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Abstract: Yellowhorn (Xanthoceras sorbifolium) seeds can have as high as 67% oil content and are
especially rich in oleic acid, linoleic acid, and nervonic acid. Exploration of the lipid biosynthesis
regulatory network is essential for increasing the yellowhorn oil content. Long non-coding RNAs
(lncRNAs) play important roles in various plant biological processes; however, there is no report
on the identification of lncRNAs involved in yellowhorn seed development and lipid biosynthesis
affecting oil production. We performed whole transcriptome sequencing of yellowhorn seeds at four
developmental stages and identified 16,920 putative lncRNAs. Among them, 325 lncRNAs were
revealed to trans-regulate 58 key genes in fatty acid (FA) and triacylglycerol (TAG) biosynthesis
pathways. Of these, ECR-2–LNC_009778 was found to be involved in nervonic acid biosynthesis
and DGAT-1–LNC_009778 was beneficial to TAG accumulation. sRNA-seq was performed, and
55 microRNAs (miRNAs) were found to target 26 genes involved in FA and TAG biosynthesis;
miR396a-4 targets FAD2, affecting linoleic acid biosynthesis, and miR156f-5p targets PDAT-2, con-
tributing to TAG accumulation. Interestingly, 30 lncRNA–miRNA–gene modules involved in FA
and TAG biosynthesis were identified, in which the KCS11-1–miR156g-2–LNC_000849 module was
found to participate in nervonic acid synthesis, and the DGAT-2–miR172j–LNC_005874 module was
assumed to contribute to the accumulation of TAG. Our results constitute the first comprehensive
identification of lncRNAs in developing seeds of yellowhorn and serve as a new theoretical reference
for improving oil content in the future.

Keywords: lncRNA; yellowhorn; oil synthesis; lncRNA-gene pairs; lncRNA–miRNA–gene module

1. Introduction

Yellowhorn (Xanthoceras sorbifolium) belongs to the Sapindaceae family and is endemic
to northern China. This oil-bearing woody plant flourishes under dry and barren conditions.
Its seed kernels contain up to 67% oil content, with unsaturated fatty acids accounting for
85%–93%, including oleic acid (28.6%–37.1%), linoleic acid (37.1%–46.2%) and nervonic acid
(1.3%–3.1%) [1,2]. Notably, nervonic acid is recognized as a dual-effect substance that can
repair damaged brain nerve fibers and promote nerve cell regeneration, and it only exists
in a limited number of plants [2,3]. Additionally, the characteristics of possessing a high
content of hydrocarbon lipids and being environmentally friendly give biodiesel prepared
from yellowhorn seed oil broad market prospects. In industry, yellowhorn seed oil can also
be used to produce high-grade lubricating oil and other industrial raw materials. Due to its
potential applications in industry, yellowhorn seed oil has garnered considerable attention
in recent years. Nevertheless, an effective method for elevating yellowhorn oil production
is still lacking. Identification of key genes and modules involved in oil accumulation in
yellowhorn and their further utilization in breeding may provide effective strategies for
developing high-oil content varieties.
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The accumulation of seed oil mainly contains two parts: fatty acid (FA) biosynthesis
in plastids and triacylglycerol (TAG) biosynthesis in the endoplasmic reticulum (ER) [4].
In the beginning of FA biosynthesis, the acetyl-CoA carboxylase (ACC) catalyzes the
conversion of acetyl coenzyme A (acetyl-CoA) to malonyl-acyl carrier protein (malonyl-
ACP). Then, the malonyl-ACP is elongated to C16:0-ACP through the fatty acid synthase
(FAS system), which contains 3-ketoacyl-ACP synthase (KAS), 3-ketoacyl-ACP reductase
(KAR), 3-hydroxyacyl-ACP dehydratase (HAD) and enoyl-ACP reductase (EAR). Free
FAs in plastids are then released from ACP and exported to the ER in the form of acyl-
coA esters. In the ER, C18:1-CoA is further desaturated to C18:2-CoA (linoleic acid) and
C18:3-CoA (linolenic acid) by fatty acid desaturase 2 (FAD2) [5] and fatty acid desaturase
3 (FAD3) [6], respectively. Notably, C24:1 (nervonic acid) is synthesized from C18:1-CoAs
through the fatty acid elongase (FAE) system, consisting of 3-ketoacyl-CoA synthase (KCS),
3-ketoacyl-CoA reductase (KCR), 3-hydroxyacyl-CoA dehydratase (HCD) and enoyl-CoA
reductase (ECR) [3,7]. Plants synthesize TAG via two pathways. The major pathway is the
Kennedy pathway, which involves three consecutive acylation steps: glyceraldehyde-3-
phosphate (G3P) catalytically converted by glyceraldehyde-3-phosphate acyltransferase
(GPAT) to lysophosphatidic acid (LPA), which is then catalytically converted by lysophos-
phatidate acyltransferase (LPAAT) to PA. Then, PA is dephosphorylated to form DAG.
Finally, TAG is produced from DAG under the catalytic action of DGAT. In the other
pathway, phosphatidylcholine (PC) is formed first and then converted to TAG by the
phospholipid:diacylglycerol acyltransferase (PDAT). The final TAG is packed in lipid
droplets [4,8].

