGO: regularization training gain only with this variable; TGW: test gain without this variable; TGO: test gain
only with variable; AUCW: AUC without this variable; AUCO: AUC only with this variable.

3.3. Response Curve Analysis of Important Climatic Variables

A response curve from the logistic regression analysis of the MaxEnt model illustrated
the relationship between the probability of K. davidiana occurrence and climatic parameters.
It explained how each climatic condition influenced the distribution of suitable habitats.
When the occurrence possibility was above 0.5, the growth in related climate elements was
beneficial to the growth in plants. The four most significant climatic variables that affected
the existing range of potential suitable habitats for K. davidiana are shown as response
curves in Figure 3.

When BIO4 increased within a specific range, the likelihood of K. davidiana increased
(34.96% contribution and 31.72% replacement importance) (Figure 3A). The chance was
more significant than 0.5 when the variance fell within the 377.4–843.4 range. As a result,
the range of BIO4 was suitable for the growth of K. davidiana. Similar results were obtained
for BIO8 with a suitable degree of 10.32–31.3 ◦C (Figure 3B), BIO11 with an appropriate
degree of −9.05–11.5 ◦C (Figure 3C) and BIO18 with a suitable range of 265.8–2295.4 mm
(contribution rate of 12.87%; permutation importance of 4.33%).

Figure 3. Response curves of important climatic variables. (A) Temperature seasonality (BIO4);
(B) Mean temperature of wettest quarter (BIO8); (C) Mean temperature of coldest quarter (BIO11)
and (D) Precipitation of warmest quarter (BIO18).
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3.4. Potential Suitable Habitat for K. davidiana under Current Climatic Conditions

The proportions of 158 occurrence records of K. davidiana in different suitable habitats
are in the order of highly suitable habitat (67.72%), moderately suitable habitat (16.46%),
lowly suitable habitat (11.39%) and unsuitable habitat (4.43%), indicating that the potential
suitable habitats simulated by the optimized MaxEnt could basically cover these occurrence
records.

The existing potential suitable habitat distribution of K. davidiana in China appears
in Figure 4. The suitable habitat is 2.4 million km2, accounting for 51% of the study
area. Most of the highly suitable habitats are located in the southern Qinling Mountains,
Daba Mountains, Wushan Mountains, Wudang Mountains, Wuling Mountains, Yunnan–
Guizhou Plateau, Nanling Mountains, Wuyi Mountains and other mountainous areas,
covering 63.14 × 104 km2, which accounts for 13.39% of the study area. The moderately
suitable habitat includes Sichuan Basin, Wumeng Mountains, eastern Nanling and lower
elevation areas around the Wuyi Mountains, with an area of 69.87 × 104 km2, accounting
for 14.82% of the whole study area. The lowly suitable habitat is mainly concentrated in
the Hengduan Mountains, the western part of the Yunnan–Guizhou Plateau, the hills of
Guangdong and Guangxi, the mountains of Jiangnan and the hills of Zhejiang and Fujian,
with an area of 107.13 × 104 km2, accounting for 22.72% of the entire study area.

Figure 4. Potential suitable habitat for K. davidiana under current climatic conditions.

3.5. Dynamics of Potential Suitable Habitats for K. davidiana under Different Future
Climate Scenarios

The potential suitable habitat for K. davidiana is shown in Figure 5 under the climate
change scenarios SSP1-2.6 and SSP5-8.5 in the 2090s. Under the SSP1-2.6 climatic scenario
(Figure 5A), the highly suitable habitat, moderately suitable habitat, lowly suitable habitat
and unsuitable habitat, respectively, account for 8.71%, 12.22%, 27.43% and 51.64% of the
whole study area, while the ratio is 2.06%, 10.63%, 25.25% and 62.06% under the SSP5-8.5
climate scenario (Figure 5B).

