Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Spatial Distribution Data
2.2. Phylogenetic Tree
2.3. Carbon Storage Data
2.4. Plant Diversity Metric Calculations
2.5. Statistical Analyses
2.6. Synergy Priorities for Biodiversity and Carbon Storage
2.7. Overlap Analysis of Synergy Priorities and Hotspots
2.8. Gap Analysis
3. Results
3.1. Relationships between Biodiversity Metrics and Carbon Storage
3.2. Priority Protection Areas
3.3. Overlap of Priority Protection Areas with Independent Hotspots for Biodiversity and Carbon Storage
3.4. Protection Gaps in Priority Protection Areas
4. Discussion
4.1. Priority Protection Areas of Biodiversity and Carbon Storage
4.2. Synergies and Trade-Offs between Biodiversity and Carbon Storage
4.3. Conservation Implication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, Y.; Midgley, G.F.; Archer, E.R.M.; Arneth, A.; Barnes, D.K.A.; Chan, L.; Hashimoto, S.; Hoegh-Guldberg, O.; Insarov, G.; Leadley, P.; et al. Actions to halt biodiversity loss generally benefit the climate. Glob. Chang. Biol. 2022, 28, 2846–2874. [Google Scholar] [CrossRef] [PubMed]
- De Vos, J.M.; Joppa, L.N.; Gittleman, J.L.; Stephens, P.R.; Pimm, S.L. Estimating the normal background rate of species extinction. Conserv. Biol. 2015, 29, 452–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Visconti, P.; Butchart, S.H.M.; Brooks, T.M.; Langhammer, P.F.; Marnewick, D.; Vergara, S.; Yanosky, A.; Watson, J.E.M. Protected area targets post-2020. Science 2019, 364, 239–241. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.S.; Akcakaya, H.R.; Andelman, S.J.; Bakarr, M.I.; Boitani, L.; Brooks, T.M.; Chanson, J.S.; Fishpool, L.D.; Da Fonseca, G.A.; Gaston, K.J.; et al. Global gap analysis: Priority regions for expanding the global protected-area network. BioScience 2004, 54, 1092–1100. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Dudley, N.; Segan, D.B.; Hockings, M. The performance and potential of protected areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef]
- Venter, O.; Koh, L.P. Reducing emissions from deforestation and forest degradation (REDD+): Game changer or just another quick fix? Ann. N. Y. Acad. Sci. 2012, 1249, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Midgley, G.F.; Bond, W.J.; Kapos, V.; Ravilious, C.; Scharlemann, J.P.; Woodward, F.I. Terrestrial carbon stocks and biodiversity: Key knowledge gaps and some policy implications. Curr. Opin. Environ. Sustain. 2010, 2, 264–270. [Google Scholar] [CrossRef]
- Di Marco, M.; Watson, J.E.M.; Currie, D.J.; Possingham, H.P.; Venteret, O. The extent and predictability of the biodiversity-carbon correlation. Ecol. Lett. 2018, 21, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girardello, M.; Santangeli, A.; Mori, E.; Chapman, A.; Fattorini, S.; Naidoo, R.; Bertolino, S.; Svenning, J.C. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 2019, 9, 5636. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.D.; Anderson, B.J.; Moilanen, A.; Eigenbrod, F.; Heinemeyer, A.; Quaife, T.; Roy, D.B.; Gillings, S.; Armsworth, P.R.; Gaston, K.J. Reconciling biodiversity and carbon conservation. Ecol. Lett. 2013, 16, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reside, A.E.; VanDerWal, J.; Moran, C. Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biol. Conserv. 2017, 207, 9–16. [Google Scholar] [CrossRef]
- Ferreira, J.; Lennox, G.D.; Gardner, T.A.; Thomson, J.R.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Aragão, L.E.O.C.; Ferraz, S.F.B.; Louzada, J.; et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Chang. 2018, 8, 744–749. [Google Scholar] [CrossRef] [Green Version]
- Carwardine, J.; Hawkins, C.; Polglase, P.; Possingham, H.P.; Reeson, A.; Renwick, A.R.; Watts, M.; Martin, T.G. Spatial priorities for restoring biodiverse carbon forests. BioScience 2015, 65, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Bryan, B.A.; Runting, R.K.; Capon, T.; Perring, M.P.; Cunningham, S.C.; Kragt, M.E.; Nolan, M.; Law, E.A.; Renwick, A.R.; Eber, S.; et al. Designer policy for carbon and biodiversity co-benefits under global change. Nat. Clim. Chang. 2016, 6, 301–305. [Google Scholar] [CrossRef]
- Sabatini, F.M.; de Andrade, R.B.; Paillet, Y.; Ódor, P.; Bouget, C.; Campagnaro, T.; Gosselin, F.; Janssen, P.; Mattioli, W.; Nascimbene, J.; et al. Trade-offs between carbon stocks and biodiversity in European temperate forests. Glob. Chang. Biol. 2019, 25, 536–548. [Google Scholar] [CrossRef] [Green Version]