Long non-coding RNAs (lncRNAs), typically longer than 200 nucleotides, regulate
gene transcription and expression primarily at the epigenetic and transcriptional levels [9].
Researchers have identified numerous lncRNAs involved in the development of plant seeds
and the synthesis of plant oils using high-throughput sequencing [10–12]. For instance,
22,430 lncRNAs were identified in two tree peony cultivars containing different levels of
unsaturated FAs and a-linolenic acid [10]. A set of 1894 lncRNAs was identified among
eight different development stages of pecan kernels from two cultivars [11]. There were
also 1363 lncRNAs identified from six different mesocarp stages and oil palm spear leaf
tissues mixed in equal amounts [12]. Moreover, the functions of lncRNAs in the lipid
biosynthetic pathway have been identified in several plants. In Brassica napus, several
lncRNAs participate in seed lipid accumulation by regulating oleosin1, a protein found in
oil bodies [13]. In seeds of the tung tree, the lncRNAs LXLOC_009521 and LXLOC_020850
promote the conversion of DAG to TAG by targeting DGAT1 [14]. However, thus far, there
is no report on the identification of lncRNAs in yellowhorn, and the role of lncRNA-mRNA
interactions in yellowhorn lipid biosynthesis remains unknown.

MicroRNAs (miRNAs) are endogenous non-coding RNAs that regulate gene expres-
sion by cleaving target mRNA or inhibiting their translation. Previously, 33 novel and
19 known miRNAs were identified in yellowhorn flower buds [15]. Recently, 88 novel
and 249 known miRNAs were identified in yellowhorn seeds at different developmen-
tal stages. miR319p_1 and miR5647-p3 were predicted to exert functions in yellowhorn
lipid biosynthesis by targeting FAD2-2 and DGAT1, respectively [16]. LncRNAs can act
as endogenous target mimics (eTMs) for miRNAs, thereby suppressing miRNA expres-
sion and enhancing miRNA-targeted mRNA expression. In Arabidopsis, the lncRNA
MSTRG.27126.3 sequesters miR827 and release the expression of the miR827-targeted
phospholipase D (PLD) gene, thereby influencing DAG flux into TAG [17]. In pigeon pea,
lncRNA-1207 targets MIR-156ag, thereby regulating GPAT6 expression and influencing
oil accumulation [18]. Nevertheless, the key lncRNA–miRNA–mRNA module affecting
yellowhorn oil biosynthesis has not yet been reported.

Recently, the yellowhorn genome was sequenced and assembled [19]. To better un-
derstand the network of seed oil accumulation, an investigation of dynamic changes in
gene expression during successive developmental stages is needed. We aim to mine the
roles of lncRNAs and their regulatory network involved in oil biosynthesis in developing
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seeds of yellowhorn. In this study, whole transcriptome libraries from yellowhorn seeds at
four developmental stages were constructed. The differentially expressed lncRNAs (DELs),
mRNAs (DEGs), and miRNAs (DEMs) between different seed development stages were
identified. GO enrichment and KEGG pathway enrichment analyses were executed to
categorize the possible functions of the DELs, DEGs, and DEMs. Most importantly, the
key DEL–DEG pairs, DEM–DEG pairs, and DEL–DEM–DEG modules in the context of
FA and TAG biosynthesis were identified. The regulatory relationships within the exca-
vated modules were then verified by a quantitative polymerase chain reaction (qPCR)
assay. In summary, we identified, for the first time, the lncRNAs, lncRNA–mRNA pairs,
and lncRNA–miRNA–mRNA regulatory modules involved in lipid and FA biosynthesis
pathways in yellowhorn. Our study provides a new theoretical reference for breeding
high-oil-content yellowhorn cultivars.

Taken together, these studies helped to assess the functions of lncRNAs during pollen
development, pollination, and fertilization and deepened our understanding of the molec-
ular mechanisms and biological behavior in these reproductive development processes.

2. Materials and Methods
2.1. Plant Materials

The yellowhorn (Xanthoceras sorbifolium) cultivar Liaoguan 8 was grown in a yel-
lowhorn fruit base located in Chaoyang city, Liaoning Province, China. According to our
previous research on the oil accumulation in yellowhorn seeds for years, 25 days post-
anthesis (dpa) is the early stage of seed development, 40–55 dpa and 55–70 dpa are the
rapid formation and accumulation periods of seed oil, respectively. At 70 dpa, the seeds
tend to mature. Hence, we chose these time points to study the molecular mechanism
of oil accumulation in yellowhorn. The seeds from the fruit were harvested at 25, 40,
55, and 70 days post-anthesis (dpa), abbreviated as the S1, S2, S3, and S4 development
stages, respectively. Each time point had three biological replicates. Samples from different
plants were harvested, immediately frozen in liquid nitrogen, and stored at −80 ◦C until
transcriptome analysis.

2.2. Oil Content Analysis

The seeds harvested at the S1, S2, S3, and S4 development stages were dried at 80 ◦C
until they reached a constant weight then were ground with a ball mill. Then, the oil in
embryos was extracted using a previously described method [20]. The experiments were
repeated in triplicate.

2.3. RNA Extraction and Strand-Specific Library Construction

Total RNA from the S1, S2, S3, and S4 was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). The prepared RNA samples were subjected to subsequent library
construction. To identify lncRNAs and mRNAs, a strand-specific library was constructed
by removing ribosomal RNA using the NEBNext Ultra™ Directional RNA Library Prep Kit
for Illumina (NEB, Ipswich, MA, USA). On the Illumina HiSeq 2500 platform, paired-end
reads of 125 bp were generated from the libraries.