The highly and moderately suitable habitats for K. davidiana will shrink in different
degrees, according to a comparison between the current suitable habitat and the predicted
suitable habitat under the two future scenarios (Figure 6). Under the SSP1-2.6 and SSP5-8.5
scenarios, the highly suitable habitat will reduce by 22.1 × 104 km2 and 53.4 × 104 km2,
and the moderately suitable habitat will reduce by 12.4 × 104 km2 and 19.9 × 104 km2,
while the lowly suitable habitat will increase by 22.21 × 104 km2 and 11.93 × 104 km2,
respectively.
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Compared with the current suitable habitats, the changes in suitable habitats in the
future will mainly show a decrease in the suitability of K. davidiana in the Sichuan Basin,
Nanling, Wuyi Mountains and so on. In contrast, the suitability of K. davidiana in the
Xuefeng Mountains, Qinling Mountains and Hengduan Mountains will increase. The
results indicate that the suitable habitats for K. davidiana show a migration trend to higher
elevations.

Figure 5. Potential suitable habitat for K. davidiana under SSP1-2.6 (A) and SSP5-8.5 (B) climatic
conditions in the 2090s.

Figure 6. Change in the highly and moderately potential suitable habitats for K. davidiana under
SSP1-2.6 (A) and SSP5-8.5 (B) climatic conditions in the 2090s.

3.6. Analysis of MESS and MoD Variables

Figure 7 displays the multivariate environmental similarity surface (MESS) and most
dissimilar variable (MoD) for the two 2090s climate scenarios and the current environment.
The SSP5-8.5 climate scenario has low multiple similarities and a high degree of climate
anomalies, because the average similarity is −6.44 and 1.18 in the SSP5-8.5 and SSP1-2.6
scenarios, and the percentage of negative similarity is 59.279% and 0.008%, respectively. The
suitable habitats in central and southern China are the main climate anomaly areas (S ≤ 0)
in the SSP1-2.6 scenario, in which the MoD is BIO4, BIO8 and BIO11. Under the SSP5-8.5
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scenario, the prominent climate anomalies appear in the suitable habitats in low-elevation
areas, and the MoD is BIO4, BIO8 and BIO11.

Figure 7. MESS and MoD for K. davidiana under climatic conditions in the 2090s. (A) MESS for
SSP1-2.6 scenario; (B) MESS for SSP5-8.5 scenario; (C) MoD for SSP1-2.6 scenario and (D) MoD for
SSP5-8.5 scenario.

3.7. Analysis between the Highly Suitable Habitat Areas and NPAs

Figure 8 displays the highly suitable habitat areas of K. davidiana under current climates
and the natural protected areas (NPAs) in China. K. davidiana in the current highly suitable
habitat and NPAs, respectively, account for 67.72% and 18.35% of the total 158 occurrence
records. There are 20 distribution records overlapping the limits of NPAs with the current
highly suitable habitat, which account for 12.66% of the total 158 occurrence records.
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Figure 8. The highly suitable habitat for K. davidiana under current climates and NPAs.

4. Discussion
4.1. Ecology of K. davidiana

Under current climatic conditions, the distribution areas of K. davidiana were mainly
in the Daba–Wushan Mountains, the Yunnan–Guizhou Plateau and other mountainous
regions at an altitude of 200–1500 m in China [27]. Keteleeria davidiana is often mixed with
conifer and broad-leaved trees such as Pinus massoniana (Pinaceae), Cunninghamia lanceolata
(Cupressaceae) and Quercus variabilis (Fagaceae). Keteleeria davidiana is also sporadically
found in the Qinling Mountains, the Wuling Mountains and the Nanling Mountains. These
areas had moderate temperatures and sufficient rainfall in summer and belonged to the
subtropical forests of warm coniferous forests.

