
Citation: Jung, J.B.; Park, G.E.; Kim,

H.J.; Huh, J.H.; Um, Y. Predicting the

Habitat Suitability for Angelica gigas

Medicinal Herb Using an Ensemble

Species Distribution Model. Forests

2023, 14, 592. https://doi.org/

10.3390/f14030592

Received: 27 February 2023

Revised: 14 March 2023

Accepted: 15 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Predicting the Habitat Suitability for Angelica gigas Medicinal
Herb Using an Ensemble Species Distribution Model
Jong Bin Jung 1 , Go Eun Park 1,* , Hyun Jun Kim 2, Jeong Hoon Huh 2 and Yurry Um 2,*

1 Forest Ecology Division, National Institute of Forest Science, Seoul 02445, Republic of Korea;
jbjung1373@korea.kr

2 Forest Medicinal Resources Research Center, National Institute of Forest Science,
Yeongju 36040, Republic of Korea; mind4938@korea.kr (H.J.K.); mdgs3275@korea.kr (J.H.H.)

* Correspondence: goeunpark@korea.kr (G.E.P.); urspower@korea.kr (Y.U.)

Abstract: The distribution shift of forest species due to the fact of climate change may negatively
affect ecosystem services including the production of medicinal resources. Climate change impact
assessments of habitat range changes are essential to sustainably manage forest resources. A change
in the habitat suitability due to the fact of climate change was predicted for Angelica gigas, which
has high economic value among forest medicinal resources in South Korea. The habitat suitability
was predicted by an ensemble species distribution model that combined the results of nine sin-
gle algorithm models using the committee averaging method. A total 168 occurrence data and
10 environmental variables were used for the single algorithm models. The area under the receiver
operation characteristic curve (AUC) and true skill statistic (TSS) were applied to evaluate the models’
performance, and the contribution of the environmental variables was calculated as an important
value for each single algorithm model. Climate change scenarios were projected to predict future
habitat suitability. The future suitable habitat for A. gigas was gradually reduced to the high mountain
regions of the eastern part of South Korea regardless of the climate change scenarios. The main
environmental variable was the annual mean temperature, and the rise in temperature due to the
fact of climate change was found to have a negative effect on the habitat suitability for A. gigas. The
decline in the habitat suitability for A. gigas, a major forest medicinal resource, is expected to result in
the reduction in its production. Therefore, it is required to establish adaptation measures to mitigate
the negative impact of this decrease, such as protecting the natural habitats of A. gigas.

Keywords: climate change scenario; Korean angelica; machine learning; medicinal plant; species
distribution model (SDM)

1. Introduction

The climate is a critical factor that impacts the physiological response and life cycle
of forest organisms, and climate change causes habitat range shifts by affecting growth
and reproduction [1]. Increases in the elevation or poleward shifts of habitat ranges
observed in forest ecosystems clearly demonstrate the impact of climate change on species
distribution [2–4]. Consequently, the change in species distribution may exert not only a
significant influence on the structure of forest ecosystems, including biodiversity, but also
an adverse impact on the provision of ecosystem services [5]. Therefore, predicting changes
in species distribution under climate change can be considered a prerequisite for the
sustainable management of ecosystem services and the mitigation of adverse impacts [6].

The species distribution model (SDM) involves a series of data processing and an
algorithm that predicts the occurrence probability or habitat suitability through the as-
sumption of the relationship between species occurrence and circumstantial environmental
variables. The SDM is widely used as a quantitative assessment tool of the impact of climate
change [6,7]. However, since predicting habitat suitability includes multiple uncertainties
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and errors according to the traits of the species, the algorithm, spatial distribution of the oc-
currence data, sampling method, and collinearity among the explanatory variables, caution
in terms of these uncertainties must be taken before interpreting the model results [8–10].
As a practical example, previous research on the future habitat suitability for subalpine
evergreen conifers in South Korea showed different results according to the occurrence data,
model algorithm, environmental variables, and climate change scenarios [11,12]. Therefore,
a methodology that can increase the reliability and reduce the uncertainty of the SDM’s
results is required [13].

