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Abstract: Nutrient resorption and stoichiometry ratios are vital indicators to explore nutrient transfer
and use efficiency for plants, particularly under the condition of nutrient limitation. However, the
changing rules about nutrient resorption and ecological stoichiometry homeostasis are still unclear
with the development of plantations. We determined carbon (C), nitrogen (N), and phosphorus (P)
concentrations in soil and in fresh and senesced needles along a chronosequence of Pinus massoniana
plantations (10, 20, 30, and 36 years old) in Guizhou Province, China. We also calculated the N and
P resorption efficiency (NRE and PRE, respectively) and the homeostasis coefficient. The results
showed that fresh and senesced needles’ C and N concentrations maintained an increasing trend,
whereas their P concentrations decreased initially and subsequently increased as the plantations’ ages
increased. Fresh needles’ N:P ratios indicated that N limitation existed before 20 years old, while P
limitation appeared in the 30-year-old plantations. The NRE and PRE showed patterns of increasing
initially and decreasing subsequently along the chronosequence of P. massoniana plantations, which
was coupled with weak stoichiometric homeostasis to reduce nutrient deficiency. Therefore, the
appropriate nutrient management measurements should be induced to promote tree growth and the
sustainable development of P. massoniana plantations.

Keywords: nutrient resorption; nutrient limitation; ecological stoichiometry homeostasis; Pinus
massoniana plantations

1. Introduction

Carbon (C), nitrogen (N), and phosphorus (P) are vital indicators of nutrient utilisa-
tion in trees. Their ecological stoichiometry ratios are closely related to the life histories
and adaptation strategies of tree species [1,2]. Generally, nutrient accumulation and the
transformation of tree and soil nutrient release often change because of the biotic and
abiotic influence during the development of the plantation [3,4]. These variations in N and
P concentrations in trees and soil often lead to the nutrient limitation of tree individuals
within the background of the long growth cycle and the dynamic understory habitats [5,6].
According to previous reports, N and P limitations often happen because of insufficient
nutrient supply in young and ageing forests, respectively [7–9]. Inevitably, these situations
would have substantial effects on tree biomass accumulation and timber yield [10]. Hence,
clarifying these effects will further strengthen the understanding of the adaptability of
plantations under nutrient changes.

Ecological stoichiometry focuses on analysing the balance of chemical elements in
ecological interactions [11]. To date, this related theory has been widely used to explain the
relationship and feedback between plants and the environmental factors in the ecological
system [12,13]. Leaf N:P ratios are acknowledged to be indicators of N or P limitation for
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plant growth. For example, N or P limitation occurred at the N:P < 14 or >16 for plant
leaves, respectively [14]. Simultaneously, soil nutrient state and fertiliser supply capacity
affect plant nutrient and growth characteristics. For one plant species, the values of its
stoichiometry usually maintain a relatively constant composition regardless of the change in
environmental factors, which is called stoichiometric homeostasis [15,16]. At present, these
patterns have been discovered in many kinds of woody plants [17]. However, stoichiometric
homeostasis may have different thresholds in various environments, including different
growth stages in plants [18,19].

Nutrient resorption from ageing tissues is an important approach for plants to accumu-
late nutrient elements and optimise their use efficiency, which make them less dependent
on soil nutrients to maintain stoichiometric homeostasis [15]. Hence, plants have greater
N or P resorption efficiency (NRE/PRE, respectively) once N/P limitation occurs [20]. In
addition to soil nutrient status, studies have reported that nutrient resorption efficiency
(NuRE) could also be affected by fresh leaf and litter nutrients [21], leading to various
patterns in response to different-age stands [17]. Many researchers found that NuRE pre-
sented a negative correlation with soil nutrients [22,23]. On the contrary, some studies
reported that plants growing in infertile soil did not always show higher NuRE [24,25].
These results indicate that NuRE with plantation development and the correlations with
stoichiometry and homeostasis are still uncertain. Therefore, clarifying the pattern of
nutrient resorption and ecological stoichiometry homeostasis along a chronosequence of
plantations is necessary.