Keteleeria davidiana has a wide distribution range, which is the most cold-resistant
species of Keteleeria. However, its distribution area occupancy is not high, which is not
only affected by HA, but is also affected by ecological factors such as temperature and
precipitation. Different combinations of temperature and precipitation may affect trees
differently [46]. Additionally, other trees react to climate change differently [47]. As a result,
K. davidiana might be suited to a particular climate, commonly known as “matching species
with the site” in China. According to the assessment of critical climatic variables, the
distributions of K. davidiana were strongly influenced by the seasonal effects of temperature,
average temperature and precipitation in summer and the average temperature in winter.

4.2. Analysis of the Current Potential Suitable Habitat for K. davidiana

The Daba Mountains, Wushan Mountains and Yungui Plateau are also the main
distribution areas of K. davidiana. The Wuyi Mountains in eastern China were a highly
suitable area with no distribution of K. davidiana, which may be due to the impact of distance
isolation and not enough time for the species to spread. The moderately suitable habitat of
K. davidiana was mainly located in the Sichuan Basin and Nanling, where the temperature
was high in summer and dry in winter [48,49]. Its distribution in this area was scarce. The
lowly suitable habitat of K. davidiana was mainly distributed in the Hengduan Mountains
with complex topography conditions, pronounced dry and wet seasons and significant
climatic differences, and in the hills of Guangdong and Guangxi, and the mountains of
Jiangnan, where summer is hot and long-lasting, and winter is cold and dry. Keteleeria
davidiana was susceptible to growth inhibition and little distribution. In a way, due to
climate restriction, the growth of K. davidiana has noticeable zonal differences. The climatic
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characteristics of the highly suitable habitat were abundant rain and moderate temperature
(Figure 4).

The spatial occupancy of species distribution is also closely related to human activity
(HA). HA can reduce the distribution ranges of endangered species but expand those of
eurycholic species [50]. For example, Chinese fir (Cunninghamia lanceolata) is one of the
fast-growing timber species and is widely cultivated in subtropical southern China [38],
and the spatial occupancy of Chinese fir has been expanded to the high suitability area
of K. davidiana. Due to the negative impacts of human activities, K. davidiana has a lower
range in the high suitability area. Now, the Chinese government hopes to achieve carbon
neutrality through afforestation. In the future, K. davidiana with a long survival period can
become one of the suitable main tree species for carbon sink forests.

4.3. Changes in the Suitable Habitat for K. davidiana

Different suitable habitats were affected by various climate elements in the two future
climate scenarios of the “optimistic” SSP1-2.6 scenario and the “extreme worst” SSP5-8.5
scenario, leading to varying degrees of growth and decreases in habitat suitability. Climate
warming has caused the immigration of warm conifers at high altitudes to cold-adapted
plant distribution areas [51]. However, there were various reasons for the increase in
the suitability of K. davidiana in different high-altitude regions. Due to the increase in
precipitation, the southern side of the Qinling Mountains was no longer subject to the local
precipitation constraints. Nevertheless, the suitable region was only expanded slightly
due to the Qinling Mountains’ steepness (http://www.bigemap.com/reader/hcontour/
(accessed on 15 August 2022)). On account of warming and the lifting of temperature
restrictions, high mountain areas such as the Hengduan Mountains and the Xuefeng
Mountains improved in suitability, changing from low suitability to medium suitability
habitats [52]. In addition, because the SSP5-8.5 scenario increased the temperature in
the area more than the SSP1-2.6 scenario, the SSP5-8.5 scenario was more suitable for
the Hengduan Mountains than the SSP1-2.6 scenario. Overall, compared to the SSP1-2.6
scenario, the SSP5-8.5 scenario boosted suitability over a broader area.

