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Abstract: China is the richest country in the world in terms of bamboo forest resources, with moso
bamboo as the dominated landscape distribution. Analysis of its spatial distribution, landscape
change, and its drivers is crucial for forest ecosystem management and sustainable development.
However, investigations on the effects of multiple geographical and environmental factors on changes
in the landscape of moso bamboo forests are still limited. In this study, Chinese moso bamboo
forests in 2010, 2015 and 2020 were selected as the study objects, and 19 provinces (data for Hong
Kong, Macao, and Taiwan are unavailable), where Chinese moso bamboo forests were actually
distributed, were taken as the study areas. This paper aims to determine the spatial distribution
and landscape level of moso bamboo forests in China, as well as to conduct a preliminary study
on the natural and socioeconomic factors of landscape change within moso bamboo forests and
their buffer zones through density analysis, landscape fragmentation analysis, and patch-generating
land use simulation model. The analysis using ArcGIS kernel density analysis revealed significant
variability in the spatial distribution of moso bamboo forests in China, expanding in both the north
and southwest directions. China’s moso bamboo forests expanded fast between 2010 and 2020,
with the landscape becoming more fragmented, landscape fragmentation increasing, aggregation
diminishing, and overall landscape quality declining. Climate has the greatest influence on the
shifting landscape distribution of moso bamboo forests, followed by locational factors and soil and
terrain, and socioeconomic factors such as location, population density, and GDP also impact the
shifting distribution and landscape of the moso bamboo forest.

Keywords: moso bamboo; Phyllostachys edulis; spatial distribution; landscape pattern; driving factors

1. Introduction

Bamboo forests are widely acknowledged as a sustainable, renewable resource, energy
reservoir, and suitable wood substitute [1]. Bamboo has several unique properties, includ-
ing quick growth, rapid forest establishment, long-term use capacity, a short production
cycle, high productivity, and a high potential for carbon sequestration [2–4]. Presently, the
global bamboo forest area covers over 22 million hectares. The geographical distribution of
bamboo in the world can be divided into three major bamboo regions, with the Asia-Pacific
bamboo region being the largest. It extends from New Zealand at 42◦ S to the south, the
central Kuril Islands at 51◦ N to the north, the Pacific islands to the east, and the south-
western Indian Ocean to the west [5]. China accounted for a quarter of the world’s total
of bamboo species and forest area in 2018, producing over 10,000 bamboo products. Over
the past 50 years, the bamboo forest area in China has significantly increased [2,6]. The
bamboo forest in China is also an important carbon storage and industrial tree species [7,8].
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The State Forestry and Grassland Administration, the National Development and Reform
Commission, and ten other departments issued Opinions on Accelerating the Innovative
Development of Bamboo Industry in 2021, with the goal of completing the basic construc-
tion of bamboo forest landscape in scenic rural areas by 2035 [9]. China’s bamboo sector has
an annual output value of 200 billion RMB and employs more than 8 million people, which
contributes to the improvement of human life, the development of a green economy, and
the fight against climate change [10]. For their sustainable development and exploitation,
an understanding of the spatial distribution of bamboo forests and the environmental and
socioeconomic impacts on their distribution is required.

Influenced by factors such as natural geographical conditions, economic development,
and biological characteristics of bamboo species, the distribution of bamboo resources
in China is distinctly explicit regional, with moso bamboo dominating the landscape
distribution [11,12]. According to the ninth national forest resources inventory, the bamboo
forest in China encompasses 6,411,600 hectares, of which 4,677,800 hectares, or 72.69%, are
moso bamboo forests [13]. As a major component of the forest landscape, the landscape
pattern and of moso bamboo control the distribution form and combination of forest
resources and physical environment and influence the Chinese forest ecosystems’ material
cycle and energy flow production. Due to frequent human activities, it is impossible to
observe the natural succession of moso bamboo forests in its entirety. The landscape pattern
of moso bamboo is a concrete manifestation of bamboo landscape variability, and it is also
the outcome of several ecological processes, including disturbance, working at different
scales. The study of spatial heterogeneity and landscape pattern of moso bamboo is thus
the focal point of forest landscape spatial analysis.

Density analysis, one of the analytical approaches used to examine ongoing changes
in the spatial heterogeneity of forest landscapes, offers direct evaluation and visualization
of the intensity of occurrences [14]. Density analysis has been utilized widely in forest
landscapes and other land type studies for a variety of objectives, including crop yield
estimation [15], forest assessment [16], and landscape ecology studies [17]. Density analysis
techniques accessible in GIS environments enable researchers to transform values mea-
sured at specific places on a continuous surface to discover overall trends in the spatial
distribution of the variables of interest [18]. Kernel density estimation (KDE) has been
employed to describe and assess spatial trends generated by landscape features and their
possible ecological interactions or influences on the surrounding landscape [19–21], as well
as for spatial modeling of landscape quality [22]. In contrast to other gridding approaches,
KDE is beneficial for showing structural elements in data that may not be revealed by the
parametric approach [23].