Pinus massoniana is a pioneer afforestation species and the main timber tree species
in South China, covering about one million hm2 of afforestation area. P. massoniana plays
an extremely important role in China’s timber production and forest ecosystem service
function [26]. Usually, the mature age of P. massoniana plantations is about 40 years in
south of China. However, their rotation period could be from 20 to 25 years based on the
different purpose of utilization and to maximize economic benefit. In recent years, the
productivity and economic value of P. massoniana plantations have attracted much attention.
For example, the earlier, pure P. massoniana plantations have begun to degenerate because
of the simple community structure, the growth rate and timber productivity, and soil
fertility reduction and acidification [27–29]. Previously, the majority of experiments on the
ecological stoichiometry of P. massoniana plantations were carried out only at one growth
stage [30], which made the nutrient dynamic and limitation status along a chronosequence
of P. massoniana plantations unclear. Therefore, we measured the needle and soil total
organic C, N, and P concentrations and calculated their stoichiometric ratios, including nee-
dle nutrient resorption in P. massoniana plantations across a chronosequence of 10- (young),
20- (middle-aged), 30- (near-mature), and 36-year-old (mature) stands in Guizhou Province,
China. The aim was to illustrate the patterns of nutrient resorption and stoichiometric
homeostasis along a chronosequence of P. massoniana plantations. Based on this, we want
to verify two hypotheses: (i) NuRE would increase along the chronosequence of the P.
massoniana plantation because nutrient demand may increase with tree growth, and (ii)
NuRE would present a negative relationship between soil and needle nutrients to conserve
nutrients for trees.

2. Materials and Methods
2.1. Study Site

A description of this study site (Figure 1) can be found in the study by Pan et al.,
2021 [26]. The soil belongs to the alfisols type (the acidic siliceous yellow soil) and has
moderate fertility, with a soil depth of 60–80 cm. The earliest local vegetation was a
P. massoniana, Pinus armandii, and broadleaf tree (Populus davidiana and Quercus fabri) artifi-
cial forest, which was established as a pure forest of P. massoniana in the 1980s.
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Figure 1. Location of Mengguan Forest Farm study area in Guizhou, China and soil sample distribu-
tion in each sample plot.

2.2. Experimental Design and Sample Collection

We selected four age classes (10, 20, 30, and 36 years old) of P. massoniana plantations
as the research objects and carried out the preliminary investigation in August 2017. The
four aged plantations were established in 2007, 1997, 1987, and 1981, respectively, with a
plant/row distance of 1 m × 2 m. They were tended (irrigation and weeding) and managed
(insect control and grazing prohibition) only in the first 3 years after afforestation. The first
and the second thinning were conducted with 30% of trees being removed 10 and 20 years
after establishment, respectively, and a density of approximately 1500 trees·ha−1 was kept.
Three typical 20 m × 20 m replicated sample plots were established within each of the same
age plantations. All plots were on relatively flat topography as well as similar soil type,
altitude, and climate conditions as much as possible (Table 1). Within each plot, the tree
height, diameter at breast height (DBH), canopy, and others were measured and recorded.
Meanwhile, three well-growing individuals were selected according to the average DBH,
with a >10 m distance between any two sample trees, and were labelled.

Table 1. Characteristics of Pinus massoniana plantations along a chronosequence.

Plantation Age 10 Years Old 20 Years Old 30 Years Old 36 Years Old

Altitude/m 1194 ± 6.4 1175 ± 8.3 1206 ± 8.5 1214 ± 9.2
Canopy density 0.90 ± 0.07 0.85 ± 0.10 0.75 ± 0.09 0.80 ± 0.08

Stand density/(trees·ha−1) 4675 ± 256 2812 ± 135 1356 ± 103 1083 ± 94
Mean diameter at breast

height (DBH)/cm 8.53 ± 1.56 12.66 ± 2.55 18.46 ± 3.01 21.26 ± 5.26

Mean tree height/m 7.43 ± 1.83 15.64 ± 2.74 18.94 ± 2.43 19.87 ± 3.26
Note: each value denotes the mean (±SD).