The ensemble approach refers to a statistical agreement method for reducing the model
uncertainties caused by the model algorithm and parameters or the climate uncertainties
due to the projected climate conditions and, generally, increases the predictive ability com-
pared to a single algorithm model [14,15]. In addition, a consistent agreement can be de-
rived through averaging (e.g., the multimodel inference, arithmetic average, and weighted
average), and it is widely applied in decision making for climate change adaptation [16,17].
In South Korea, research that applies the ensemble approach is actively conducted; how-
ever, the majority of this research has studied the model uncertainty [12,18,19], and there
has been a lack of its application to multiple climate change scenarios for reducing cli-
mate uncertainty [20,21]. Wenger et al. [22] documented that in future species distribution
prediction, the climate uncertainty was greater than the model uncertainty, and there is
an increasing need for an ensemble approach that considers multiple climate conditions
during climate change impact assessment [23,24].

Angelica gigas Nakai is endemic to East Asia and mostly lives in the valleys of moun-
tainous area in the Korean Peninsula at an elevation of ≥700 m [25,26]. It is a highly
valuable medicinal plant that is traditionally used in Korean herbal medicine, and it is
currently produced though local harvesting and cultivation [27]. Although A. gigas pro-
duction heavily relies on cultivation, harvesting remains an important production method.
The production of A. gigas is closely related to the climate conditions during the growing
period [28,29]. Exposure to high temperatures at the onset of growth not only reduces the
development of the aboveground and underground parts of A. gigas but also decreases the
survival rate [30]. In addition, previous research that compared the growth of A. gigas for
each climate zone and altitude showed that a higher temperature led to the reduced growth
of the aboveground and underground parts [31,32]. Poor growth and an increase in mortal-
ity are closely related to the species distribution [33]; therefore, temperature increases due
to the fact of climate change could induce changes in the distribution of A. gigas; however,
there is a lack of studies on the change in habitat suitability for A. gigas [34].

This study aimed to assess the impact of climate change on the distribution of A. gigas
and identify a suitable habitat for A. gigas. In detail, this study was purposed to (1) develop
an optimal ensemble model for examining habitat suitability for A. gigas, (2) determine
the relative importance of each environmental variable in predicting the habitat suitability,
and (3) identify the change over time in the suitable habitat. In addition, this study used
multiple climate change scenarios that can reduce climate uncertainties to increase the
reliability of the predicted results.

2. Materials and Methods
2.1. Collection of Species Occurrence Data

Occurrence data for A. gigas in South Korea were obtained from the 7th National
Forest Inventory (NFI, 2016–2020), the monitoring data on endangered subalpine evergreen
conifers of the Korea Forest Service (ESCM, 2017–2018), the 4th National Natural Envi-
ronment Survey of the National Institute of Ecology (NNES, 2014–2018) [35], the Global
Biodiversity Information Facility (GBIF, 1957–2010) [36], and Park (2018) [37] (Table 1).
However, if there were occurrences in a cultivated area, they were removed from the occur-
rence data. This is because the distribution of cultivated populations is influenced not only
by environmental variables but also artificial management practices such as fertilization,
making it difficult to distinguish the effects of these factors on the distribution. As A. gigas
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is cultivated in open fields rather than forests, where the natural population occurs [25,27],
the location of each occurrence was carefully verified using Google satellite imagery, and
the occurrences in cultivated areas were excluded from the analysis. To reduce the spatial
autocorrelation in the locations of A. gigas occurrence, the occurrence data were thinned
using a distance of 1 km. Finally, the occurrence data from 168 out of 285 locations were
used to construct the species distribution model (Figure 1).

Table 1. Sources and number of occurrence data for Angelica gigas in South Korea.

Source ESCM GBIF NFI NNES Park (2018) Total

Original occurrence 150 62 10 46 17 285
Thinned occurrence 65 49 9 40 5 168

Figure 1. Locations of the thinned occurrence data for Angelica gigas.