Moreover, as technology has advanced, several remote sensing techniques, spatial
modeling, and computational skills have considerably improved our ability to estimate
and anticipate the causes of forest spatial distribution and landscape evolution [24,25],
f or example, the beta cellular automata (CA) land use conversion, its impact modeling
framework the conversion of land use and its effects (CLUE) model and its upgraded
models the patch-generating land use simulation model (PLUS) model. However, CA
models are ineffective at identifying the landscape’s underlying drivers [26–28]. CLUE
models result in separation of macroscopically predicted land use demand and local
change allocation [29,30]. The PLUS model is a more effective one [31,32], which employs
the Random Forest Classification (RFC) algorithm and achieve good results in exploring
the relationship between the growth of different land use types and multiple drivers.

The primary objectives of our study are to assess the spatial distribution and landscape
level of moso bamboo forests in China and to analyze the relationship between the under-
lying factors (natural and socioeconomic) and landscape change in moso bamboo forests
in China. However, it is crucial to note that the primary focus of this study is the spatial
and temporal analysis of forest landscape change in moso bamboo, which is essential for
the investigation of its drivers. The preliminary findings presented here on the drivers of
forest landscape change in moso bamboo forests presented are the first studies relevant
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to the study area and provide a solid foundation for further research on the relevance of
each factor to the observed types of forest landscape change. A second phase of the study
is planned to analyze other possible drivers, such as specific social policies, laws, and
regulations, and projections of the future landscape evolution of moso bamboo forests in
China based on these factors.

The landscape pattern and dynamic succession of moso bamboo in China was chosen
as the focus of this study in order to achieve our anticipated goals. We analyzed the dy-
namic change characteristics of the moso bamboo forest landscape over many years in 2010,
2015, and 2020 based on time series, and then we explored the change patterns and drivers
of its landscape pattern using the PLUS model, in order to clarify the natural evolutionary
trends and anthropogenic disturbance factors in the development of moso bamboo forest
in China. This study not only provides a relatively accurate and comprehensive picture of
the succession of moso bamboo in China over time and the intrinsic mechanisms involved,
but also offers corresponding theoretical support and decision-making suggestions for
ensuring forest management, ecological security, and promoting the development of eco-
logical civilization. Through this investigation, we seek to address the following questions:
(1) What are the spatial distribution and landscape pattern of moso bamboo forests in
China, where are they mostly situated, and where are the intervals of spatial distribution
with high and low densities? (2) What are the spatial changes in the distribution and
landscape of moso bamboo forests during the 2010–2015 and 2015–2020 periods, and do
they grow or contract to other regions? (3) What forces drive the degree of landscape
change in China’s moso bamboo forests, and what factors influence the distribution and
evolution of bamboo forests?

2. Materials and Methods
2.1. Data and Processing
2.1.1. Chinese Moso Bamboo Forest Database

China is located in the eastern part of Asia, with high topography in the west and low
topography in the east, in a stepped pattern, and complex and diverse climate, including
tropical, subtropical, warm temperate, middle temperate, and cold temperate climates
zones from south to north. Moso bamboo forests are primarily found in the subtropical
region in southern China. To analyze the evolution of landscape patterns of moso bamboo
forests in China, this study accessed the forest resources database of the State Forestry
and Grassland Administration of China and extracted all the national forest resources
survey data for 31 provincial administrative regions (data for Hong Kong, Macao, and
Taiwan are unavailable) for 2010, 2015, and 2020. The vector data of moso bamboo forest
in each province in 2010, 2015, and 2020 were extracted from the national forest resources
survey database. The obtained vector layers of moso bamboo forest in 2010, 2015, and 2020
nationwide were merged again to obtain the regional merged layer with moso bamboo
forest distribution during 2010–2020. Based on the regional merged layer as a foundation, a
5000-m straight-line buffer zone layer is created to produce the buffer zone layer. In order
to create the final layer for the subsequent study of the moso bamboo forest landscape, the
buffer zone layer was intersected with the forest resource database of each province in 2010,
2015, and 2020. According to the Chinese moso bamboo forests distribution database, we
have finally selected the study region for this project, which consists of all 19 provinces of
Chinese bamboo forests distribution from 2010 to 2020 (data for Hong Kong, Macao, and
Taiwan are unavailable), as shown in Figure 1.
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Figure 1. Study area.