2.4. Identification of lncRNAs and mRNAs

For quality control of RNA data sets, the adaptors were removed and low-quality bases
were trimmed. The clean sequencing reads were mapped to the yellowhorn genome [19]
by using the spliced read aligner TOPHAT 2.0. Cuffmerge software was first used to merge
the transcripts spliced by each sample and remove the transcripts with uncertain strand
directions to obtain the complete transcriptome information of this sequence. After that,
five steps were taken to identify lncRNAs from transcriptome assemblies by removing
the transcripts with the following characteristics: (1) length < 200 bp; (2) overlap of the
database annotation with the exon region; (3) fragments per kilobase of transcript per
million mapped reads (FPKM) with value ≤ 0.5; and (4) failure to pass the protein-coding-
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score test by the Coding-Non-Coding Index (CNCI), Coding Potential Calculator (CPC),
and Pfam-scan software.

2.5. Identification of Differentially Expressed lncRNAs (DELs) and mRNAs (DEGs)

In each sample, the FPKM values of lncRNAs and mRNAs were calculated by StringTie [21].
DELs and DEGs between groups (three biological replicates per group) were analyzed through
Cuffdiff in the R environment [22] with an adjusted false discovery rate (FDR) less than 0.05
and|log2(Fold change)| less than one.

2.6. LncRNA Target mRNA Prediction

The mRNAs within 100 kb upstream and downstream of each lncRNA were extracted
to determine the cis-regulate role of the lncRNAs acting on them. The trans-regulatory role
of lncRNAs acting on mRNAs was determined by Pearson correlation coefficients, which
were calculated using “cor.test” in the R environment. An absolute correlation value greater
than 0.95 was considered to indicate correlation. The correlated lncRNAs and coding genes
were classified as coexpressed.

2.7. Small RNA Sequencing

The prepared RNA samples were processed with the NEBNext Multiplex Small RNA
Library Prep Set for Illumina (NEB, USA) for constructing twelve small RNA sequencing li-
braries. Then, the library preparations were sequenced on an Illumina HiSeq 2500 platform,
and single-end reads of 50 bp were generated. Raw sequences were processed by removing
reads containing poly-N/A/T/G/C sequences, without the insert tag or 3′ adapter and
with 5′ adapter contaminants. The low-quality reads were also trimmed. Subsequently,
clean reads (18–25 nt at length) were chosen for further downstream analyses.

2.8. Identification of Known and Novel miRNAs and Prediction of Their Targets

To determine expression levels of small RNA tags, Bowtie 2 [23] was used to map them
to the reference sequence (miRbase (v22)). The mapped small RNA tags were subjected
to a search for known miRNAs. The attributes of the miRNA precursor hairpin structure
were utilized to predict novel miRNAs. The novel miRNAs were identified based on the
secondary structure analyzed by miREvo [24] and mirdeep2 [25]. The classification of
families to which known miRNAs belonged was performed by miFam.dat (http://www.
mirbase.org/ftp.shtml, accessed on 8 January 2019). The target genes of the identified
miRNAs were predicted by psRNATarget [26].

2.9. Analysis of Differentially Expressed miRNAs (DEM)

The transcripts per million (TPM) value was used to represent the accumulation of
miRNAs. DEMs between groups (three biological replicates per group) were identified
using DESeq2 [27] with an adjusted FDR ≤ 0.05 and |log2(fold change)| ≥ 1.

2.10. GO and KEGG Enrichment Analysis

To further understand the functions of DELs and DEMs, their target genes were used for
GO enrichment analysis by GOseq [28] and KEGG enrichment analysis by KOBAS 2.0 [29].

2.11. qPCR Assay

Total RNA was isolated from the S1, S2, S3, and S4 samples, respectively. cDNA
synthesis from the lncRNA/mRNA and miRNA was executed with TransScript One-
Step RT–PCR SuperMix Kit (TransGen Biotech, Beijing, China) and TransScript Green
miRNA Two-Step RT–PCR SuperMix Kit (TransGen Biotech, Beijing, China), respectively.
Subsequently, the qPCR assay was performed using TransStart Tip Green qPCR SuperMix
(TransGen Biotech, Beijing, China). The yellowhorn housekeeping genes, 5.8S rRNA, and
β-actin were used as reference genes for miRNA and lncRNA/mRNA expression analysis,
respectively. Based on the 2−∆∆Ct method [30], relative lncRNA/mRNA and miRNA

http://www.mirbase.org/ftp.shtml
http://www.mirbase.org/ftp.shtml
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expression levels were calculated and are displayed as the mean ± SE of three biological
replicates. The primers are listed in Table S1.

2.12. Statistical Analysis

Data from all experiments were analyzed using one-way ANOVA and Duncan’s
multiple range test. Significant differences (p-value < 0.05) were displayed by different
lowercase letters.

3. Results
3.1. Dynamic Changes of Oil Content during Seed Development

To observe the dynamic change of oil content during seed development, seeds at the
S1, S2, S3, and S4 development stages were collected for examination. The sizes of the
seeds and embryos increased continuously from S1 to S3 but showed no obvious difference
between S3 and S4 (Figure 1a). The embryo oil content showed a rapid accumulation of
nearly 7-fold from S1 (6.6% ± 0.6%) to S3 (41.5% ± 1.0%), followed by a slight increase
from S3 to S4 (45.1% ± 0.3%) (Figure 1b). S1 was considered the early embryo stage, S2
and S3 were considered the middle embryo stage, and S4 was considered the fully matured
stage. The above results indicate that oil is abundantly enriched mainly in the early to
middle embryonic development stages.
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Figure 1. Seed size (top left in a), embryo size (bottom left in a), and oil content (b) of yellowhorn in
S1, S2, S3, and S4. Scale bar = 1 cm. The seeds from the fruit were harvested at 25, 40, 55, and 70 days
post-anthesis (dpa), abbreviated as the S1, S2, S3, and S4 development stages, respectively. The dwt
represents dry weight. Data from oil content experiments were analyzed using Duncan’s multiple
range test. Significant differences (p-value < 0.05) are indicated by different lowercase letters.