2.2. Selection of Environmental Variables

A total of 19 bioclimate variables provided by WorldClim version 2.1 were used for the
baseline climate (1970–2000) for constructing the species distribution model [38]. The period
from 1970 to 2000 was selected because it corresponds to a notable shift in climate regimes
that has been evidenced by several studies [39,40]. These studies indicate that changes in
both precipitation and temperature began in the mid-1970s, underscoring the importance of
this period in understanding the impact of climate change on A. gigas distribution. For the
future climate, the 19 bioclimate variables of the SSP245 and SSP585 scenarios predicted by
ACCESS-ESM1.5 [41], CNRM-ESM2-1 [42], HadGEM3-GC31-LL [43], IPSL-CM6A-LR [44],
and MIROC6 [45] among the global climate models (GCMs) of CMIP6 were used. The time
ranges of the future climate were 2021–2040, 2041–2060, 2061–2080, and 2081–2100. The
mean value of the climate variable of each time range was used in the prediction of future
habitat suitability and are indicated in the results as 2030, 2050, 2070, and 2090.

Global Multi-Resolution Terrain Elevation Data (GMTED2010) with a spatial resolution
of approximately 1 km2 (30 arc-second) were used to determine the topographical variables
of the altitude, slope, and aspect [46]. In addition, the occurrence characteristics of A. gigas
that mainly grows near mountain valleys were considered, and the topographic wetness
index (TWI) with a 30 arc-second scale, created by the Korea Institute of Geoscience and
Mineral Resources (KIGAM), was added [47]. TWI represents the soil moisture variation
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according to the slope and aspect, and a greater value implies a greater topographical
moisture content retention capacity.

Finally, as soil variables, the cation exchange capacity (CEC), which has been found
to be closely related with the growth of A. gigas [26,28], and bulk density (BOD), which
is related to the soil texture and soil porosity, were used among the soil data provided
by SoilGrids 2.0 [48]. The collinearity that exists between the explanatory variables of
climate, topography, and soil increases the uncertainty of the species distribution model’s
results [10], and Spearman’s rank correlation analysis was performed to remove variables
with a correlation coefficient of >0.7 from the analysis [49]. Altitude showed a strong
positive correlation (rs = 0.78) with the annual mean temperature (BIO1); therefore, it
was eliminated from the final explanatory variable, and 10 environmental variables were
selected, as follows, for use in the development of the species distribution model (Figure S1;
Table 2). All environmental variables had a spatial resolution of approximately 1 km2

(30 arc-second). The same topographical and soil variables were used in both the baseline
and future projections, as these variables are not expected to change significantly over short
time frames.

Table 2. Environmental variables used in the species distribution model.

Variable Description Abbreviation Source

Climate

Annual mean temperature (◦C) BIO1

WorldClim

Isothermality (×100) BIO3
Temperature seasonality
(standard deviation × 100) BIO4

Precipitation of wettest month (mm) BIO13
Precipitation of driest month (mm) BIO14

Topography
Slope (in degree) SLOPE

GMTED2010Aspect (in degree) ASPECT
Topographic wetness index TWI KIGAM

Soil
Bulk density (cg/cm3) BDOD

SoilGridsCation exchange capacity (mmolc/kg) CEC

2.3. Development and Evaluation of the Species Distribution Model

A total of nine algorithms, including artificial neural network (ANN), classification tree
analysis (CTA), generalized additive model (GAM), generalized boosting regression model
(GBM), generalized linear model (GLM), multiple adaptive regression splines (MARS),
maximum entropy (MAXENT), random forest (RF), and surface range envelop (SRE),
were used to create the species distribution model [13,50]. Some algorithms require not
only presence data but also absence data, for which this research randomly extracted
1000 pseudo-absence data 10 times to generate 10 presence–absence datasets. The training
and validation data were distinguished from each dataset at a ratio of 7:3 and were used in
the model creation (70%) and model accuracy evaluation (30%), respectively. The single
algorithm model was created 10 times for each dataset using the environmental variables,
and the contribution of the environmental variables was determined for each model.