2.1.2. Driving Factor Selection

On the influence of bamboo forest growth and change, researchers have mostly focused
on a single component. We analyzed the driving factors of the evolution of bamboo forest
landscape patterns by integrating meteorological, soil, topographic, location, population,
and GDP parameters, among others, in order to investigate the factors influencing the evo-
lution of bamboo forest landscape patterns. Meteorological data include annual minimum
temperature, annual average temperature, annual minimum precipitation, annual average
precipitation indicators. The data originate from the National Meteorological Science Data
Center. Soil data include soil pH and soil thickness; The data originate from the 1:1 million
soil map of the People’s Republic of China the database of Chinese soil species. The global
SRTM (Surface Referenced Terrain Model) is the source of elevation-based topographic
data, the data are related to altitude and come from the the Global SRTM (Shuttle Radar
Topography Mission), i.e., the global shuttle radar topography mapping data. The geo-
graphic location data include latitude and longitude information. The regional location
information includes distance from water system, distance from road and distance from ur-
ban center, the data of which come from the national geographic information public service
platform; and the population dataset from the UN-corrected version of the 1000*1000 m
global population dataset from the World pop Hub website. The economic data is GDP per
capita from the GDP dataset of the landscan website. All the above data were converted to
the 2000 National Ggeodetic Coordinate System and Albers Equal-Area Conic Projection
coordinates. Table 1 presents the specific data sources.
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Table 1. Data Sources.

Data Indicator Selection Data Source

Geographical Location
data

Longitude
Latitude

Meteorological data

Annual minimum temperature
National Meteorological Science Data Center

(http://data.cma.cn/, accessed on 1 November 2022)
Annual average temperature

Annual minimum precipitation
Annual average precipitation

Terrain data Altitude Global SRTM (http://srtm.csi.cgiar.org/, accessed on 1
November 2022)

Soil data
Soil pH 1:1 Million Soil Map of the People’s Republic of China

China Soil Species JournalSoil thickness

Regional Location data
Distance to the water system

National Geographic Information Public Service PlatformDistance to road
Distance to urban center

Demographic Data Population density
World pop Hub

(https://hub.worldpop.org/project/categories?id=17,
accessed on 1 November 2022)

Economic Data GDP Lands can GDP data (https://landscan.ornl.gov/,
accessed on 1 November 2022)

2.2. Methods
2.2.1. Kernel Density Analysis

Kernel density analysis is a nonparametric method for estimating probability density
functions that can effectively analyze the clustering of observed forest landscapes [19,33].
The original bamboo forest data were resampled to raster data with an image element size
of 200 m, then the raster data were transformed into point data, followed by kernel density
estimation, and the computational equation was:

Fn(x) =
1

nh ∑n
i=1 k

(
x− xi

h

)
, (1)

where: Fn(x) is the kernel density estimate of the bamboo forest landscape; K is the kernel
function; h > 0 is the bandwidth; x − xi represents the distance from the estimated point
to the sample xi. In KDE estimation, the determination or selection of bandwidth h has a
substantial impact on the calculation results; the larger h is set, the smoother the generated
density raster and the higher its probability; the smaller h is set, the more information is
displayed in the generated density raster [34].

2.2.2. Landscape Fragmentation Analysis

Landscape indices can greatly condense landscape pattern information and present
landscape composition and spatial distribution status through different levels of landscape
indices, which have been widely used in numerous land use and landscape pattern studies.
Using previous research results [35,36] and the data situation of the moso bamboo forest,
this study selected seven landscape indices from all the indices to characterize the landscape
pattern of bamboo forest: class area index (CA), number of patches index (NP), mean patch
size index (MPS), patch density index (PD), Largest patch index (LPI), landscape shape
index (LSI), and aggregation index (AI), to characterize the landscape pattern of bamboo
forest. The Fragstats [37] software was used to calculate the values of each index to quantify
and describe the landscape pattern changes and fragmentation of regional moso bamboo
forests. The total significance and calculation of each index are as detailed below.

(1) NP refers to the total number of patches equal to a patch type in the landscape at
the type level; its value range is NP >= 1 and NP = n.

http://data.cma.cn/
http://srtm.csi.cgiar.org/
https://hub.worldpop.org/project/categories?id=17
https://landscan.ornl.gov/
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(2) CA is the total area of a patch type, which reveals the degree of landscape fragmen-
tation; the range of CA values is greater than 0.

(3) MPS, unit: hm2. Range: MPS > 0. MPS at the patch level equals to the total area
of a patch type divided by the number of patches comprising that type. At the landscape
level, we believe a landscape with a lower MPS value is more fragmented than one with a
higher MPS value.

(4) PD refers to the number of patches per square kilometer. PD ≥ 0, no upper limit.
The patch density index measures the degree of the landscape fragmentation. The higher
the patch density, the smaller the patches and the greater the degree of fragmentation.