3.2. Transcriptome Analysis during Seed Development

To mine lncRNAs and mRNAs associated with seed development, the strand-specific
transcriptome was analyzed. The transcriptomes of all biological replicates in each seed
development stage (S1–S4) were highly correlated (r2 > 0.9) (Figure S1a), indicating a
high degree of repeatability among samples. Additionally, principal component analysis
(PCA) showed that the groups of seeds at each timepoint were separated well, indicating
the variation in transcription levels among the seed developmental stages (Figure S1b).
Therefore, the transcriptome was available for further analysis. A summary of data quality
of stranded RNA-seq is given in Table S2. The strand-specific library data have been
deposited in the NCBI SRA database under the accession number PRJNA818439.

Over 1.2 billion high-quality reads were generated from the twelve samples (average
104.6 million reads per sample), of which 68.8 to 138.4 million reads (81.1%–92.7%) were
mapped to the yellowhorn genome. TopHat 2 was used to analyze the reference genome,
and 62.1 million to 125.3 million reads (72.5%–83.9%) were mapped to exonic sequences
(Tables S2 and S3). Transcript assembly was then performed. After filtering, 16,920 tran-
scripts were obtained and defined as lncRNAs in yellowhorn (Figure 2a). Of them, 10,693
(63.2%) transcripts were lincRNAs, 4653 (27.5%) transcripts were intronic lncRNAs, and
only 994 (9.3%) transcripts were lncNATs (Figure 2b). Meanwhile, 27,831 mRNA transcripts
were identified, including 24,673 known mRNAs and 3159 novel mRNAs. The lengths of
the identified lncRNAs were in the range 0–2000 nt, with an average of 592 nt, shorter than
the average length of the mRNAs (1571 nt) (Figure 2c). Approximately 60.0%, 26.8%, 9.6%,
and 3.6% of the lncRNAs contained 1, 2–4, 5–9, and over 10 exons, respectively. Overall,
mRNAs had more exons than lncRNAs, with 1, 2–4, 5–9, and over 10 exons accounting for
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16.8%, 39%, 28%, and 16.2%, respectively (Figure 2d). The overall expression levels of the
lncRNAs were lower than those of the mRNAs (Figure 2e).
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3.3. Differential Expression Profiles of lncRNAs

Pairwise comparison between different developmental stages (S2 vs. S1, S3 vs. S2,
and S4 vs. S3) was conducted to identify DELs and DEGs. In all, 2290 DELs were found in
pairwise comparisons, including 1129 in S2 vs. S1, 762 in S3 vs. S2, and 986 in S4 vs. S3
(Figure 3a). The findings indicate that the expression of lncRNAs was spatiotemporally
specific and not completely consistent during the four developmental stages. Sixty-five
DELs existed in all three comparison groups (Figure 3b), and the expression patterns were
divided into six categories in all three comparison groups (Figure 3c). lncRNAs in the same
category may have similar functions.
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3.4. GO Enrichment and KEGG Enrichment Analysis of DELs

Since lncRNAs either cis or trans-regulate genes, to understand the regulatory roles
of lncRNAs in yellowhorn seed development stages, we analyzed the mRNAs potentially
targeted by DELs. A total of 2290 lncRNAs were predicted to cis-regulate 15,822 mRNAs,
forming 31,459 DEL–mRNA pairs. In addition, 1720 lncRNAs were predicted to trans-
regulate 15,742 mRNAs, forming 501,286 DEL–mRNA pairs.

To further explore the biological functions of the DELs in the seed development process,
their trans-regulated genes were searched against the GO database. The GO analysis
showed that overall, postembryonic morphogenesis was enriched in the biological process
category by the DELs, the cell wall was enriched in the cellular component category by the
DELs, and oxidoreductase activity was enriched in the molecular function category by the
DELs (Figure S2). These results provide an initial framework for functional categorization
related to seed development.

The KEGG enrichment pathways were analyzed as well. The KEGG enrichment
pathways in S2 vs. S1, S3 vs. S2, and S4 vs. S3 showed high similarity. In S2 vs. S1, the DEL
target genes were enriched in 118 pathways, mainly including “stilbenoid, diarylheptanoid
and gingerol biosynthesis”, “limonene and pinene degradation”, and “alpha-linolenic acid
metabolism”; in S3 vs. S2, the DEL target genes were enriched in 116 pathways mainly
including “brassinosteroid biosynthesis”, “fatty acid biosynthesis”, and “alpha-Linolenic
acid metabolism”; in S4 vs. S3, the DEL target genes were enriched in 115 pathways mainly
including “pyruvate metabolism”, “fatty acid biosynthesis”, and “alpha-Linolenic acid
metabolism” (Figure 4).
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3.5. DEGs Involved in FA and TAG Biosynthesis

A total of 11,784 DEGs were identified in pairwise comparisons (Figure 5a). KEGG
enrichment pathway analysis was performed on these DEGs to classify their functions.
Because the FA and TAG biosynthesis pathways are two critical pathways for oil synthesis,
we focused on the DEGs involved in these two pathways in further analyses. Thirty-
seven DEGs involved in the FA biosynthesis pathway and 30 DEGs involved in the TAG
biosynthesis pathway were extracted (Figure 5b, Table S4). The expression patterns of
FA-related DEGs (Figure 5c) and TAG-related DEGs (Figure 5d) in the transcriptome were
analyzed. These 67 DEGs were considered to exert vital functions in yellowhorn FA and
TAG biosynthesis pathways, so they were selected for further study and identification of
their interacting DELs and DEMs.

