Evidence for 40 Years of Treeline Shift in a Central Alpine Valley
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Field Surveys
2.3. Data Analysis
2.3.1. Spatial Analysis
2.3.2. Age Determination of Treeline Trees
2.3.3. Nonparametric Regression Analysis
3. Results
3.1. Infilling and Treeline Advance
3.2. Ecological Factors Influencing Tree Occurrence and Treeline Advance
4. Discussion
4.1. Densification of the Treeline Ecotone Due to Advance and Infilling
4.2. Impact of Land Use and Other Environmental Drivers on Treeline Advance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 2391. [Google Scholar]
- Chen, I.C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Nunez, S.; Arets, E.; Alkemade, R.; Verwer, C.; Leemans, R. Assessing the impacts of climate change on biodiversity: Is below 2 degrees C enough? Clim. Chang. 2019, 154, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Paulsen, J.; Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 2014, 124, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Danby, R.K.; Hik, D.S. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J. Ecol. 2007, 95, 352–363. [Google Scholar] [CrossRef]
- Devi, N.; Hagedorn, F.; Moiseev, P.; Bugmann, H.; Shiyatov, S.; Mazepa, V.; Rigling, A. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob. Chang. Biol. 2008, 14, 1581–1591. [Google Scholar] [CrossRef]
- Hansson, A.; Dargusch, P.; Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 2021, 18, 291–306. [Google Scholar] [CrossRef]
- Holtmeier, F.K.; Broll, G. Treeline advance driving processes and adverse factors. Landsc. Online 2007, 1, 1. [Google Scholar] [CrossRef]
- Kullman, L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 2002, 90, 68–77. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef]
- Crofts, A.L.; Brown, C.D. The importance of biotic filtering on boreal conifer recruitment at alpine treeline. Ecography 2020, 43, 914–929. [Google Scholar] [CrossRef] [Green Version]
- Brodersen, C.R.; Germino, M.J.; Johnson, D.M.; Reinhardt, K.; Smith, W.K.; Resler, L.M.; Bader, M.Y.; Sala, A.; Kueppers, L.M.; Broll, G.; et al. Seedling Survival at Timberline Is Critical to Conifer Mountain Forest Elevation and Extent. Front. For. Glob. Chang. 2019, 2, 9. [Google Scholar] [CrossRef]
- Holtmeier, F.K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef]
- Case, B.S.; Duncan, R.P. A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 2014, 37, 838–851. [Google Scholar] [CrossRef]
- Löffler, J.; Anschlag, K.; Baker, B.; Finch, O.D.; Diekkruger, B.; Wundram, D.; Schroder, B.; Pape, R.; Lundberg, A. Mountain ecosystem response to global change. Erdkunde 2011, 65, 189–213. [Google Scholar] [CrossRef] [Green Version]
- Barbeito, I.; Brucker, R.L.; Rixen, C.; Bebi, P. Snow Fungi-Induced Mortality of Pinus cembra at the Alpine Treeline: Evidence from Plantations. Arct. Antarct. Alp. Res. 2013, 45, 455–470. [Google Scholar] [CrossRef] [Green Version]
- Didion, M.; Kupferschmid, A.D.; Wolf, A.; Bugmann, H. Ungulate herbivory modifies the effects of climate change on mountain forests. Clim. Chang. 2011, 109, 647–669. [Google Scholar] [CrossRef] [Green Version]
- Ravolainen, V.T.; Brathen, K.A.; Yoccoz, N.G.; Nguyen, J.K.; Ims, R.A. Complementary impacts of small rodents and semi-domesticated ungulates limit tall shrub expansion in the tundra. J. Appl. Ecol. 2014, 51, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Sigdel, S.R.; Liang, E.; Wang, Y.; Dawadi, B.; Camarero, J.J. Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. J. Biogeogr. 2020, 47, 1816–1826. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Ameztegui, A.; Coll, L.; Brotons, L.; Ninot, J.M. Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob. Ecol. Biogeogr. 2016, 25, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Palombo, C.; Chirici, G.; Marchetti, M.; Tognetti, R. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosyst. 2013, 147, 1–11. [Google Scholar] [CrossRef]
- Vorren, K.-D.; Mørkved, B.; Bortenschlager, S. Human impact of the holocene forest line in the Central Alps. Veg. Hist. Archaeobotany 1993, 2, 145–156. [Google Scholar] [CrossRef]
- Rutherford, G.N.; Bebi, P.; Edwards, P.J.; Zimmermann, N.E. Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecol. Model. 2008, 212, 460–471. [Google Scholar] [CrossRef]
- Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For. Ecol. Manag. 2017, 388, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedrist, G.; Tasser, E.; Luth, C.; Dalla Via, J.; Tappeiner, U. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 2009, 202, 195–210. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Koch, B.; Zimmermann, N.E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agric. Ecosyst. Environ. 2007, 118, 93–108. [Google Scholar] [CrossRef]
- Brändli, U.B.; Abegg, M.; Allgaier Leuch, B. Schweizerisches Landesforstinventar. Ergebnisse der Vierten Erhebung 2009–2017; Birmensdorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umweltschutz: Bern, Switzerland, 2020; p. 341.