PD =
Ni

A
, (2)

where N represents the number of patches, and A represents the total landscape area.
(5) LPI is the ratio of the total area of the largest patch to the total area of a patch type

or the whole landscape, is used to describe the level of a patch type in relation to the degree
of the landscape. The calculation is as follows.

LPI =
Max(a1 . . . an)

A
(100), (3)

where ai represents the patch area i and A represents the total landscape area. LPI is the
percentage of the largest patch area in the patch type to the total landscape area, and in
landscape ecology, LPI is a measure of dominance at the patch level, and its value range is
between 0 and 100.

(6) LSI describes the complexity of the shape of the patch boundaries. LSI ≥ 1, no
upper limit. When there is only a single square patch, the LSI is 1. The value of a landscape
patch increases when its shape is irregular. The calculation is as follows.

LSI =
Pi

2
√
πAi

, (4)

where Pi is the perimeter of landscape type i, Ai is the area of type i.
(7) AI, when the landscape gradually aggregates, AI will increase; if the landscape

consists of a single patch, AI equals to 100, AI equals 0 when an element type is randomly
dispersed throughou the landscape. The calculated is as follows.

AI =
[
∑m

i=1

(
gii

max→ gii

)]
(100), (5)

where gii is the number of similar neighboring patches of landscape type i.

2.2.3. Patch-Generating Land Use Simulation Model

The patch-generating land use simulation (PLUS) model is a new land use model
based on beta cellular automata that investigates the causes and dynamics of land use
change simulation, particularly in forest landscape change patches [29,31,38]. First, samples
of interconversion of various types of land use between two periods of land use data must
be extracted for training, followed by simulation of future land use based on the probability
of conversion. The land-use expansion and driving factors for each land use type are then
calculated using the random forest technique. Finally, the development probability of each
land use type and the contribution of driving factors to the expansion of each land use type
are determined. In this study, the evolution of the landscape pattern of the moso bamboo
forest was analyzed by means of the LEAS module of the PLUS model. We evaluated the
bamboo forest data to obtain the change of land use types through the growth patches
of each changing land use type, which can be used to characterize the land use changes
during a certain time period. The random forest classification (RFC) technique was used
to investigate the relationship between the growth of various land use types and several
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causes in order to quantify the probability of the development of each land use type using
the formula [39].

Pd
i,k(X) =

∑M
n=1 I[hn(X) = d]

M
, (6)

where X is a vector of driving factors. M is the number of decision trees. d is either 0 or
1, where 1 indicates that other land use types can be converted to land use type k and 0
indicates other land types cannot be converted to land type k. hn(X) is the expected land
use type calculated when the decision tree has a value of n. I[hn(X) = d] is the exponential
function of the decision number. Pd

i,k(X) is the growth probability of of land use type k at
spatial unit i.

3. Results
3.1. Spatial Clustering Analysis of Moso Bamboo Forest

To determine the spatial clustering of moso bamboo forests in China, we first estimated
the kernel density values of moso bamboo forests across the country using the kernel density
analysis tool in Arcgis 10.8. It can reflect the spatial clustering of moso bamboo forests. The
higher the value of this density, the more spatially clustering of moso bamboo forests are.
According to the data, the range of nuclear density values of national moso bamboo forests
in 2010, 2015, and 2015 was 0–14.228, 0–13.912, and 0–15.711, respectively. The natural
breakpoint approach was used to divide them into five categories: extremely low-density
zone (0–0.669), low-density zone (0.669–2.176), medium-density zone (2.176–4.240), and
high-density area (4.240–7.086), and extremely high-density area (>7.086). It is evident from
Figure 2 that the spatial distribution of moso bamboo forests in China is highly variable.

From 2010 to 2015, Chinese moso bamboo forests were distributed in 18 provinces span-
ning latitude between 16◦46′33′′ N and 38◦57′12′′ N and longitude between 92◦35′14′′ N
and 126◦59′58′′ N. In 2020, it reached 19 provinces spanning latitude between 14◦21′47′′ N
and 40◦45′46′′ N and longitude between 88◦46′26′′ N and 133◦1′12′′ N. In terms of the
distribution of moso bamboo forest density in specific provinces (Figures 3–5), high-density
and extremely high-density areas are primarily distributed in Hunan, Zhejiang, Fujian,
Jiangxi, and other provinces as well as Anhui and southern Jiangsu, with latitude range
between 22◦58′4′′ N and 31◦48′3′′ N and longitude between 108◦33′18′′ N and 123◦40′47′′ N.
47′′ N. From 2010 to 2015, the spatial increase in low-density and extremely low-density
areas was significant, and the distribution of moso bamboo forests kept expanding to the
provinces in the southwest, mainly in Yunnan, Guangxi, Hainan, and Xizang. From 2015 to
2020, the expansion of low-density and extremely low-density areas occurred mostly in the
provinces of Shandong and Guangdong, indicating that the distribution of moso bamboo
forests was growing in both north and south. The majority of the increase in high-density
and extremely high-density areas were occurred in the northern Guangdong Province.
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3.2. Spatial and Temporal Dynamics of Moso Bamboo Forest Landscape Patterns