Of these DEGs, most FA-related genes were found to be up-regulated at S2, which
is when FAs begin to accumulate relatively rapidly; while two SAD genes (EVM0023103
and novel.841), three KCS genes (EVM0009614, EVM0000575, and EVM0022839), one
HCD gene (EVM0023359) were mainly up-regulated during the middle to late stage of
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embryonic development. In the TAG pathway, LPAT genes and PDAT genes were signif-
icantly up-regulated at S1 and S2, the early to middle stage of embryonic development.
Meanwhile, the GPAT genes were mainly up-regulated in S3 to S4, the middle to late
stage of embryonic development. Two DGAT genes (EVM0023600 and EVM0003862) were
up-regulated in S2 and one DGAT gene (EVM0020210) was up-regulated in S4. Thus, it
was suggested that these DEGs play different regulatory roles in oil accumulation during
embryonic development.
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Figure 5. Identification and KEGG analysis of differentially expressed mRNAs (DEGs). (a) Identified
DEGs in S2 vs. S1, S3 vs. S2, and S4 vs. S3. (b) KEGG pathway analysis of the DEGs in the context
of FA and TAG biosynthesis. (c) Heatmap of the expression levels of DEGs in the FA biosynthesis
pathway. (d) Heatmap of the expression levels of DEGs in the TAG biosynthesis pathway.

3.6. DEL–DEG Pairs Related to FA and TAG Biosynthesis

To identify DEL–DEG pairs related to FA and TAG biosynthesis, the DELs that in-
teracted with the 67 DEGs extracted above were excerpted from 501,286 DEL–mRNA
trans-regulatory pairs obtained earlier. In total, 325 DELs were suggested to interact with
58 DEGs, forming 1712 gene pairs (Table S5, Figure S3). As the DEL–DEM interaction
network is very complex and large, a subnetwork including five key DEGs in FA (ACC-3,
ECR-2, FAD3-2, KAR, KCS11-2) and five key DEGs in the TAG pathway (LPAT-6, LACS7-1,
DGAT-1, PLD1-2-2, PDAT-1) was selected for display (Figure 6). In most cases, a DEG
can be simultaneously regulated by multiple DELs. There are also cases where one DEL
regulates one DEG. For example, KAR is targeted only by LNC_003993.

3.7. Small RNA Sequencing Profile

The sRNA-seq profiles of three biological replicates were constructed and deposited
under the SRA accession number PRJNA818424. A summary of the sRNA-seq quality is
given in Table S6. From twelve libraries, a total of 153,673,635 raw reads were obtained
(approximately 12.8 million raw reads per library). After removing the adaptor dimers, a
large number of valid sequences (18–25 bp) were obtained (average 11.9 million reads per
sample, 93.65%). Moreover, reads matching rRNA, tRNA, snRNA, and snoRNA sequences
accounted for 29.9% of the sequences. An average of 5.69% clean reads were mapped to
NATs (Table S7).

We identified 713 mature miRNAs, including 428 known mature miRNAs belonging to
65 miRNA families and 285 novel mature miRNAs (Table S8). The most abundant miRNA
family was miR169, containing 15 members, followed by miR156 and miR166, which both
include 14 members. The remaining miRNA families all harbored fewer than ten members
(Figure 7a). The TPM value in S1–S4 showed a similar distribution, with a TPM value >15
accounting for almost half (Figure 7b).
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Figure 6. A subnetwork of DEL–DEG pairs related to FA and TAG biosynthesis pathways. Five DEGs
in the FA biosynthesis pathway (ACC-3, ECR-2, FAD3-2, KAR, and KCS11-2) and five DEGs in the
TAG biosynthesis pathway (LPAT-6, LACS7-1, DGAT-1, PLD1-2-2, and PDAT-1) were selected and
displayed by Cytoscape. The DEGs are displayed as red circles, and the DELs are represented by
blue circles.
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3.8. Different Expression Profiles of miRNAs

In all, 345 DEMs, including 185 known and 160 novel miRNAs, were identified
(Figure 8a). Among them, 41 DEMs, including 32 known and nine novel miRNAs, were
found in all three pairwise comparisons (Figure 8b). These DEMs can be clustered into
seven groups according to their expression characteristics in the four seed developmental
stages. For conserved miRNAs, most members of the same family were clustered in one
group (Figure 8c).

3.9. GO Enrichment and KEGG Enrichment Analysis of DEMs

Through prediction, a total of 29,845 DEM–mRNA pairs consisting of 239 DEMs and
11,737 putative target genes were identified (Table S9). GO and KEGG enrichment of
11,737 mRNAs were analyzed. The top 20 enriched GO terms, including cellular compo-
nent, biological process, and molecular function terms, are presented in Figure S4. The
KEGG analysis showed that the DEMs were mainly involved in linoleic acid metabolism,
glycosphingolipid biosynthesis, and flavonoid biosynthesis (Figure 9).
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Figure 8. Differentially expressed miRNAs (DEMs) and their expression profiles. (a) Identified DEMs
in S2 vs. S1, S3 vs. S2, and S4 vs. S3. (b) Venn diagram of DEMs in all three comparisons. (c) Heatmap
of the expression levels of 41 DEMs that existed in all three comparisons.
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3.10. DEM–DEG Pairs in the Context of FA and TAG Synthesis Pathways