Cross-validation was performed five times to assess the accuracy of the single algo-
rithm models. For this purpose, the validation data for each dataset were used to determine
the area under the receiver operation characteristic curve (AUC) and the true skill statistic
(TSS). The AUC was produced using the true positive rate (i.e., sensitivity) and the false
positive rate from the classification table [51]. The sensitivity is the fraction of the actual
presence that was correctly predicted as presence, while the false positive rate presents
the extent of the false presence among the actual absence. The TSS was determined using
the sensitivity and the true negative rate (i.e., specificity), which represents the extent of
the prediction as absence among the actual absence, and the calculation of the TSS was as
follow [52].

True skill statistic (TSS) = Sensitivity + Specificity − 1
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The prediction performance can be considered good when both the AUC and TSS are
close to 1. In this study, the model results were determined to be reliable when the AUC
was ≥0.7 and the TSS was ≥0.6 [52,53].

2.4. Prediction of Ensemble Model

Among the single algorithm models, those with a TSS index of ≥0.6 were selected
to create an ensemble model with the committee averaging (CA) method [54]. CA is a
method of cumulatively adding the occurrence probabilities after the binary conversion
of the occurrence probability into 0 and 1 from the single algorithm model and dividing
the sum into the total number of models [50]. The final product of the CA ensemble
model is not a continuous variable; therefore, it has the advantages of being intuitive
and easy for comparison [55]. To reduce the climate uncertainty, two climate change
scenarios (SSP245 and SSP585) from five GCMs were projected to determine the mean
value of each time range’s occurrence probability [21]. To distinguish the suitable habitat,
the occurrence probability at the intersection of the sensitivity and specificity at which
the TSS is maximized was designated as a threshold value for each climate scenario, and
binary conversion was performed. The suitable habitat areas for each time range were
determined on the binarized map, and the amount of reduction regarding the habitable
area in 1970–2000 is presented in rates (%). In addition, the mean altitudes of the locations
distinguished as having the presence of A. gigas were calculated to review the tendency
of the change in altitude according to the climate change scenario. All analyses were
performed using the Biomod2 package [50] in the R program [56].

3. Results
3.1. Performance of the Single Algorithm and Ensemble Model

All algorithms used in this study, excluding SRE, suitably predicted the presence of
A. gigas (Figure 2A). The AUC and TSS mean values of all single algorithm models were
0.87 ± 0.07 and 0.64 ± 0.10, respectively, and the GBM showed the highest AUC and TSS
values among the single algorithm models (AUC = 0.91 ± 0.02; TSS = 0.70 ± 0.05), followed
by the GLM, MARS, MAXENT, and RF. The lowest prediction performance was that of SRE
(AUC = 0.70 ± 0.03; TSS = 0.40 ± 0.07).

Figure 2. Validation metrics for the single algorithm models: AUC and TSS (A) and sensitivity and
specificity (B). The points and crosses represent the mean and standard deviation of the AUC and
TSS metrics for 100 models of each algorithm. The boxplots show the mean and interquartile range
of the sensitivity and specificity, while the violin plots show the distribution of the sensitivity and
specificity for 100 models of each algorithm.
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In the ensemble model that was created with the models that had a TSS of ≥0.6 among
the single algorithm models, 98 GLM models were included and accounted for the greatest
number of models, followed by 97 GBM and MARS models, 96 MAXENT models, 94 RF
models, 83 GAM models, 78 ANN models, and 74 CTA models, which contributed to the
ensemble model. In contrast, all SRE models were excluded from the ensemble model.
The AUC and TSS of the ensemble model were 0.96 and 0.78, respectively, and showed a
superior prediction ability compared to the single algorithm models. The sensitivity of each
single algorithm model was highest in the MAXENT (0.88 ± 0.06), and the specificity was
0.85 ± 0.07 in the RF, which was higher than that in the other algorithm models (Figure 2B).
The specificity of the SRE was lower than the sensitivity, and the overall prediction ability
was low.