In the landscape index of the moso bamboo forest (Tables 2 and 3), the CA values
showed that the area of the moso bamboo forest increasing from 2010 to 2020, indicating
that the moso bamboo forest is expanding continuously. The extent of the moso bamboo
forest grew by 456,200 hectares between 2010 to 2015, and 613,772 hectares from 2015
to 2020, which means its growth rate accelerated. Based on the landscape index of each
province (Tables 3 and 4), Fujian, Jiangxi, Hunan, Zhejiang, Anhui, Guangxi, Guangdong,
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and Hubei are the provinces with larger moso bamboo forest areas over the past three years.
The extent of moso bamboo forest exceeds 100,000 hectares, with Fujian having the largest
area at over 1 million hectares. Hunan, Zhejiang, and Anhui are the provinces with the
greatest increase in CA value from 2010 to 2015, whereas Guangdong and Jiangxi have the
most increase in bamboo forest area from 2015 to 2020.

The number of patches of moso bamboo forest exhibited an upward trend in terms
of NP value, indicating that the rise in bamboo forest area was not due to the extension
of the original patches, but rather to the addition of new patches. From 2010 to 2015, the
number of patches of moso bamboo forest increased by 40,570, and from 2015 to 2020, the
growth rate climbed to 45,580 patches per year. From 2010 to 2015, t Zhejiang Province
had the greatest rise in the number of patches of moso bamboo forest, however from 2015
to 2020, Guangdong Province had the most increase in the number of patches of moso
bamboo forest.

From 2010 to 2020, the average area of moso bamboo forest patches decreased ac-
cording to MPS values. The combined CA, NP, and MPS values of the moso bamboo
forest landscape indicated that between 2010 and 2020, the area of the moso bamboo forest
expanded, the number of patches increased, the average distance between patches dropped,
and the landscape fragmentation increased.

Table 2. Changes in landscape indicators of national moso bamboo forests.

Time CA NP MPS PD LPI LSI AI

2010 4,476,468 160,951 27.81 3.60 3.50 477.16 54.94
2015 4,932,668 201,521 24.48 4.09 3.18 530.15 52.31
2020 5,546,440 247,101 22.45 4.46 2.86 578.82 50.87

Table 3. Changes in CA, NP, and MPS indices of moso bamboo forests in each province.

CA NP MPS
Time 2010 2015 2020 2010 2015 2020 2010 2015 2020

Anhui 268,020 349,796 346,144 10,027 16,369 16,132 26.73 21.37 21.46
Chongqing 32,764 26,912 1128 3780 3161 205 8.67 8.51 5.5

Fujian 1,032,364 1,057,460 1,109,184 34,934 37,144 41,939 29.55 28.47 26.45
Guangdong 153,428 156,444 535,616 4017 4206 31,643 38.19 37.2 16.93

Guangxi 186,328 187,092 202,520 10,919 11,199 14,577 17.06 16.71 13.89
Guizhou 54,372 59,964 69,036 3355 3725 4360 16.21 16.1 15.83
Hainan 20 180 176 1 5 7 20 36 25.14
Henan 1632 1556 1204 168 164 130 9.71 9.49 9.26
Hubei 118,864 133,972 172,220 7150 8223 13,382 16.62 16.29 12.87
Hunan 868,664 1,004,688 1,049,856 40,545 45,961 48,835 21.42 21.86 21.5
Jiangsu 19,520 1440 24,528 942 155 1340 20.72 9.29 18.3
Jiangxi 979,768 1,029,232 1,170,396 17,382 20,814 29,610 56.37 49.45 39.53

Shanghai 72 80 80 10 8 12 7.2 10 6.67
Shaanxi 2928 3084 3076 331 338 319 8.85 9.12 9.64
Sichuan 68,600 79,260 78,780 3951 4438 4706 17.36 17.86 16.74
Yunnan 5196 63,840 4608 351 6278 557 14.8 10.17 8.27
Zhejiang 683,728 777,476 777,548 23,511 39,818 39,823 29.08 19.53 19.53

Shandong 168 - - - 284 33 - - - 54 5.09 - - - 5.26
Xizang - - - 64 36 - - - 2 2 - - - 32 18
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Table 4. Changes in PD, LPI, LSI, and AI indices of moso bamboo forests in each province.