A total of 60 DEM–DEG pairs consisting of 55 DEMs and 26 DEGs were found to
be involved in FA and TAG biosynthesis in seed development (Figure 10, Table S10). Of
the 55 DEMs, 11 belonged to the miR396 family, followed by six belonging to miR156
family and five belonging to the miR166 family. Four DEMs, xso-miR396b-5p, xso-miR396f,
xso-miR396h, and xso-miR6300, can target two DEGs simultaneously. Specifically, xso-
miR396b-5p targets FATB-1 in the FA biosynthesis pathway and LPAAT-3 in the TAG
biosynthesis pathway and xso-miR6300 targets FAD2 in the FA biosynthesis pathway
and DGAT-2 in the TAG biosynthesis pathway, indicating that xso-miR396b-5p and xso-
miR6300 may exert dual functions in FA and TAG synthesis pathways. Meanwhile, of the
26 DEGs, FAD2 was targeted by 11 DEMs simultaneously, followed by PDAT-2-3, which
was targeted by seven DEMs at the same time, and LPAT-5 and FATB-1, which were each
targeted by five DEMs. These results indicated that miRNAs may influence FA and TAG
biosynthesis pathways.

3.11. DEL–DEM–DEG Network Involved in FA and TAG Synthesis

To mine lncRNAs that can act as eTMs for miRNAs, we first filtered out lncRNAs that
could act as miRNA precursors. According to the sequence homology between lncRNAs
and miRNA precursors, 18 lncRNAs were predicted to act as 16 miRNA precursors, and it
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was found that three miRNA families, miR160, miR172, and miR396, were mainly involved,
while the rest were 10 novel identified miRNAs (Table S11).
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After filtering out lncRNAs that could act as miRNA precursors, the potential target
mimic sites of lncRNAs on miRNAs were predicted. Depended on the competing endoge-
nous RNA (ceRNA) hypothesis, the expression patterns of lncRNAs that can act as eTMs for
miRNAs should be consistent with those of miRNA target genes and opposite to those of
miRNAs. Thus, a DEL–DEM–DEG network consisting of 30 modules involved in 26 DEMs,
95 DELs, and 18 DEGs was constructed in the context of the FA and TAG synthesis path-
ways (Figure 11, Table S12). Among 18 DEGs, FATB-1 was simultaneously targeted by five
modules, including five miRNAs and 37 lncRNAs, and KCS19 was simultaneously targeted
by three modules, including three miRNAs and 13 lncRNAs, indicating the vital roles of
FATB-1 and KCS19 in yellowhorn oil synthesis-related molecular mechanisms.
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3.12. Verification of DEL–DEG Pairs, DEM–DEG Pairs and DEL–DEM–DEG Modules by
Quantitative Assay

The expression levels of eight randomly selected DEL–DEG pairs were analyzed by
qPCR assay (Figure 12a). The expression levels of ACC-3, KAR, ECR-2, LPAT-6, and DGAT-1
peaked at the S2 development stage, with an almost 10-fold change compared with S1.
Meanwhile, the lncRNAs showed similar expression trends as their corresponding target
genes (Figure 12a).

Forests 2023, 14, x FOR PEER REVIEW 14 of 19 
 

 

Simultaneously, the above results suggested that the predicted DEL–DEG pairs, DEM–
DEG pairs, and DEL–DEM–DEG modules were reliable and could be used for future func-
tional analysis. 

 
Figure 12. Expression patterns of the selected lncRNA–mRNA pairs, miRNA–mRNA pairs, and 
lncRNA–miRNA–mRNA modules in the context of the FA and TAG biosynthesis pathways. The 
gene pairs in the upper half of (a,b) are involved in FA biosynthesis pathways, the lower half of 
(a,b) are pairs involved in TAG biosynthesis pathways. In (c), the ACC-1–miRn355–LNC_000488, 
KAR–miR167a-5p–LNC_013333, HAD-1–miRn225–LNC_015016, and KCS11-1–miR156g-2–
LNC_000849 modules were suggested to be relevant to FA biosynthesis pathways, and DGAT-2–
miR172j–LNC_005874 and PDAT-2-3–miR156–LNC_012569 were suggested to be relevant to TAG 
biosynthesis pathways. Data from qPCR experiments were analyzed using Duncan’s multiple range 
test. Significant differences (p-value < 0.05) are indicated by different lowercase letters. 

4. Discussion 
4.1. LncRNAs Identified in Developing Seeds of Yellowhorn 
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Figure 12. Expression patterns of the selected lncRNA–mRNA pairs, miRNA–mRNA pairs, and
lncRNA–miRNA–mRNA modules in the context of the FA and TAG biosynthesis pathways. The gene
pairs in the upper half of (a,b) are involved in FA biosynthesis pathways, the lower half of (a,b) are
pairs involved in TAG biosynthesis pathways. In (c), the ACC-1–miRn355–LNC_000488, KAR–
miR167a-5p–LNC_013333, HAD-1–miRn225–LNC_015016, and KCS11-1–miR156g-2–LNC_000849
modules were suggested to be relevant to FA biosynthesis pathways, and DGAT-2–miR172j–
LNC_005874 and PDAT-2-3–miR156–LNC_012569 were suggested to be relevant to TAG biosynthesis
pathways. Data from qPCR experiments were analyzed using Duncan’s multiple range test. Signifi-
cant differences (p-value < 0.05) are indicated by different lowercase letters.
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Eight DEM–DEG pairs were randomly selected for qPCR verification (Figure 12b).
Compared with S1, the fold changes of miR166u, miR390e, miR156a-2, and miR156f-5p in
other development stages increased more than 10-fold. Notably, miR395i and miR396a-4
showed contrasting expression trends with the targets LACS-8 and FAD2, respectively, from
S1 to S4 development stages. From S1 to S3, miR6300 and DGAT-2 showed contrasting
expression patterns; from S2 to S3, the miR390e–FATB-1 and miR156f-5p–PDAT-2 pairs
showed opposite expression trends; from S2 to S4, the expression patterns of miR166u–
ACC-2 and miR167d-2–KAR showed opposite trends; from S3 to S4, miR156a-2 exhibited
the opposite trend as GPAT-1 (Figure 12b). It was indicated that the predicted DEM–DEG
pair exhibited an apparent negative relationship.