- Moos, C.; Guisan, A.; Randin, C.F.; Lischke, H. Climate Change Impacts the Protective Effect of Forests: A Case Study in Switzerland. Front. For. Glob. Chang. 2021, 4, 682923. [Google Scholar] [CrossRef]
- Teich, M.; Bartelt, P.; Gret-Regamey, A.; Bebi, P. Snow Avalanches in Forested Terrain: Influence of Forest Parameters, Topography, and Avalanche Characteristics on Runout Distance. Arct. Antarct. Alp. Res. 2012, 44, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Boch, S.; Bedolla, A.; Ecker, K.T.; Ginzler, C.; Graf, U.; Kuchler, H.; Kuchler, M.; Nobis, M.P.; Holderegger, R.; Bergamini, A. Threatened and specialist species suffer from increased wood cover and productivity in Swiss steppes. Flora 2019, 258, 151444. [Google Scholar] [CrossRef]
- Koch, B.; Edwards, P.J.; Blanckenhorn, W.U.; Walter, T.; Hofer, G. Shrub encroachment affects the diversity of plants, butterflies, and grasshoppers on two Swiss subalpine pastures. Arct. Antarct. Alp. Res. 2015, 47, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Price, B.; Kienast, F.; Seidl, I.; Ginzler, C.; Verburg, P.H.; Bolliger, J. Future landscapes of Switzerland: Risk areas for urbanisation and land abandonment. Appl. Geogr. 2015, 57, 32–41. [Google Scholar] [CrossRef]
- Rees, G.; Brown, I.; Mikkola, K.; Virtanen, T.; Werkman, B. How can the dynamics of the tundra-taiga boundary be remotely monitored? Ambio 2002, 47, 56–62. [Google Scholar]
- Callaghan, T.V.; Werkman, B.R.; Crawford, R.M.M. The tundra-taiga interface and its dynamics: Concepts and applications. Ambio 2002, 12, 6–14. [Google Scholar]
- Kulakowski, D.; Bebi, P.; Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 2011, 120, 216–225. [Google Scholar] [CrossRef]
- Blaser, P. Der Boden als Standortsfaktor bei Aufforstungen in der subalpinen Stufe (Stillberg, Davos). Mitt. Eidgenössische Anst. Forstl. Vers. 1980, 56, 527–611. [Google Scholar]
- Günter, T.F. Landnutzungsänderungen in Einem Alpinen Tourismusort. Ein Integraler Ansatz zur Erfassung von Wechselbeziehungen Zwischen Raumwirksamen Sozio-Ökonomischen Prozessen und dem Naturhaushalt, Dargestellt am Beispiel Davos; Bundesamt für Umweltschutz: Bern, Switzerland, 1985; p. 169.
- Walder, U. Ausaperung und Vegetationsverteilung im Dischmatal. Mitt. Eidgenössische Anst. Forstl. Vers. 1983, 59, 79–212. [Google Scholar]
- Wildi, O.; Ewald, K.C. (Eds.) Der Naturraum und dessen Nutzung im Alpinen Tourismusgebiet von Davos. Ergebnisse des MAB-Projektes Davos; Buchhandlung für Botanik und Naturwissenschaften: Teufen, Switzerland, 1986; Volume 289. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968; p. 73. [Google Scholar]
- Cook, E.; Shiyatov, S.; Mazepa, V. Estimation of the mean chronology. In Methods of Dendrochronology: Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 123–132. [Google Scholar]
- Arno, S.F.; Sneck, K.M. A Method for Determining Fire History in Coniferous Forests of the Mountain West; USDA Forest Service: Washington, DC, USA, 1977; p. 28.