PD LPI LSI AI
Time 2010 2015 2020 2010 2015 2020 2010 2015 2020 2010 2015 2020

Anhui 0.33 0.55 0.54 0.57 0.5 0.61 123.98 153.79 151.83 52.28 48.11 48.49
Chongqing 0.1 0.08 0.01 0.08 0.06 0 67.93 61.9 15.26 24.8 24.39 8.49

Fujian 0.48 0.5 0.56 0.29 0.57 0.58 234 239.37 253.17 54 53.52 51.98
Guangdong 0.07 0.08 0.59 0.32 0.35 1.21 80.71 81.35 198.95 59.06 59.12 45.75
Guangxi 0.18 0.13 0.17 0.24 0.19 0.19 121.03 125.51 141.42 44.08 42.1 37.18
Guizhou 0.16 0.17 0.12 0.3 0.28 0.11 61.75 65.82 70.14 47.25 46.6 46.92
Hainan 0 0 0 0.01 0.06 0.04 1 1.86 2.14 100 84.21 78.38
Henan 0.08 0.08 0.06 0.05 0.05 0.05 13.76 13.65 12.37 32.52 31.44 29.81
Hubei 0.37 0.16 0.25 0.51 0.26 0.3 93.23 100.14 124.36 46.15 45.38 40.26
Hunan 0.58 0.66 0.48 0.16 0.3 0.4 242.76 261 265.04 47.95 47.98 48.34
Jiangsu 0.15 0.09 0.03 1.25 0.08 0.21 32.91 14.05 39.14 53.57 27.27 50.54
Jiangxi 0.24 0.29 0.41 2.13 2.13 2.14 158.85 170.8 198.44 68.03 66.44 63.43

Shanghai 0 0 0 0.01 0.01 0 3.56 3.56 4 14.81 25.81 12.9
Shaanxi 0.25 0.25 0.23 0.1 0.09 0.09 20.31 20.43 20.27 24.63 26.78 27.19
Sichuan 0.04 0.04 0.05 0.07 0.09 0.09 73.49 76.35 79.99 44.2 46 43.24
Yunnan 0.01 0.25 0.01 0.01 0.14 0 22.29 87.58 25.44 38.46 30.83 25.67
Zhejiang 0.46 0.56 0.56 1.13 0.85 0.71 187.69 239.15 239.22 54.73 45.84 45.83

Shandong 0.03 - - - 0.05 0.01 - - - 0.02 6.08 - - - 7.47 7.04 - - - 12
Xizang - - - 0.53 0.54 - - - 15.96 6.52 - - - 2.13 1.83 - - - 62.5 58.33

According to Tables 2 and 4, the national moso bamboo forest patch density and the
number of moso bamboo forest patches in the unit area rose based on the PD values. In
terms of specific provinces, Hunan, Anhui, Zhejiang, and Fujian have the highest density
of bamboo forest patch. From 2010 to 2015, the patch density in Xizang grew, and from
2015 to 2020, the patch density in Guangdong Province increased the most, while the patch
density in Yunnan Province declined significantly.

Nationwide, the proportion of landscape area occupied by the largest patches of moso
bamboo forest declined in terms of LPI values, whereas the LPI values of Xizang changed
more than those of other provinces. The degree of aggregation of the moso bamboo forest
environment fell in AI values across the nation, with the most substantial change occurring
in Jiangsu Province. The PD, LPI, and AI values of the integrated bamboo forest landscape
indicate that the landscape of the moso bamboo forest does not show a pattern of large-scale
concentrated contiguous distribution. However, a trend toward greater dispersion and the
rise in area were mostly driven by the expansion of somewhat dispersed tiny patches.

Three provinces, Hunan, Fujian, and Zhejiang, had the greatest patch shape index
values, as measured by the LSI. Guangdong Province saw the greatest increase in LSI
values from 2015 to 2020, with a complex patch shape. These imply that Chinese moso
bamboo forests are subject to less human influence and have a greater proportion of natural
extension and growth, and that moso bamboo forests are expansive vital.

3.3. Drivers of Landscape Change in Moso Bamboo Forests

As shown in Figures 6 and 7, this study calculated the contribution of seven dimensions
of drivers, containing a total of 14 indicators such as GDP, longitude, latitude, annual
minimum temperature, annual average temperature, annual minimum rainfall, annual
average rainfall, soil pH, soil thickness, elevation, population density, distance from water
systems, distance from roads, and distance from urban centers, and analyzed the changes
in drivers of the evolution of the landscape pattern of moso bamboo forests in two phases,
Phase A (2010–2015) and Phase B (2015–2020). Table 5 displays the errors and contributions
of the various driving factors used to train the random forest model based on the PLUS
model. It is evident that the landscape changes of the moso bamboo forest are driven by a
combination of factors, including geographical location, climate, soil, topography, regional
location, population and economy.
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Table 5. Table of the contribution indicators of the drivers of the evolution of the landscape pattern
of moso bamboo forest.