- Soto-Navarro, C.; Ravilious, C.; Arnell, A.; De Lamo, X.; Harfoot, M.; Hill, S.L.L.; Wearn, O.R.; Santoro, M.; Bouvet, A.; Mermoz, S.; et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 2020, 375, 20190128. [Google Scholar] [CrossRef] [Green Version]
- Strassburg, B.B.; Kelly, A.; Balmford, A.; Davies, R.G.; Gibbs, H.K.; Lovett, A.; Miles, L.; Orme, C.D.L.; Price, J.; Turner, R.K.; et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 2010, 3, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Zimmer, M.; Ahmed, I.; Donato, D.; Kanzaki, M.; Xu, M. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nat. Commun. 2021, 12, 3875. [Google Scholar] [CrossRef]
- Luintel, H.; Scheller, R.M.; Bluffstone, R.A. Assessments of biodiversity, carbon, and their relationships in Nepalese forest commons: Implications for global climate initiatives. For. Sci. 2018, 64, 418–428. [Google Scholar] [CrossRef]
- Jung, M.; Arnell, A.; de Lamo, X.; García-Rangel, S.; Lewis, M.; Mark, J.; Merow, C.; Miles, L.; Ondo, I.; Pironon, S.; et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 2021, 5, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Hughes, A.C.; Zhao, X.-Q.; Zhou, L.-J.; Ma, K.-P.; Shen, X.-L.; Li, S.; Liu, M.-Z.; Xu, W.-B.; Watson, J.E.M. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 2021, 7, eabe4261. [Google Scholar] [CrossRef]
- Jenkins, C.N.; Pimm, S.L.; Joppa, L.N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, E2602–E2610. [Google Scholar] [CrossRef] [Green Version]
- Mazel, F.; Guilhaumon, F.; Mouquet, N.; Devictor, V.; Gravel, D.; Renaud, J.; Cianciaruso, M.V.; Loyola, R.; Diniz-Filho, J.A.F.; Mouillot, D.; et al. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 2014, 23, 836–847. [Google Scholar] [CrossRef] [Green Version]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Rosauer, D.; Laffan, S.W.; Crisp, M.D.; Donnellan, S.C.; Cook, L.G. Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 2009, 18, 4061–4072. [Google Scholar] [CrossRef]
- Isaac, N.J.; Turvey, S.T.; Collen, B.; Waterman, C.; Baillie, J.E. Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE 2007, 2, e296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faith, D.P. Topics in Biodiversity and Conservation. In Biodiversity Conservation and Phylogenetic Systematics; Hawksworth, D.L., Chaurasia, A., Eds.; Springer: Berlin, Germany, 2016; Volume 14, pp. 39–56. [Google Scholar]
- Daru, B.H.; le Roux, P.; Gopalraj, J.; Park, D.S.; Holt, B.G.; Greve, M. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 2019, 28, 757–766. [Google Scholar] [CrossRef]
- Fritz, S.A.; Purvis, A. Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 2010, 24, 1042–1051. [Google Scholar] [CrossRef]
- Davies, T.J.; Yessoufou, K. Revisiting the impacts of non-random extinction on the tree-of-life. Biol. Lett. 2013, 9, 20130343. [Google Scholar] [CrossRef]
- Brum, F.T.; Graham, C.H.; Costa, G.C.; Hedges, S.B.; Penone, C.; Radeloff, V.C.; Rondinini, C.; Loyola, R.; Davidson, A.D. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. USA 2017, 114, 7641–7646. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.D.; Aden, N.T. Global carbon emissions in the coming decades: The case of China. Annu. Rev. Environ. Resour. 2008, 33, 19–38. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Chuai, X.; Xie, F.; Yang, F.; Gao, R.; Ji, X. Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change. Land. Use Policy 2021, 102, 105275. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lu, Q.; Zhang, M.; Zhao, R.; Lu, J. Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Shen, W.; Shi, Y.; Zhang, H. Carbon storage in vegetation and soil in Chinese ecosystems estimated by carbon transfer rate method. Ecosphere 2021, 12, e03341. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 860–895. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.-M.; Mao, L.-F.; Yang, T.; Ye, J.-F.; Liu, B.; Li, H.-L.; Sun, M.; Miller, J.T.; Mathews, S.; Hu, H.-H.; et al. Evolutionary history of the angiosperm flora of China. Nature 2018, 554, 234–238. [Google Scholar] [CrossRef]
- Jin, Y.; Qian, H.V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 2019, 42, 1353–1359. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Brown, J.W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018, 105, 302–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B.; et al. Three keys to the radiation of angiosperms into freezing environments. Nature 2014, 506, 89–92. [Google Scholar] [CrossRef]
- Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 2020, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [Green Version]