3.2. Habitat Suitability and Environmental Variable Contribution

The suitable habitat area for A. gigas predicted by the ensemble model under the
baseline climate conditions (1970–2000) was 25,130 km2, and the habitat suitability was
high in the eastern regions and the high-altitude areas of some mountains in the southern
regions of South Korea (Figure 3A). The single algorithm models showed similar spatial
tendencies to the ensemble model; however, there was a difference in the habitat suitability
(Figure S2). Among the nine algorithms, the MAXENT and RF predicted a low probability
of the habitat being suitable, and the SRE showed a relatively higher habitat suitability
than the other algorithms (Figure 3B).

Figure 3. Habitat suitability for Angelica gigas predicted by the (A) committee averaging ensemble
model and (B) single algorithm models under the baseline climate conditions (1970–2000).

The environmental variable that related most to the occurrence of A. gigas was the
annual mean temperature (BIO1) (Figure 4). The variable importance of the annual mean
temperature identified from 900 single algorithm models was 0.66 ± 0.45, and it best
described the occurrence of A. gigas among the environmental variables used in the species
distribution model. The variable importance of the annual mean temperature was the
highest at an average of 0.92 ± 0.12 in the CTA algorithm model, and it showed the lowest
value (0.24 ± 0.07) in the SRE algorithm model. After the annual mean temperature, the
importance value of the CEC was high, with the total model average being 0.14, and it had
a greater impact on the occurrence of A. gigas than the topographical variables. Among the
topographical variables, the TWI showed a greater contribution than the slope and aspect.
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Figure 4. Importance values of the 10 environmental variables on the prediction of the occurrence
of Angelica gigas by the single algorithm models. The bars and error bars represent the mean and
standard deviation of the importance value for 100 models of each algorithm.

3.3. Future Changes in Suitable Habitat

The habitat suitability predicted by reflecting five GCMs and two SSP combinations
with the climate change scenarios decreased in the low-altitude regions, and the suitable
habitat areas gradually narrowed down to the high-altitude regions, such as mountainous
areas (Figure 5). The mean habitat suitability was lower in the SSP585 scenario than the
SSP245 scenario for all time ranges. The mean suitable habitat areas of A. gigas in 2030 were
8967 ± 3170 km2 for SSP245 and 7358 ± 2931 km2 for SSP585, which were reductions of
64 ± 13% and 71 ± 12%, respectively, compared to the habitat areas under the baseline
climate conditions (Table 3; Figure 6A). In approximately 2090, A. gigas occurrence was
predicted only from a mean area of 9 km2 in SSP585 and of 1074 km2 in SSP245. The greatest
decrease in the suitable habitat area was observed in HadGEM3-GC31-LL, followed by
that in ACCESS-ESM1.5, IPSL-CM6A-LR, CNRM-ESM2-1, and MIROC6. In the case of
HadGEM3-GC31-LL, the decreases in the area in the SSP245 scenario were 81.1% in 2030
and 99.7% in 2090, and the reductions were 86.8% in 2030 and 100% in 2090 in the SSP585
scenario. In contrast, for MIROC6, with the lowest predicted decrease in the area, the
SSP245 scenario showed decreases of 51.0% in 2030 and 87.3% in 2090. The reductions were
57.4% and 99.8% in 2030 and 2090, respectively, in the SSP585 scenario. The mean altitude
of suitable habitat was 671 m under the baseline climate conditions; however, according to
SSP585, it tended to increase from 907 m in 2030 to 1089 m in 2050, 1315 m in 2070, and
1225 m in 2090, and a suitable habitat for A. gigas gradually reduced to mountainous areas
with a high altitude (Figure 6B). The annual mean temperature is expected to increase from
11.3 ◦C in 1970–2000 to 13.1 ◦C for SSP245 and 13.3 ◦C for SSP585 by 2030 (Figure S3). By
2090, the annual mean temperature is expected to rise to 15.0 ◦C for SSP245 and 17.5 ◦C
for SSP585.
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Figure 5. Mean habitat suitability for Angelica gigas under the SSP245 and SSP585 scenarios of
multiple GCMs using the committee averaging ensemble approach.