Driving Factor Indicators 2010–2015 2015–2020
Error Noise Contribution Rate Error Noise Contribution Rate

Longitude 0.279625 0.130316 0.314345 0.1328130
Latitude 0.258314 0.114687 0.236602 0.0813042

Annual minimum temperature 0.176923 0.0549948 0.215676 0.0674396
Average annual temperature 0.255903 0.112919 0.27537 0.10699

Annual minimum rainfall 0.21528 0.0831259 0.210517 0.0640219
Annual average rainfall 0.235681 0.0980875 0.300008 0.123314

Soil type 0.142716 0.0299074 0.140914 0.0179062
Soil thickness 0.120284 0.013456 0.1353 0.014187

Elevation 0.152445 0.037043 0.254317 0.0930412
Population density 0.255474 0.112604 0.262838 0.0986867

Distance to water system 0.172895 0.0520409 0.185365 0.0473571
Distance to road 0.155655 0.0393969 0.162513 0.0322171

Distance to city center 0.216577 0.0840771 0.244384 0.0864599
GDP 0.152857 0.0373445 0.165601 0.0342627
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Figure 7. Spatial distribution of driving factors (2).

In 2010–2015, the contribution rate of climate factor was the highest among the driving
factors of changes in moso bamboo forests, with a total contribution rate of 0.3491272. The
average annual temperature contributed the most, with a contribution rate of 0.112919,
followed by the average annual precipitation, the minimum annual precipitation, and the
minimum annual temperature. In the second tier of the contribution rate, the geographical
location factor is the most relevant component. The regional location factor is the third tier
of influencing elements, which are, in order of contribution rate in order of contribution rate,
the distance from the urban center, the distance from the water system, and the distance
from the road. With a contribution of 0.112604, the demographic factor is the fourth tier.
The fifth, sixth and seventh drivers are soil, GDP, and topography.

In 2015–2020, climate is still the driver with the highest contribution rate, with an
overall contribution rate of 0.3617655, which is 0.02 higher than that of the previous period,
primarily as a result of a significant increase in the contribution rate of average annual
precipitation, which becomes the indicator with the highest contribution rate among the
contributing factors. The second contribution rate is average annual temperature. The
contribution rate of average annual minimum temperature and minimum precipitation
decreases slightly. Geographical location factor is the second tier with a total contribution
rate of 0.2141172. The third and fourth tiers are the regional location and population. At
this level, the topographic component becomes the fifth tier, and the elevations contribution
rate climbs from 0.037043 to 0.0930412. GDP and soil factors are the sixth and seventh tiers,
and the contribution rate of each factor drops marginally compared to the preceding level.
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4. Discussion

The expansion of moso bamboo forests is considered to be a concern, and the changes
in their landscape patterns have been of interest to scholars [40]. The bamboo forest land-
scape fragmentation rises, aggregation decreases, and the overall landscape quality declines.
Changes in forest landscape patterns are typically the consequence of a combination of
natural drivers and socioeconomic factors [41,42], whereas prior studies on the effects of
bamboo forest growth and change focused on a single component.

The most influential element on the distribution and landscape evolution of moso bam-
boo forests in China is climate, and change in th this factors have altered the spread of moso
bamboo forests [11,43]. Studies have demonstrated the significance of annual minimum
temperature, annual mean temperature, annual minimum precipitation, and annual mean
precipitation in determining the spread of moso bamboo forests in both the preceding and
subsequent phases. Temperature and precipitation play crucial roles in the development of
moso bamboo forests. The annual precipitation necessary for bamboo growth ranges from
1200 to 2500 mm [44], with the average annual precipitation in southeastern China ranging
from 1000 to 2000 mm and in southwestern China from 800 to 1000 mm [45]. Several earlier
studies have demonstrated that temperatures above 30 ◦C during the germination stage
of bamboo shoots inhibit shoot differentiation and lower the quantity of new bamboos,
whereas a daily average temperature range of 15 to 25 ◦C is optimal for the growth of
bamboo stands [43,46]. When the average temperature during the bamboo formation stage
falls below 10 ◦C, bamboo growth slows or ceases [44]. Furthermore, according to Liang,
precipitation is the primary factor restricting the dispersion of bamboo stands, whereas
temperature is a secondary one [47]. Consequently, temperature and precipitation gradi-
ents might cause a steady decrease in the high and extremly high-density areas of bamboo
forests from the southeast coast to the southwest coast (Figure 2).