Six DEL–DEM–DEG modules were randomly selected for qPCR (Figure 12c). From S2
to S4, the expression patterns of ACC-1 showed a contrasting trend with those of miRn355
and showed a similar trend with those of LNC_000488; LNC005874–miR172j–DGAT-2,
LNC_012569–miR156–PDAT-2-3, and LNC_000849–miR156g-2–KCS11-1 also exhibited
these expression trends. Notably, the fold change in KCS11-1 expression reached more than
150-fold in the S3 stage, indicating the vital role of this gene in FA biosynthesis. From S3 to
S4, the expression patterns of KAR showed a contrasting trend with those of miR167a-5p
and showed a similar trend with those of LNC_013333; the HAD-1–miRn225-LNC_015016
module also exhibited these expression trends.

The qPCR data of the genes were in accordance with the transcriptome data. Addition-
ally, we selected six miRNAs (miR166u, miR396a-4, miR156a-2, miR156f-5p, miR167a-5p,
and miR172j) to examine their expression in reverse transcription PCR (RT-PCR) assay. The
cDNA of S3 was used as a template because it is the key stage for FA and TAG accumula-
tion. As shown in Figure S5, all six miRNAs were expressed in S3 stage. Simultaneously,
the above results suggested that the predicted DEL–DEG pairs, DEM–DEG pairs, and
DEL–DEM–DEG modules were reliable and could be used for future functional analysis.

4. Discussion
4.1. LncRNAs Identified in Developing Seeds of Yellowhorn

LncRNAs are pervasive in eukaryotic cells and have been perceived as redundant
in recent decades. Nevertheless, they have been found to exert vital regulatory functions
in plants in recent years. Taking advantage of high-throughput sequencing technology,
lncRNAs have been recently identified in several oilseed plants such as soybean [31],
oil palm [12], peanut [32], and rapeseed [33]. Although lncRNAs have been discovered
in some plants, the functions of a majority of them remain unknown, especially their
functions in yellowhorn oil synthesis. In the present study, 16,920 lncRNAs were identified
in yellowhorn seeds. Of them, lincRNAs accounted for 63.2%, followed by intronic lncRNA
(27.5%) and lncNATs (9.3%). The average length and overall exons of the identified lncRNAs
were shorter and fewer, respectively, than those of mRNAs (Figure 2). These results are
consistent with previous studies [31–33]. Our results provide the first comprehensive
identification of lncRNAs in developing seeds of yellowhorn.

4.2. Key lncRNAs and miRNAs Involved in TAG Assembly of Yellowhorn

To further comprehend the molecular mechanism of lncRNAs in the TAG biosynthesis
pathway in yellowhorn, the mRNAs that may be targeted by lncRNAs were investigated.
In the context of TAG assembly, 25 DEGs were revealed to be highly coexpressed with
262 DELs, thus forming 724 DEL–DEG pairs (Table S5, Figure S3). Here, nine DELs were
suggested to be interacting with DGAT-1 (Figure 6). DGAT is responsible for the final
step of acylation in TAG formation and thus is a key component for manipulating oil
content. It was previously reported that manipulating a DGAT from Vernonia galamensis
increased the oil content in soybean and yeast [34]. Additionally, 20 DELs were suggested
to be interacting with PDAT-1. PDAT transfers the fatty acid of PC into diphenol glycerol
to generate TAG [35]. Previous research showed that the increased expression of PDAT
contributed to lipid accumulation in walnut [36]. Overexpressing particular flax PDAT
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genes in Arabidopsis resulted in an enhanced proportion of linolenic acid in TAGs [37].
In addition, 169 DELs were suggested to be interacting with LACSs. LACSs participate
in the acyl-CoA thioesterification step of lipid biosynthesis, which is crucial for lipid
biosynthesis [38]. Likewise, in the tung tree, nine lncRNAs were coexpressed with LACS4,
two lncRNAs were coexpressed with DGAT1, and three lncRNAs were coexpressed with
DGAT2, PDAT, and PDAT2 [14]. The above results indicate that lncRNAs are widely
involved in yellowhorn TAG assembly.