Figure 6. Future suitable habitat area loss (%) compared to the area under the baseline climate
conditions (1970–2000) (A) and the mean altitude (B) of suitable habitat for Angelica gigas under the
SSP245 and SSP585 scenarios of multiple GCMs using the committee averaging ensemble approach.

Table 3. Predicted area (km2) of suitable habitat for Angelica gigas under the SSP245 and SSP585
scenarios of multiple GCMs using the committee averaging ensemble approach. The numbers in
parentheses are future suitable habitat area loss (%) compared to the area under the baseline climate
conditions (1970–2000).

SSP245 SSP585

GCM 2030 2050 2070 2090 2030 2050 2070 2090

ACCESS-ESM1.5 5780
(77.0)

1887
(92.5)

572
(97.7)

146
(99.4)

4491
(82.1)

773
(96.9)

16
(99.9)

-
(100)

CNRM-ESM2-1 12,210
(51.4)

6687
(73.4)

3483
(86.1)

1561
(93.8)

9773
(61.1)

3769
(85.0)

603
(97.6)

7
(99.9)

HadGEM3-GC31-LL 4753
(81.1)

1135
(95.5)

252
(99.0)

76
(99.7)

3314
(86.8)

462
(98.2)

2
(99.9)

-
(100)
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Table 3. Cont.

SSP245 SSP585

GCM 2030 2050 2070 2090 2030 2050 2070 2090

IPSL-CM6A-LR 9787
(61.1)

3646
(85.5)

1316
(94.8)

398
(98.4)

8499
(66.2)

1434
(94.3)

23
(99.9)

-
(100)

MIROC6 12,303
(51.0)

8450
(66.4)

5148
(79.5)

3188
(87.3)

10,712
(57.4)

4988
(80.2)

1021
(95.9)

40
(99.8)

Mean 8967
(64.3)

4361
(82.7)

2154
(91.4)

1074
(95.7)

7358
(70.7)

2285
(90.9)

333
(98.7)

9
(99.9)

4. Discussion

An ensemble species distribution model was used to predict the future habitat suit-
ability for A. gigas under multiple climate change scenarios. The AUC and TSS values of
the ensemble model created with the committee averaging method were 0.96 and 0.78,
respectively, and showed a relatively higher prediction ability than the single algorithm
models and contributed to reducing the model uncertainty of the prediction by merg-
ing the different results for each algorithm into one [14,15]. Therefore, the results of this
study that predicted the distribution of A. gigas using the ensemble model are applicable
as preliminary data for selecting suitable habitats for A. gigas. However, the ensemble
model evaluation used validation data from an identical dataset; hence, the ensemble
model’s performance may deteriorate when the model is transferred into the independent
temporal and spatial ranges from the training data [57]. Further, in the case of optimizing
the model through mediation of the parameters, the performance of the single algorithm
model could be higher than that of the ensemble model, which used the defaults, for
which the use of an ensemble model requires the accurate assessment of the ensemble
model performance through additional procedures, such as the null model or external
validation aside from internal validation [58,59]. Therefore, in future research, it seems
reasonable to validate the model using spatial blocking or independent validation data [58].
In addition, preventing overfitting of the single algorithm model through mediation of the
model parameters could support the improvement of the accuracy and overall transfer
capacity of the ensemble model.

Among the nine algorithms used in this research, the GBM showed the highest accu-
racy in predicting the occurrence of A. gigas. This high prediction ability of the GBM can be
identified in several previous studies that compared the model algorithms [60,61], and a
study in South Korea on subalpine evergreen conifers demonstrated the high predictive
performance of the GBM along with the RF [12]. The GBM not only has the strengths
of the boosting technique, such as machine learning and regression tree, but also the
advantage of being able to consider the nonlinear relationship and interaction between
explanatory variables, which is not possible in regression analysis algorithms, such as GLM
or GAM [62]. The GBM is sensitive to the number of occurrence data and is known to have
a higher accuracy compared to other algorithms in the case of having a significant number
of occurrence data (≥100) [63]. Therefore, if the results from the GBM algorithm model are
given preference along with the ensemble model when selecting an appropriate habitat for
A. gigas, this can increase the reliability of decision making.