Fresh (1- and 2-year-old matured leaves) and senesced needles from the same tree
were sampled in August and September 2017, respectively, during vigorous growth and
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peak abscission. Twelve branches in the middle sun-exposed crown from the labelled
individual were cut down and sampled in approximately equal quantities of 1- and
2-year-old-matured fresh needles, respectively, and mixed to form a single sample. The
senesced needles were also collected from the same branches and mixed to form a litter nee-
dle sample. In the laboratory, all the samples were dried for 48 h at 65 ◦C and powderised
using a mechanical grinder for chemical measurement.

Belonging to the shallow-rooted trees, the majority of P. massoniana fine roots were
distributed in the topsoil layer [31]. Thus, soil samples were taken from the 0–20 cm soil
layer in each sample plot (Figure 1). After clearing the surface plant litter, five soil samples
were collected using the five-point method. A total of 60 soil samples were obtained from
the 4 age stands.

2.3. Chemical and Physical Measurements

Fresh and senesced needles were ground with ball mill equipment (HM2L, Shandong,
China) for chemical determination. Soil samples were also air-dried indoors and sieved
(2 mm mesh) for chemical measurements. The total C of all the samples was determined
using the K2Cr2O7 oxidation method, and their total N concentrations were determined
with the Kjeldahl method using a Kjeldahl autoanalyser (GK–600P, Shandong, China) [32].
The total P concentrations of the needles and soil samples were determined with the
colourimetry method using a spectrophotometer (V–5600, Shanghai, China). Soil available
N (AN) and available P (AP) concentrations were analysed using the alkali diffusion and
colourimetric methods, respectively [33]. Each needle and soil sample was divided into
three parts equally as three duplicate samples for chemical determination.

2.4. Calculations

NuRE was calculated using the formula of Vergutz et al. [34] as follows:

NuRE =

((
Nug − Nus

)
× MLCV

Nug

)
× 10 (1)

where the mass loss correction value (MLCV) was 0.745 for conifers [34], and Nug and Nus
represented the nutrient concentrations in all age classes of fresh needles and senesced
needles, respectively.

The homeostatic coefficient (H) was calculated using the method of Sterner and
Elser [35], which was derived from the following model:

y =
1
H

× logx + B (2)

where y is the concentration of N, P, or N:P ratio in the fresh needles of P. massoniana samples,
respectively, whereas x is the corresponding value in soil. Mean N and P concentrations
and the N:P ratio of the 0–20 cm soil layers were calculated, which were used as soil values.
B and H values were calculated through a linear regression analysis. For the convenience
of statistics, the slope (1/H with a value ranging from 0 to 1) was used to measure the
homeostasis degree. According to Person et al. [15], homeostasis was divided into four
patterns based on the values of 1/H, which were stability (the value ranges from 0 to 0.25),
weak stability (the value ranges from 0.25 to 0.5), weak sensitivity (the value ranges from
0.5 to 0.75), and sensitivity (the value ranges from 0.75 to 1), respectively.

2.5. Statistical Analysis

C, N, and P stoichiometric ratios of all the samples were calculated using the mass
ratios. One-way analysis of variance was used to compare the significant differences in soil
total organic C, N, and P concentrations and NuRE along a chronosequence of P. massoniana
plantations. A two-sample t-test was used to analyse the differences between NRE and PRE
under the same-age plantation. Linear or quadratic regression was conducted to determine
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the relationships between plantation age and needle C, N, and P concentrations and their
stoichiometric ratios, including NRE:PRE ratios. Covariance analysis was used to test the
significant differences in the slopes of stoichiometry between fresh and senesced needles,
including the slopes of stoichiometric homeostasis in all-aged plantations. Pearson’s
correlations were used to test the relationships between NuRE and nutrient concentrations
of the needles and soil. All the statistical analyses were conducted with SPSS 24.0 (SPSS Inc.,
Chicago, IL, USA) for Windows, and all the figures were plotted with Origin 2022b (Microcal
Inc., Northampton, MA, USA).