- Guerin, G.R.; Lowe, A.J. Mapping phylogenetic endemism in R using georeferenced branch extents. SoftwareX 2015, 3, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Cadotte, M.W.; Davies, T.J. Rarest of the rare: Advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers. Distrib. 2010, 16, 376–385. [Google Scholar] [CrossRef]
- Lehtomäki, J.; Moilanen, A. Methods and workflow for spatial conservation prioritization using Zonation. Environ. Modell. Softw. 2013, 47, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, G.M.; Donald, P.F.; Butchart, S.H.M. Identifying priority areas for conservation: A global assessment for forest-dependent birds. PLoS ONE 2011, 6, e29080. [Google Scholar] [CrossRef] [PubMed]
- Siikamäki, J.; Newbold, S.C. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation. Ambio 2012, 41, 78–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoli, G.D.; Wells, P.L.; Meijaard, E.; Struebig, M.J.; Marshall, A.J.; Obidzinski, K.; Tan, A.; Rafiastanto, A.; Yaap, B.; Ferry Slik, J.W.; et al. Biodiversity conservation in the REDD. Carbon Balance Manag. 2010, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, J.P.; Grenyer, R.; Wunder, S.; Raes, N.; Jones, J.P.G. Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia. Conserv. Biol. 2015, 29, 1434–1445. [Google Scholar] [CrossRef] [Green Version]
- Beaudrot, L.; Kroetz, K.; Alvarez-Loayza, P.; Amaral, I.; Breuer, T.; Fletcher, C.; Jansen, P.A.; Kenfack, D.; Lima, M.G.M.; Marshall, A.R.; et al. Limited carbon and biodiversity co-benefits for tropical forest mammals and birds. Ecol. Appl. 2016, 26, 1098–1111. [Google Scholar] [CrossRef]
- Armenteras, D.; Rodríguez, N.; Retana, J. National and regional relationships of carbon storage and tropical biodiversity. Biol. Conserv. 2015, 192, 378–386. [Google Scholar] [CrossRef]
- Agrawal, A.; Nepstad, D.; Chhatre, A. Reducing emissions from deforestation and forest degradation. Annu. Rev. Environ. Resour. 2011, 36, 373–396. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, E.; Ferreira, J.; Gardner, T.A.; Aragão, L.E.O.C.; De Camargo, P.B.; Cerri, C.E.; Durigan, M.; De Oliveira, R.C.; Vieira, I.C.G.; Barlow, J. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 2014, 20, 3713–3726. [Google Scholar] [CrossRef] [Green Version]
- Guizar-Coutiño, A.; Jones, J.P.G.; Balmford, A.; Carmenta, R.; Coomes, D.A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. 2022, 36, e13970. [Google Scholar] [CrossRef]
- Harvey, C.A.; Dickson, B.; Kormos, C. Opportunities for achieving biodiversity conservation through REDD. Conserv. Lett. 2010, 3, 53–61. [Google Scholar] [CrossRef]
- Phelps, J.; Webb, E.L.; Adams, W.M. Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nat. Clim. Chang. 2012, 2, 497–503. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Hulvey, K.B.; Hobbs, R.J.; Colyvan, M.; Felton, A.; Possingham, H.; Steffen, W.; Wilson, K.; Youngentob, K.; Gibbons, P. Avoiding bio-perversity from carbon sequestration solutions. Conserv. Lett. 2012, 5, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Gardner, T.A.; Burgess, N.D.; Aguilar-Amuchastegui, N.; Barlow, J.; Berenguer, E.; Clements, T.; Danielsen, F.; Ferreira, J.; Foden, W.; Kapos, V.; et al. A framework for integrating biodiversity concerns into national REDD+ programmes. Biol. Conserv. 2012, 154, 61–71. [Google Scholar] [CrossRef]
- Jones, K.B.; Zurlini, G.; Kienast, F.; Petrosillo, I.; Edwards, T.; Wade, T.G.; Li, B.-L.; Zaccarelli, N. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc. Ecol. 2013, 28, 1175–1192. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SR | PD | PE | ED | Carbon Storage | |
---|---|---|---|---|---|
PD | 0.970 *** | ||||
PE | 0.711 *** | 0.704 *** | |||
ED | 0.988 *** | 0.981 *** | 0.767 *** | ||
Carbon storage | 0.190 *** | 0.186 *** | 0.082 *** | 0.170 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.; Dong, Y.; Mao, L. Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China. Forests 2023, 14, 621. https://doi.org/10.3390/f14030621
Tang C, Dong Y, Mao L. Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China. Forests. 2023; 14(3):621. https://doi.org/10.3390/f14030621
Chicago/Turabian StyleTang, Chaohe, Yuran Dong, and Lingfeng Mao. 2023. "Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China" Forests 14, no. 3: 621. https://doi.org/10.3390/f14030621
APA StyleTang, C., Dong, Y., & Mao, L. (2023). Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China. Forests, 14(3), 621. https://doi.org/10.3390/f14030621