The other algorithms, excluding SRE, were also found to have a suitable prediction
ability based on the AUC and TSS, and they were referenced for the prediction of suitable
habitats for A. gigas. This could contribute to the complementation of erased or missing
ecological information from the ensemble model by preserving the ecological relationship
assumed by each algorithm. On the contrary, the TSS value of the SRE algorithm was low,
and some research in South Korea has verified the low accuracy of the SRE compared to
other algorithms; therefore, the use of the SRE algorithm appears to require caution during
the creation of the ensemble model [18,21].
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The natural habitats of A. gigas are found in the valleys or gentle slopes of high
mountains, and these habitats form on altitudes of ≥700 m in the eastern regions and
≥1000 m in the southern regions of South Korea [25,26]. In this study, it was observed
that the suitable habitats for A. gigas exist at altitudes above the mean value of 671 m, as
determined by the baseline conditions. This is attributed to the intrinsic correlation between
altitude and temperature, wherein altitude indirectly affects the growth, reproduction, and
distribution of A. gigas by influencing the prevailing environmental conditions, including
temperature [31,32]. Temperature, especially during summer, significantly impacts the
growth of A. gigas [34,37]. Furthermore, this study discovered that the mean temperature
during the warmest quarter (BIO10) of the baseline climate conditions (1970–2000) at the
location of the occurrence data was 19.3 ◦C, which closely aligns with the optimal growth
temperature in July–August of approximately 20 ◦C reported in earlier research [27,37].
Based on the given scenario, it is highly probable that the impact of temperature on growth
will intensify alongside the rise in the average annual temperature. Previous research
shows that as the altitude of the cultivation site increases and the climate becomes cooler,
the survival rate of transplanted A. gigas increases, and there is also a noticeable increase in
the underground biomass [31,64]. In contrast, high temperatures adversely affect A. gigas
growth, and the biomass of the aboveground and underground parts decrease when the
temperature increases to above 20–25 ◦C, which is the optimal growing temperature for
A. gigas [27,28]. Jeong et al. [30] showed that the extent of the reduction of the aboveground
and underground biomasses increased as the temperature increased with regard to the
optimal growing temperature. The highly significant effect of the annual mean temperature
(BIO1) on the prediction of the habitat suitability for A. gigas may have reflected the changes
in the growth characteristics according to the optimal growing temperature.

Temperature is not only related to vegetative growth but also to reproductive growth
and regeneration. A. gigas is a long-day plant, which forms the flower stalk when the
photoperiod elongates, and the rate of flower stalk formation is highest at 20 ◦C regardless
of the photoperiod conditions, followed by that at 15 ◦C and 25 ◦C [27]. Meanwhile, Cho
and Kim [65] studied the A. gigas germination rate, and stated that the rate decreased from
62.7% to 22.3% when the temperature increased from 20 ◦C to 30 ◦C. Choi and Yun [66] also
reported that the germination rate was the highest at the optimal temperature for growth,
and that a temperature increase from that level decreased the germination rate. Overall, an
increase in temperature appears to impede the dispersion of A. gigas by negatively affecting
its growth and regeneration.

A. gigas naturally inhabits regions with high moisture conditions such as valleys [25];
however, the results of this study showed that the TWI or aspect had a lower variable
importance than that of the other climate variables. Interestingly, a study conducted on
Mt. Hallasan, Jeju Island, found that the height of A. gigas on the north-facing slope was
higher than that on the south-facing slope [67]. Additionally, Park et al. [28] reported the
high growth of the underground parts at a high air humidity. These findings suggest that
moisture conditions may play a role in the growth and distribution of A. gigas, but their
impact may be more complex than previously thought. One possible explanation of the
low variable importance of the TWI and aspect in this study is that the spatial resolution
of these variables may be too coarse to adequately capture the microscale soil moisture
variations. Therefore, further research is needed to understand the growth and distribution
of A. gigas in relation to the moisture conditions.