3. Results
3.1. Soil C, N, and P Concentrations and Their Stoichiometric Ratios

Soil C, N, and P concentrations and their stoichiometric ratios presented different
change trends along a chronosequence of P. massoniana plantations (Table 2). C and AP
concentrations and the AN:AP ratios all tended to increase with increasing plantation age.
N and AN concentrations and the C:P ratio decreased initially and subsequently increased,
with their lowest values appearing in the 20-year-old plantation. On the contrary, the P
concentration and C:N ratio increased initially and then decreased, and both reached the
highest values in the 20-year-old plantation.

Table 2. Soil main element concentrations and their stoichiometric ratios along a chronosequence of
P. massoniana plantations.

Nutrition
Indexes 10 Years Old 20 Years Old 30 Years Old 36 Years Old

C (g·kg−1) 9.98 ± 1.89 b 9.48 ± 1.24 b 11.58 ± 1.50 a 11.85 ± 1.14 a
N (g·kg−1) 1.95 ± 0.34 b 1.51 ± 0.22 c 2.32 ± 0.28 a 2.37 ± 0.24 a
P (g·kg−1) 0.38 ± 0.05 b 0.49 ± 0.04 a 0.24 ± 0.04 c 0.21 ± 0.05 c

C:N 5.87 ± 0.34 b 6.63 ± 0.25 a 5.87 ± 0.26 b 5.45 ± 0.31 c
C:P 28.88 ± 7.36 b 20.09 ± 5.20 c 48.09 ± 5.09 a 43.89 ± 5.87 a
N:P 5.86 ± 1.41 c 2.24 ± 1.11 d 9.45 ± 1.43 a 7.93 ± 1.26 b

AN (mg·kg−1) 12.96 ± 1.76 b 11.04 ± 1.90 c 13.62 ± 1.73 b 15.35 ± 2.38 a
AP (mg·kg−1) 7.14 ± 0.93 a 1.41 ± 0.22 b 1.79 ± 0.13 b 1.59 ± 0.14 b

AN:AP 4.55 ± 0.78 c 8.81 ± 1.20 b 8.52 ± 0.76 b 10.03 ± 0.79 a
Note: Parameters include organic carbon (C); nitrogen (N); phosphorus (P); available nitrogen (AN); and available
phosphorus (AP). Each value denotes the mean (±SD). Different lowercase letters represent differences among
different stand ages under the same nutrition indexes (p < 0.05).

3.2. Needle C, N, and P Concentrations and Their Stoichiometric Ratios

The fresh- and senesced-needle C concentrations revealed a linear increasing trend
along the chronosequence of P. massoniana plantations, ranging from 411.43 to 472.21 mg·g−1

and from 368.02 to 451.13 mg·g−1, respectively (Figure 2a). Meanwhile, both N concentra-
tions increased quadratically from 11.42 to 18.45 mg·g−1 and from 7.44 to 11.23 mg·g−1,
respectively (Figure 2b). In addition, both P concentrations tended to drop initially and
subsequently rise along the chronosequence (Figure 2c). Fresh needle C:N ratios tended to
decrease with increasing plantation age, whereas they increased initially and decreased
subsequently in the senesced needles (Figure 2d). Generally, the fresh needle C:P ratios
showed a trend of first decreasing and then increasing, which was opposite to the senesced
needles (Figure 2e). Synchronously, the fresh- and senesced-needle N:P ratios increased
along the chronosequence, whereas the fresh needle N:P ratios maintained the higher
values before the approximately 23-year-old plantation, and then were exceeded by the
senesced needles (Figure 2f).
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However, the PRE was positively correlated with C concentrations and C:N ratios in the 
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senesced needles, including the soil AP concentration (Table 3). 

Figure 2. Fresh and senesced needles’ C, N, and P concentrations (a–c) and their stoichiometry ratios
(d–f) along the chronosequence of P. massoniana plantations.