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Chapman & Hall: New York, NY, USA, 1984; p. 368. [Google Scholar]
- Binz, H.R.; Wildi, O. Szenarien. In Der Naturraum und dessen Nutzung im Alpinen Tourismusgebiet von Davos. Ergebnisse des MAB-Projektes Davos; Wildi, O., Ewald, K.C., Eds.; Buchhandlung für Botanik und Naturwissenschaften: Teufen, Switzerland, 1986; pp. 275–314. [Google Scholar]
- Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani. Automated identification of potential snow avalanche release areas based on digital elevation models. Nat. Hazards Earth Syst. Sci. 2013, 13, 1321–1335. [Google Scholar] [CrossRef]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Perzl, F.; Bono, A.; Garbarino, M.; Motta, R. Protective Effects of Forests against Gravitational Natural Hazards. In Protective Forests as Ecosystem-Based Solution for Disaster Risk Reduction (Eco-DRR); Teich, M., Accastello, C., Perzl, F., Kleemayr, K., Eds.; IntechOpen: Rijeka, Croatia, 2021; p. Ch. 3. [Google Scholar]
- Vittoz, P.; Rulence, B.; Largey, T.; Frelechoux, F. Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arct. Antarct. Alp. Res. 2008, 40, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Snell, R.S.; Peringer, A.; Frank, V.; Bugmann, H. Management-based mitigation of the impacts of climate-driven woody encroachment in high elevation pasture woodlands. J. Appl. Ecol. 2022, 59, 1925–1936. [Google Scholar] [CrossRef]
- Peringer, A.; Frank, V.; Snell, R.S. Climate change simulations in Alpine summer pastures suggest a disruption of current vegetation zonation. Glob. Ecol. Conserv. 2022, 37, e02140. [Google Scholar] [CrossRef]
- Daniels, L.D.; Veblen, T.T. Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 2004, 85, 1284–1296. [Google Scholar] [CrossRef] [Green Version]
- Kullman, L. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: Implications for tree line theory and climate change ecology. J. Ecol. 2007, 95, 41–52. [Google Scholar] [CrossRef]
- Bader, M.Y.; Llambi, L.D.; Case, B.S.; Buckley, H.L.; Toivonen, J.M.; Camarero, J.J.; Cairns, D.M.; Brown, C.D.; Wiegand, T.; Resler, L.M. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 2021, 44, 265–292. [Google Scholar] [CrossRef]
- Holtmeier, F.K. Mountain Timberlines: Ecology, Patchiness, and Dynamics, 2nd ed.; Springer: Dordrecht, The Netherlands, 2009; Volume 36. [Google Scholar]
- Burga, C.; Perret, R. Vegetation und Klima der Schweiz seit dem Jüngerem Eiszeitalter; Ott Verlag: Bern, Switzerland, 1998; p. 832. [Google Scholar]
- Tinner, W.; Theurillat, J.P. Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct. Antarct. Alp. Res. 2003, 35, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Heiri, C.; Bugmann, H.; Tinner, W.; Heiri, O.; Lischke, H. A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J. Ecol. 2006, 94, 206–216. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Fastie, C.L. Recent changes in treeline forest distribution and structure in interior Alaska. Écoscience 2003, 10, 176–185. [Google Scholar] [CrossRef]
- Barbeito, I.; Dawes, M.A.; Rixen, C.; Senn, J.; Bebi, P. Factors driving mortality and growth at treeline: A 30-year experiment of 92 000 conifers. Ecology 2012, 93, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 1998, 115, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Moir, W.H.; Rochelle, S.G.; Schoettle, A.W. Microscale patterns of tree establishment near upper treeline, Snowy Range, Wyoming, USA. Arct. Antarct. Alp. Res. 1999, 31, 379–388. [Google Scholar] [CrossRef]
- Batllori, E.; Camarero, J.J.; Ninot, J.M.; Gutierrez, E. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob. Ecol. Biogeogr. 2009, 18, 460–472. [Google Scholar] [CrossRef]
- Dufour-Tremblay, G.; De Vriendt, L.; Lévesque, E.; Boudreau, S. The importance of ecological constraints on the control of multi-species treeline dynamics in Eastern Nunavik, Québec. Am. J. Bot. 2012, 99, 1638–1646. [Google Scholar] [CrossRef]
- Frei, E.R.; Bianchi, E.; Bernareggi, G.; Bebi, P.; Dawes, M.A.; Brown, C.D.; Trant, A.J.; Mamet, S.D.; Rixen, C. Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Sci. Rep. 2018, 8, 10894. [Google Scholar] [CrossRef] [Green Version]