miRNAs have been reported to play vital roles in lipid metabolism. In this study,
713 mature miRNAs, including 428 known and 285 novel miRNAs, were identified in
twelve sRNA-seq datasets from four seed development stages. Among the stages, the three
most abundant miRNA families were miR169, miR156, and miR166, all containing more
than 10 members. Similarly, 204 known miRNAs identified in walnut were classified as
25 families. The largest family was MIR166, with 24 members, followed by MIR156, with
16 members [39]. Our previous work identified 249 known and 88 novel miRNAs in two
yellowhorn lines, NM1203 (high-oil content line) and NM1003 (low-oil content line), from
16 sRNA libraries at four seed developmental stages [16]. The difference in the number of
miRNAs identified in the current study compared with that in previous studies may be due
to (i) different versions of miRBase being used, as Wang et al. used miRBase v21, while we
used the upgraded miRBase v22; (ii) different cultivars of yellowhorn being used. In this
study, we newly identified that DGAT-2 was targeted by miR6300. In addition, LPAT-5 was
simultaneously targeted by four miR166 family members (miR166a, e, j, h-3p), contrary to a
previous result showing that LPAT-5 was targeted by only miR1536_p5_2 [16]. In addition,
two miR156 family members (miR156b-2 and miR156f-5p), two miR159 family members
(miR159a-2 and miR159c-8), and three miR399 family members (miR399a-2, miR399e-2,
and miR399b-3) simultaneously targeted PDAT-2. The findings indicate that miRNAs were
widely involved in the conversion of PC to TAG and less involved in the conversion of DAG
to TAG by DGAT. We also predicted that miR156a-2 targets GPAT-1, which was consistent
with the previously identified targeting of GPAT by Cc-MIR-156ag in pigeon pea [18]. These
findings suggest that diverse miRNAs were involved in yellowhorn TAG assembly.

4.3. Key lncRNAs and miRNAs Involved in the FA Biosynthesis Pathway

Increasing the FA composition is the priority for the development of yellowhorn
breeding. In this study, in the context of FA biosynthesis, 67 DELs were suggested to be
interacting with 33 DEGs, thus forming 990 pairs. The 11 KCS genes were suggested to
be interacting with 190 DELs and formed 573 pairs, accounting for more than half of the
990 pairs. Out of the 11 KCS genes, KCS11-1 showed the highest expression level in the S3
and S4 periods (FPKM > 200) and was coexpressed with two lncRNAs (LNC_014729 and
LNC_011246), indicating its putative role in nervonic acid accumulation. KCS is the enzyme
that limits the rate of fatty acid elongation [40]. Seed-specific expression of the Malania
oleifera KCS11 in Arabidopsis led to approximately 5% nervonic acid accumulation [41].
Meanwhile, FAD2 was suggested to interact with LNC_007653, and FAD3-1 and FAD3-2
were suggested to interact with four DELs. Likewise, in the tung tree, LXLOC_006676
targets FAD3-2, affecting α-linolenic acid synthesis [14].

A total of 38 pairs consisting of 35 DEMs and 14 DEGs were found to be associated
with FA biosynthesis (Figure 10). The 14 DEGs included KAR, EAR, KASI, FATB, FAD2,
FAD3, KCS, and ECR. FAD2 is targeted by the most DEMs, including nine miR396 family
members and miR6300. In contrast, Wang et al. predicted that miR319p_1 targeted FAD2-2
in yellowhorn (cultivar NM1203 and NM1003); Zahra et al. reported that 47 wheat FAD
genes were targeted by 91 miRNAs, but these did not include miR396 or miR6300 [42]; in
sesame seed, FAD2 was revealed to be targeted by sly-miR166c-5p_1 and involved in lipid
biosynthesis [43]. This may indicate that miRNAs targeting FAD2 vary among different
plants or cultivars.

As mentioned above, it was predicted that miR6300 also targeted DGAT-2 in the
TAG assembly pathway, suggesting that miR6300 may play dual roles in FA and TAG
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synthesis pathways. Similarly, it was predicted that miR396b-5p targeted FATB-1 in the
FA biosynthesis pathway and LPAT-3 in the TAG biosynthesis pathways. Novel identified
miRNAs such as miRn175, miRn19, and miRn9 were predicted to target FATB-2, ECR-2,
and FAD2, respectively, suggesting that novel miRNAs may contribute to FAs biosynthesis.
Additionally, KCS11-1 was predicted to be targeted by miR156b-1 and miR156g-2. This was
consistent with a previous report showing that miR156e and miR156j targeted KCS12 in oil
palm and were beneficial to FA metabolism [44].

4.4. Working Model of the lncRNA–miRNA–mRNA Modules in FA and TAG Synthesis Pathways

Thirty DEL–DEM–DEG modules related to FA and TAG biosynthesis were identified
(Figure 11). Because the relationship within the overall network is very complex, we
selected eight key modules and have illustrated them in Figure 13. Among them, the
LNC_000849–miR156g-2–KCS11-1 module was identified as being involved in nervonic
acid synthesis, and the LNC_005874–miR172j–DGAT-2 and LNC_012569–miR156–PDAT-2-
3 modules contribute to the accumulation of TAG. Additionally, LNC_012569 acts as an
miR396h sponge and derepresses FAD2, which is beneficial to FA elongation and linoleic
acid synthesis at the same time.
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In future work, transgenic plants that overexpress positive regulators or knockout
negative regulators in oil accumulation could be generated through genetic engineering.
Moreover, the identification of key genes or RNA could elicit the dynamic change of
downstream genes or regulatory networks. Our results could serve as a new theoretical
reference for improving oil content in other woody oil crops.

5. Conclusions

During yellowhorn seed development, 325 lncRNAs were suggested to be interacting
with 58 key genes in fatty acid (FA) and triacylglycerol (TAG) biosynthesis pathways.
In addition, 55 miRNAs may target 26 key genes involved in FA and TAG biosynthesis.
Interestingly, 30 lncRNA–miRNA–gene modules involved in FA and TAG biosynthesis
were identified, in which the KCS11-1–miR156g-2–LNC_000849 module was found to
participate in nervonic acid synthesis, and the DGAT-2–miR172j–LNC_005874 module
was assumed to contribute to the accumulation of TAG. Our results highlight potential
contributions of lncRNAs to oil accumulation in yellowhorn seeds.
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