3.3. Needle NuRE and Their Relationships with Soil Stoichiometry

As shown in Figure 3a, the NRE and PRE exhibited the same change trend, which
continually increased from the 10- to 30-year-old stage and then decreased in the 36-year-old
stage. However, the NRE was higher than the PRE before the 20-year-old plantations,
whereas it was the opposite after 30-year-old stages. NRE:PRE ratios showed a rapid
decrease along the chronosequence of P. massoniana plantations (Figure 3b). The NRE
was significantly negatively correlated with the senesced-needle N concentration (Table 3).
However, the PRE was positively correlated with C concentrations and C:N ratios in the
fresh needles, the ratios of C:P and N:P in the senesced needles, and the AN:AP ratio in
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the soil. Undoubtedly, the PRE was negatively correlated with the P concentration in the
senesced needles, including the soil AP concentration (Table 3).
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Figure 3. Resorption efficiency of N and P (a) and their ratios (b) in fresh and senesced needles
along the chronosequence of P. massoniana plantations. Different capital letters represent differences
between fresh and senesced needles in the same-age plantations, respectively (p < 0.05). Different
lowercase letters represent differences amongst fresh or senesced needles along the chronosequence,
respectively (p < 0.05).

Table 3. Pearson correlations between nitrogen/phosphorus resorption efficiency and element
concentrations, and their stoichiometric ratios in needles and soil.

Factors Items
Pearson Correlations

NRE (p Value) PRE (p Value)

Fresh needle
C 0.866 ** (0.000)

C:N 0.921 ** (0.000)

Senesced needle

P −0.790 ** (0.002)
N −0.615 * (0.033)

C:P 0.834 ** (0.001)
N:P 0.756 ** (0.004)

Soil
AP −0.665 * (0.018) −0.777 * (0.003)

AN:AP 0.769 ** (0.003)
Note: Parameters include organic carbon (C); nitrogen (N); phosphorus (P); available nitrogen (AN); available
phosphorus (AP); NRE (nitrogen resorption efficiency); and PRE (phosphorus resorption efficiency). Only the
items with significant correlations are shown in this table. The value shows the correlation coefficient; positive
values represent positive correlation and negative values represent negative correlation. * p < 0.05, ** p < 0.01.

3.4. Pattern of Needle Stoichiometric Homeostasis

The slopes (1/H) of linear regression relationships between the fresh needle and soil
for N, P, and N:P ratios were 0.019, 0301, and 0.287, respectively (Figure 4). These results
indicated that the homeostatic adjustment existed in N and P concentrations along the
chronosequence of P. massoniana plantations. Comparatively, the N concentration had a
stronger ability of homeostatic adjustment than the P concentration and N:P ratio during
the development of P. massoniana plantations (Figure 3a).
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4. Discussion
4.1. Changes in Soil C, N, and P Concentrations along a Chronosequence

In this research, soil C, N, and P concentrations showed significant fluctuation along
the chronosequence of P. massoniana plantations. The previous researcher indicated that
soil C concentration mainly depended on the quantity of organic matter and the size of the
soil humus [36]. We observed the increasing C concentration in the soil, and this pattern
was in agreement with some previous results [18,23,37]. The researchers also found that
decaying plant litter would provide approximately 58% of the source of N in plantation
ecosystems [38]. As we know, 30% of trees were removed during the 10 and 20 years of
the plantations in this study area, which made the amount of litter decrease dramatically.
This case greatly limited the input of topsoil nutrients, particularly the N element [39].
As is known, soil P transformation is mainly regulated by biochemical mineralisation
under abiotic factors [40,41]. Here, we also found that the soil P concentrations quickly
increased (Table 2) in plantations before year 20. Thus, the thinning was responsible for
this change. After the thinning, more sunshine reaching the understory made the surface
soil temperatures increase and accelerated the rate of P mineralisation. Eventually, this led
to the P accumulation and concentration increasing in the soil.

4.2. Changes in Nutrient Limitation and Nutrient Resorption Efficiency along a Chronosequence

The C, N, and P concentrations in fresh and senesced needles also showed signif-
icant correlations along the chronosequence of P. massoniana plantations. The C and N
concentrations in the two kinds of needle also maintained the increasing trend along
the chronosequence. Similar results have been reported in C. lanceolata [18] and Larix
kaempferi [42]. Obviously, the senesced needle would transfer the N element to the fresh
needle for the nutrient resorption strategy. The increasing NRE before the age of 30 years
old also supported our opinion. The decreasing soil N concentration portended the N limita-
tion appearing during the development process of the plantation, which was demonstrated
further by the lower N:P ratio of 14 in the fresh needles (Figure 2f).