The geographical location of moso bamboo forests is also a significant factor limiting
landscape diversity. The current distribution of bamboo forests is primarily in the subtropi-
cal mid-latitude provinces of Hunan, Jiangxi, Fujian, and Zhejiang, corresponding with
the finding of Cai Jin’s study that bamboo forests are spread in the central subtropics [45].
The data also revealed that the low-density distribution of moso bamboo forests in the
majority of Sichuan, Yunnan, Xizang, Guangxi, and Guizhou provinces was a result of the
comparatively high altitude and lower temperature. In contrast, the low-density distribu-
tion of bamboo forests in Shandong and Shaanxi is mainly due to the low average annual
temperature due to latitudinal factors and the low and mostly scattered density of bamboo
forests [45,48]. Moreover, a comparison of the two phases implies a further northward and
southwestward expansion of the spatial distribution of moso bamboo forests in China. In
the context of global warming, Li also anticipated that the possible distribution area of
bamboo forests in southeastern China would move northward, whereas in southwestern
China it would move southward [43]. These findings imply that changes in moso bamboo
forests area are related to the geographical location of their distribution and their long-term
trends in response to climate change.

Frequently, socioeconomic forces and biogeographic aspects influence landscape
change [49,50]. Regional locational, demographic, and GDP characteristics will also influ-
ence the evolution and distribution of moso bamboo forest landscapes in China, according
to studies. Integration of regional forest landscapes is aided by rational management
practices, and human disruptions have altered the stability of landscape patterns as the
economy has expanded [51]. Water systems, roads, and distances from urban center di-
rectly influence the accessibility of forests, which in turn affects the transformation of forest
landscapes [52–54].

Soil and topographic influence the growth and development of bamboo forests, accord-
ing to the results [55,56]. Long-term interaction and evolution of environmental elements
such as vegetation type, climate, topography, and human activities [57] led to the formation
of forest soil. The underground flagellar system of moso bamboo forests is unique, and the
strong reproductive capacity of the flagellum causes the underground stems in the bamboo



Forests 2023, 14, 397 17 of 20

forest soil. The significant geographical heterogeneity of soil parameters suited for bamboo
forest growth is a result of the unique biological traits of bamboo [58]. Several studies have
demonstrated that topography, such as altitude, influences the local hydrothermal balance,
which in turn can affect the entry and output processes of soil organic matter [59].

We were unable to discover data on the distribution of moso bamboo forests further
back in time due to data restrictions. This study only examined the changes in the moso
bamboo forest landscape from 2010 to 2020; the historical changes in the bamboo forest
landscape and the future evolution of moso bamboo forests require additional study. The
distribution of moso bamboo forests in China is influenced not only by climate (temperature,
precipitation), location, population density, GDP, soil, and topography but also by variable
covariates, other geographical factors, and the interactions between these factors. The
new analysis indicates that the distribution area of moso bamboo forests will continue to
expand in the future. Therefore, future research should investigate the effects of these other
elements and their interactions on moso bamboo forests. Moreover, the fragmentation
of the moso bamboo forest landscape means that it will have an impact on other forest
landscape types, especially subtropical broadleaf evergreen forests. The specific types
of landscape transformation in moso bamboo forests and their erosion impacts require
additional study.

5. Conclusions

In this study, we analyzed the cold and hot spots and basic characteristics of the spatial
distribution of Chinese moso bamboo forests in 2010, 2015, and 2020. We also elucidated
the changing landscape pattern index of Chinese moso bamboo forests using the landscape
index and explained the driving factors of moso bamboo forest distribution using the PLUS
model. The conclusions are divided into three distinct sections.

(1) The spatial distribution of Chinese moso bamboo forests demonstrates considerable
variation. The range of moso bamboo forests is expanding in both the north and
the southwest.

(2) China’s moso bamboo forests expand rapidly between 2010 and 2020. The landscape
of the bamboo forest becomes more fragmented, the aggregation reduces, and the
overall landscape quality declines.

(3) Changes in the landscape pattern of moso bamboo forests are attributable to the
interaction of natural and socioeconomic causes. In terms of change, the climate is the
most influential factor in the dispersion of the moso bamboo forest landscape; location
considerations are secondary impacts. The landscape change in moso bamboo forests
is influenced by the intersection of socioeconomic factors such as location, population
density, and GDP with biological geographic features.

However, it should be noted that there are still some flaws in the study, which may
be attributable to constraints such as the limited time period involved, and the lack of
examination of causal links between drivers and specific changes in the landscapes of
moso bamboo forests. In addition, the landscape transformation of moso bamboo forests in
relation to other forest types and the future landscape transformation must be examined in
more depth. We provide useful insights into the density distribution and landscape change
of moso bamboo forests in China over a ten-year period and suggest avenues for further
research on the social and economic drivers of landscape change and moso bamboo forests.
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