The CEC was used as the explanatory variable for the model in this study to indicate
the content of exchangeable cations, and the results showed that CEC had the strongest
relationship to the distribution of A. gigas, after the annual mean temperature. This result
agrees with the results of a study that showed that A. gigas mainly inhabits soils with high
organic matter content, total nitrogen content, CEC, and exchangeable cations content [25].
According to Park et al. [28], the biomass of A. gigas’s roots increased with a higher CEC,
and the Ca+, Mg2+, and Na+ contents were positively correlated to root growth [26].
Chang and Choi [68] inferred that exchangeable cations or CEC positively impacted the
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growth of A. gigas, since potassium fertilizer increased the growth of its aboveground and
underground parts. In addition, vigorous root development could be considered to impact
the spatial distribution of individual A. gigas indirectly and directly by contributing to
increasing the survival rate and resistance to physical disturbances that occur frequently in
valley and boulder areas (as the main habitats).

In the ensemble model, the predicted suitable habitat area for A. gigas tended to
gradually shift towards the high-altitude areas of mountainous areas as time progressed
from the near future to the distant future in both the SSP245 and SSP585 scenarios. Further,
according to the SSP585 scenario, there would be no suitable habitat in South Korea in
2090, and the consistent decreasing trend shown for all GCMs validated the change in the
suitable habitat. Meanwhile, the future habitat suitability differed according to the projected
GCM. For example, when applying the SSP245 scenario to a near future prediction, the
predicted suitable habitat area for A. gigas showed a significant decrease (by 30%) in the
HadGEM3-GC31-LL model compared to the MIROC6 model. This suggests that the use of
multiple GCMs and the ensemble model are essential to reduce the prediction uncertainty
that occurs due to the choice of a single GCM projection and that the ensemble model
presented in this study could contribute to an increase in the reliability of the prediction of
the habitat suitability for A. gigas.

According to the Ministry of Agriculture, Food, and Rural Affairs of South Korea,
the amount of A. gigas produced over the past 10 years decreased by 34% (i.e., from 1857
tons in 2012 to 1225 tons in 2021) and the cultivation area decreased by approximately
27% (i.e., from 625 ha in 2012 to 457 ha in 2021) [69]. This future decrease in habitat
suitability is estimated to deteriorate the conditions for the production of A. gigas, for
which adaptation measures for climate change are urgently needed for sustainable A. gigas
production. Therefore, the management of their natural habitats is considered important.
However, A. gigas could easily suffer damage from overexploitation and habitat loss due to
the fact of its high medicinal value [70], and methods for obstructing artificial disturbances
to the naturally growing population, including the setting of protection areas for medicinal
plant resources, must be considered.

Meanwhile, the suitable habitat predicted by this study and the actual distribution may
differ, because the species distribution model did not consider the interspecies interaction
or other environmental factors that interfere with the growth and reproduction of A. gigas.
For example, various insects pollinate A. gigas, and the phenological mismatch with these
insects bears the risk of negatively impacting the distribution of A. gigas [71,72]. Thus,
future research must also consider various ecological processes.

5. Conclusions

Under climate change, the suitable habitat for A. gigas is expected to gradually be
restricted to high-altitude mountainous areas where the temperatures are suitable. This
decrease in the habitat suitability is strongly linked to the projected rise in the annual mean
temperature. Furthermore, stress from elevated temperatures can not only restrict the range
of A. gigas but also impair its overall vegetative and reproductive growth, highlighting
the significant impact of climate on the species. The production of A. gigas is expected
to decrease as a result of the decline in suitable habitat area. To adapt to climate change,
protective measures such as conserving the natural habitats of A. gigas may be necessary.
The ensemble model created in this study can help to reduce model and climate uncertain-
ties, and its future application as a basis for sustainable A. gigas production is expected to
contribute to the establishment of climate change adaptation measures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14030592/s1, Figure S1: Spearman’s rank correlation coefficients
for selected environmental variables; Figure S2: Zoomed-in plot of the habitat suitability for Angelica
gigas predicted by the single algorithm models under the baseline climate conditions (1970–2000);
Figure S3: Change in the annual mean temperature under the SSP245 and SSP585 climate change
scenarios of multiple GCMs.
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