The P concentrations in the fresh needles showed that the changing trend decreased
initially and then increased along the chronosequence of P. massoniana plantations. Lower
P concentrations of the fresh and senesced needles were observed in the 20-year-old planta-
tion. This case may be caused by the high demand for N in the early stage of plantations,
which inhibited the uptake of the P element to some degree. After the 20-year-old stage, the
demand for P increased rapidly with the further development of plantations. Generally, we
found a higher N:P ratio of 16 after the age of 30 years old in plantations (Figure 2f), which
indicated the appearance of a P limitation during this period. Based on the theory of the
plant nutrient utilisation hypothesis [19], we also observed that P. massoniana continually
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maintained the increasing PRE to relieve the P deficiency until the age of 30 years old.
However, the PRE began to decrease after the age 30 years old (Figure 3a).

Evidently, this study indicated that the NRE and PRE were contrary to our first
hypothesis. This phenomenon could be caused by the growth variations in P. massoniana
individuals at different ages. That is, NRE and PRE maintained the increasing trend until
the plantation age reached 30 years old, which also illustrated that the increasing nutrient
element resorption significantly improved the N and P concentrations of plants to promote
tree growth. After 30 years, the P. massoniana plantations had rich understory soil and a
developed root system, which could obtain more nutrients from the soil and reduce the
nutrient utilization from senesced needles (Table 1). Meanwhile, as an effect of the natural
closure of the canopy as the trees grew, the light intensity reaching the interior of the tree
canopy was reduced. This shade condition sped up the senescence of needles, which shed
from the tree earlier, shortening the time for nutrient transfer from the senesced leaves.
Hence, the reducing NRE and PRE appeared after 30 years in the P. massoniana plantations.

This case was confirmed by the growth rhythm of P. massoniana plantations. Accord-
ing to Table 1, the mean DBH of P. massoniana individuals increased quickly before the
30-year-old plantations, and then slowly. Meanwhile, the DBH increment quickly increased
until the 20-year-old plantation and tended to decrease gradually. Similar growth pat-
terns have been reported about P. sylvestris var. mongolica [23], Pinus tabulaeformis [37],
and Robinia pseudoacacia [43] along the chronosequence. Subsequently, the NRE and PRE
decreased with plantation development after the 30-year-old stage, and a growing number
of N and P elements in senesced needle were returned to the soil.

4.3. Interrelationship of Needle Nutrient Utilization, Stoichiometry, and Homeostasis

The C and N concentrations in fresh and senesced needles all increased along a
chronosequence (Figure 2a,b), which may have been caused by the accumulation of C
structural compounds as the trees grew. Generally, a higher C concentration in the needles
had a stronger self-protection ability [44], indicating that P. massoniana individuals obtained
a strong resistance with increasing stand age in the plantation systems. Simultaneously,
the increasing C concentration and C:N ratio in fresh needles could significantly improve
the vegetative growth of P. massoniana and the PRE (Table 3). Generally, higher N concen-
trations and N:P in the senesced needles improve litter decomposition rates and nutrient
release, which is helpful in enhancing soil nutrient availability and easing plant nutrient
limitation [21]. As shown in Figure 2f and Table 3, the N limitation disappeared after the
20-year-old plantations, and soil N concentrations also kept an increasing trend. Evidently,
the increasing NRE had a significant negative correlation with the senesced-needle N
concentration to conserve nutrients for tree growth with the development of P. massoniana
plantations, which was consistent with our second hypothesis.

The rapid growth of the young-aged trees requires more P for the composition of the
genetic material [45]. Once the soil P concentration is deficient, the plant has to transfer
the senesced needle P to a fresh needle [46]. Clearly, the above condition was consistent
with our results, which eventually led to an increase in the PRE (Figure 3a). In most cases,
the greater NuRE for plants is caused by soil nutrient deficiency [47]. In this study, the
same result was found, supported by the negative correlations between the PRE and soil
P and AP concentrations (Table 3). The change in the greater NRE and PRE before and
after the 20-year-old stage in P. massoniana plantations led to the decrease in NRE:PRE ratio,
respectively (Figure 3b), which also indicated that relatively more P from the senesced
needles was reused along the chronosequence. The above findings were in line with
the relative nutrient resorption hypothesis [48,49]. We also observed that P. massoniana
individuals, in fact, resorbed more N or P elements during the N− or P−limited stage
(Figure 2b,c). Generally, the increase in NRE and PRE in the fresh needle and the decreased
P and AP concentrations in the soil confirmed our second hypothesis.