Although climate warming could increase the suitability of K. davidiana in some areas
to varying degrees, there was a greater degree of suitability decline in other locations,
and the reasons for the decrease in suitability in different regions were also various. For
instance, the Sichuan Basin’s habitat suitability decreased from moderate to low, most
likely due to an increase in average summer temperature that hampered the growth of K.
davidiana. Under the SSP1-2.6 scenario, the highly suitable habitats of the Yunnan–Guizhou
Plateau dropped to moderately suitable habitats, and the moderately suitable habitats of
the Nanling Mountains dropped to lowly suitable habitats. However, under the SSP5-8.5
scenario, the highly suitable habitat areas of the Yunnan–Guizhou Plateau dropped to lowly
suitable habitats, while the moderately suitable habitats of the Nanling disappeared directly.
Under the changes in temperature and precipitation of the optimistic SSP1-2.6 scenario,
places such as the Wuyi Mountains and their vicinity changed from highly suitable areas to
lowly suitable habitats. Nevertheless, most of the regions dropped to unsuitable habitats
under the SSP5-8.5 scenario. The potential suitability of K. davidiana would decline, and
fragmentation would rise regardless of the future climate scenarios. The suitable habitat
area decreased more in the SSP5-8.5 scenario than in the SSP1-2.6 scenario.

4.4. Suggestions for Conservation Strategies and Assisted Migration

Although there are 67.72% distribution records in the highly suitable habitat of K.
davidiana (Figure 4), only 18.35% is in the NPAs, and 12.66% is overlapping the NPAs with
the current highly suitable habitat (Figure 8). The highly suitable habitat of K. davidiana
will be significantly reduced by 35% and 85%, respectively, in the “optimistic” SSP1-2.6
scenario and the “extreme worst” SSP5-8.5 scenario (Figure 5). Therefore, it is urgent and
necessary to make conservation strategies.

http://www.bigemap.com/reader/hcontour/
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Among the current distribution areas of K. davidiana, the highly suitable areas predicted
under the “optimistic” SSP1-2.6 scenario and the “extreme worst” SSP5-8.5 scenario could
be used as in situ conservation areas, and the promotion of the conservation of these areas
also contributes to maintaining ecosystem stability. The NPAs in the highly suitable areas
without K. davidiana distribution should be the first migration protection areas.

In the Yunnan–Guizhou Plateau, the suitability of highly suitable areas will decrease,
which could result in a decline in the population richness of the currently dispersed K.
davidiana and the risk of loss of rare alleles. Although there are only scarce distributions of
K. davidiana in the Nanling Mountains, there is a risk of a loss of genetic diversity when
it decreases from a moderately suitable habitat to a lowly suitable habitat. Therefore, it is
recommended to protect K. davidiana in the Yunnan–Guizhou Plateau and Nanling via ex
situ conservation, and transplant the plants to highly suitable habitats without K. davidiana
under future climate scenarios to reduce the risk of a loss of genetic diversity.

Due to the lower distribution of K. davidiana in the Sichuan Basin and Wuyi Mountains,
the reduction in the suitability will not have a tremendous adverse effect on the survival
of K. davidiana. It will just narrow the potential expansion of K. davidiana under future
climate scenarios. In the future climate scenario, the south of the Qinling Mountains and
Hengduan Mountains, and the east of the Wuyi Mountains, are newly increased highly
and moderately suitable areas, but they will not lead to the natural spread of K. davidiana
due to the fragmentation of the habitats in these areas. It is best to use transplanted plants
in these areas.

5. Conclusions

In this study, the optimized MaxEnt model was used to predict the potential suitable
habitat of K. davidiana in China under optimistic and extreme worst climate change scenarios.
Temperature and precipitation are important factors affecting the suitability of the K.
davidiana habitat, and temperature plays a more prominent role than precipitation. Under
different climate change scenarios in the future, the suitability of potential habitats of
K. davidiana will decrease, especially under extreme worst climate change scenarios, and
the suitable habitat area will decrease more. In addition, some suitable habitats of K.
davidiana may migrate to high altitudes in the 2090s. At present and in the future, it is
recommended to use the highly suitable habitats for the in situ conservation of K. davidiana;
in particular, the NPAs in the highly suitable areas can be the first migration protection
areas. The increased highly and moderately suitable habitats in the future can be cultivated
with conservation purposes. This study provided a theoretical reference for the biological
conservation and sustainable scientific management of K. davidiana.
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