- Germino, M.J.; Smith, W.K.; Resor, A.C. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 2002, 162, 157–168. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Holtmeier, F.K. European larch in middle Europe with special reference to the Central Alps. In Ecology and Management of Larix Forests: A Look Ahead: Proceedings of an International Symposium; Schmidt, W.C., McDonald, K.J., Eds.; United States Department of Agriculture, Forest Service: Washington, DC, USA, 1995; Volume 319, pp. 41–49. [Google Scholar]
- Didier, L. Invasion patterns of European larch and Swiss stone pine in subalpine pastures in the French Alps. For. Ecol. Manag. 2001, 145, 67–77. [Google Scholar] [CrossRef]
- Ellenberg, H. Vegetation Ecology of Central Europe, 4th ed.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Dunwiddle, P.W. Recent tree invasion of subalpine meadows in the wind river mountains, Wyoming. Arct. Alp. Res. 1977, 9, 393–398. [Google Scholar] [CrossRef]
- Bebi, P.; Kienast, F.; Schönenberger, W. Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. For. Ecol. Manag. 2001, 145, 3–14. [Google Scholar] [CrossRef]
- Surber, E.; Amiet, E.; Kobert, H. Das Brachlandproblem in der Schweiz; Eidgenössische Anstalt für das Forstliche Versuchswesen: Birmensdorf, Sweitzerland, 1973; p. 140. [Google Scholar]
- Speed, J.D.M.; Austrheim, G.; Hester, A.J.; Mysterud, A. Experimental evidence for herbivore limitation of the treeline. Ecology 2010, 91, 3414–3420. [Google Scholar] [CrossRef] [PubMed]
- Chauchard, S.; Carcaillet, C.; Guibal, F. Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 2007, 10, 936–948. [Google Scholar] [CrossRef]
- Scott, P.A.; Hansell, R.I.C.; Erickson, W.R. Influences of wind and snow on northern tree-line environments at Churchill, Manitoba, Canada. Arctic 1993, 46, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.; Zamora, R.; Hodar, J.A.; Gomez, J.M. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: Consequences of being in a marginal Mediterranean habitat. J. Ecol. 2004, 92, 266–277. [Google Scholar] [CrossRef]
- Kulakowski, D.; Barbeito, I.; Casteller, A.; Kaczka, R.J.; Bebi, P. Not only temperature: Interacting drivers of treeline change in Europe. Geogr. Pol. 2016, 89, 7–15. [Google Scholar] [CrossRef] [Green Version]
Variable (Unit) | Type |
---|---|
Climate-related variables | |
Direct solar radiation (W/m2/3000) | Continuous modeled variable derived from MAB (1) |
Snow free days (days) | Continuous modeled variable derived from MAB |
Snow depth (m) | Continuous modeled variable derived from DSM (2) |
Topographic variables | |
Elevation (m a.s.l.) | Continuous modeled variable derived from DSM |
Slope (°) | Continuous modeled variable derived from DSM |
Curvature | Continuous modeled variable derived from DSM (3) |
Aspect (°) | Continuous modeled variable derived from DSM (4) |
Disturbance variables | |
1900 Land use | Categorical variable derived from MAB (5) |
1982 Land use | Categorical variable derived from MAB (6) |
Land-use change | Categorical variable derived from MAB (7) |
Avalanche risk | Categorical variable derived from MAB (8) |
Biotic variables | |
Vegetation | Categorical variable derived from MAB (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frei, E.R.; Barbeito, I.; Erdle, L.M.; Leibold, E.; Bebi, P. Evidence for 40 Years of Treeline Shift in a Central Alpine Valley. Forests 2023, 14, 412. https://doi.org/10.3390/f14020412
Frei ER, Barbeito I, Erdle LM, Leibold E, Bebi P. Evidence for 40 Years of Treeline Shift in a Central Alpine Valley. Forests. 2023; 14(2):412. https://doi.org/10.3390/f14020412
Chicago/Turabian StyleFrei, Esther R., Ignacio Barbeito, Lisa M. Erdle, Elisabeth Leibold, and Peter Bebi. 2023. "Evidence for 40 Years of Treeline Shift in a Central Alpine Valley" Forests 14, no. 2: 412. https://doi.org/10.3390/f14020412
APA StyleFrei, E. R., Barbeito, I., Erdle, L. M., Leibold, E., & Bebi, P. (2023). Evidence for 40 Years of Treeline Shift in a Central Alpine Valley. Forests, 14(2), 412. https://doi.org/10.3390/f14020412