In this research, (1/H)N:P and (1/H)P ranged from 0.25 to 0.75 across all the ages
of P. massoniana plantations (Figure 4c). Based on the homeostatic patterns, P. massoniana
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showed weak homeostasis in P concentration and N:P ratio across all the plantation ages,
indicating it had the same stoichiometric characteristic as most subtropical tree species [50].
However, a lower value of (1/H)N ranging from 0 to 0.25 was observed (Figure 4a), which
showed that the needle N concentration in P. massoniana plantations had stable nitrogenous
homeostasis. According to scholars’ previous reports, plants with stable stoichiometric
homeostasis have an efficient nutrient regulation ability when the soil nutrients do not
meet their growth needs, and they are obliged to regulate nutrient composition to store
nutrients [51,52]. P. massoniana is a fast-growing species in South China, and the rapid
biomass and volume increase must be supported by a stable nitrogen supply. The presence
of the lower N concentration in soil and the N limitation in fresh needles made plants
have to increase the NRE from the senesced needles, which was also consistent with the
increasing trend in the NRE before 30-year-old P. massoniana plantations. As a whole,
the relatively stable stoichiometric homeostasis is one of the adaptive strategies to cope
with heterogeneous habitats for plants [53], which could be realised by regulating nutrient
resorption from leaves [54].

4.4. Inspiration for P. massoniana Plantation Management

The analysis of the N:P and NRE:PRE ratios in needles and soil along the chronose-
quence of P. massoniana plantations indicated that tree growth might improve the transfer
from N to P limitation. Although the P concentration in soil decreased, the PRE maintained
an increasing trend along the chronosequence. These results also implied that P. massoniana
had a certain tolerance to low-P habitats in the earlier stage of the plantation, and a similar
characteristic has been reported previously [55]. The soil nutrient concentration was low
owing to the thin solum and serious leaching in most of Southern China, particularly N
and P deficiency. Therefore, N and P limitations usually occur in artificial forest ecosys-
tems. Similar results have been found in other forests or plantations, such as C. lanceolata
plantations limited by N and P [2], Metasequoia glyptostroboides forests limited by P [56], and
Eucalyptus plantations limited by P [57]. Evidently, N and P supplements should also be
vital for not only younger but also older plantations. Therefore, introducing mixed tree
species will be an effective way to alleviate nutrient demand conflict with the increasing age
of artificial plantations. For example, introducing N-fixing tree species improved nitrogen
absorption on Eucalyptus plantations [58], and the mixed-species tree plantations could
significantly ease or eliminate P limitation in some forest ecosystems [59]. Certainly, the
suitable tree species for mixing with P. massoniana still require further research in the future.
Certainly, efficient fertilisation management strategies could also supply the appropriate
means to alleviate nutrient limitations in timber forests.

5. Conclusions

In summary, our results found that a synergic relationship between leaf litter and
soil in P. massoniana plantations. The significant differences in tree nutrient components at
different ages suggested that their ecological stoichiometry and nutrient resorption may be
flexible. The soil organic C concentration increased with the increasing age of P. massoniana
plantations, whereas their N and P concentrations presented the opposite fluctuation trend.
Generally, the nutrient element accumulation of fresh and senesced needles increased along
the chronosequence. N and P limitation existed in P. massoniana plantations before the age
of 20 years old and after 30 years old, respectively. The patterns of NRE and PRE initially
increased and then decreased along the chronosequence of P. massoniana plantations, indi-
cating the increasing nutrient element resorption could promote tree growth. The weak
stoichiometric homeostasis would improve nutrient utilization during the development
process of P. massoniana plantations. To ease nutrient limitation, introducing suitable tree
species for mixing with P. massoniana should be advocated to realise the more effective
cultivation of plantations.
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