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Abstract: Currently, 3D tree modeling in a highly heterogeneous forest environment remains a signif-
icant challenge for the modeler. Previous research has only focused on morphological characteristics
and parameters, overlooking the impact of micro-environmental factors (e.g., spatial-structural diver-
sification and habitat heterogeneity) and providing less structural information about the individual
tree and decreasing the applicability and authenticity of 3D tree models in a virtual forest. In this
paper, we chose a mixed-forest conversion of Chinese fir (Cunninghamia lanceolata) plantations in a
subtropical region of China as our study subject and proposed a novel 3D tree-modeling method
based on a structural unit (TMSU). Our approach modified traditional rule-based tree modeling (RTM)
by introducing a nonlinear mixed-effect model (NLME) to study the coupling response between the
spatial structures and morphological characteristics (e.g., tree height (H), height-to-crown base (HCB),
and crown width (CW)) of three dominant trees (e.g., Cunninghamia lanceolata (SM), Machilus pauhoi
(BHN), and Schima superba (MH)) and develop a prediction model of the morphological characteristic
by incorporating forest-based structural parameters. The results showed that: (1) The NLME model
in TMSU was found to better fit the data and predict the morphological characteristics than the
OLS model in RTM. As compared to the RTM morphological model, the prediction accuracy of the
TMSU model of morphological features was improved by 10.4%, 3.02%, and 17.8%, for SM’s H, HCB,
and CW, respectively; 6.5%, 7.6%, and 8.9% for BHN’s H, HCB, and CW, respectively; and 13.3%,
15.7%, and 13.4% for MH’s H, HCB, and CW, respectively. (2) The spatial-structural parameters of
crowding (Ci), mingling (Mi), and dominance (Ui) had a significant impact on the morphological
characteristics of SM, BHN, and MH in TMSU. The degree of crowding, for example, had a positive
relationship with tree height, height-to-crown base, and crown width in SM, BHN, and MH; under
the same crowding conditions, mingling was positively correlated with tree crown width in SM, and
dominance was positively correlated with tree height but negatively correlated with height-to-crown
base in BHN; under the same crowding and mingling, dominance was positively correlated with
height-to-crown base in MH. (3) Using 25 scenes based on the value class of Ci, Mi for SM, 25 scenes
based on the value class of Ci, Ui for BHN, and 125 scenes based on the value class of Ci, Mi, Ui for
MH, we generated the model libraries for the three dominating species based on TMSU. As a result,
our TSMU method outperformed the traditional 3D tree-modeling method RTM in a complex and
highly heterogeneous spatial structure of a forest stand, and it provided more information concerning
the spatial structure based on the neighborhood relationships than the simple morphological charac-
teristics; a higher morphological prediction accuracy with fewer parameters; and the relationship
between the spatial-structural parameters and the morphological characteristics of a reference tree.

Keywords: tree modeling; spatial structure; heterogeneous conversion forest; morphological charac-
teristics model
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1. Introduction

The current 3D tree-modeling methods, such as those based on LIDAR point-cloud
data and RGB-D images, have high precision but are costly and computationally inten-
sive [1–3]. Furthermore, it is not appropriate to reconstruct 3D tree models in a dense and
highly heterogeneous forest stand because there is insufficient space to obtain sufficient
data. Therefore, 3D tree modeling, based on forestry rules, provides a set of generative rules
to create plant organs iteratively, though it requires expertise in botany to manually adjust
the many parameters in order to model a specific tree [4]. This method has proven to be an
effective and popular method for virtual forest reconstruction [5,6]. For example, functional–
structural plant models (FSPMs) require specific parameters to model a tree, such as tree
height, diameter at breast height, crown width, and height-to-crown base [7]. Therefore,
rule-based tree modeling can be easily controlled by modelers without a computer science
background [8]. However, the applicability of rule-based modeling is limited because it
is based on only a few parameters and overlooks the influence of micro-environmental
factors (e.g., spatial-structure diversification and habitat heterogeneity) in a complex and
changing forest ecosystem.

Exploring the coupling response between variables related to the spatial structure
and morphological characteristics is vital in 3D tree modeling based on a structural unit
in a highly heterogeneous forest environment. However, the current research has mostly
focused on the coupling responses between unilateral or incomplete characteristics of the
spatial structure and tree-crown attributes. For example, researchers suggested that when
mixed with other species, the reference tree changed the typical structural attributes of the
crown [9–12], such as branching patterns [10,13] and the general shape of the crown [11–14].
These changes could be attributed to the amount of light available, which is the most
important resource for which trees compete in a forest canopy [12–15]. Researchers discov-
ered that trees adjusted the shapes and sizes of their crowns in response to competition
with their neighbors under different spatial-structure conditions [16], such as in crowded
conditions [17,18]. With the rapid application of airborne laser-scanning techniques, more
studies are being conducted at the individual tree level and in a more intelligent direction.
For example, Pommerening et al. (2021) introduced the CanopyShotNoise model to analyze
the response of the canopy pattern under different forest conditions [19]. Fischer et al.
(2020) proposed a new simulation-based approach, the canopy constructor, to quantify the
forest structure and infer the allometric-scaling relationship in a crowded environment [20].

Morphological models, such as height–diameter, crown width–diameter, and height-
to-crown base height–diameter, are critical components of rule-based 3D tree modeling. The
prediction accuracy of a model significantly influences the applicability and authenticity
of 3D tree models in a virtual forest. Traditional morphological models have adopted the
ordinary least squares (OLS) regression for the simple form and its variables. However,
the morphological data from many sample plots have hierarchical structures and may
be correlated, which has resulted in biased estimations of the variance of the morpho-
logical parameters and invalidated the hypothesis when the parameter estimates were
analyzed [21,22]. Lately, the popularity and use of mixed-effect models have increased
in forestry and morphological modeling practices [23–25]. Researchers have suggested
that, as compared to OLS, the nonlinear mixed-effect model (NLME) was more reliable
due to its assumption of random and independent observations, as well as the presence of
autocorrelations [26–29].

Therefore, in order to model 3D trees in a spatially diverse and heterogeneous forest
environment, we chose a mixed forest of Chinese fir (Cunninghamia lanceolata) as our
subject, which was based on a typical mixed forest stand in a subtropical region of China.
The following two aspects were explored in this study: (1) to develop the morphological
characteristics (e.g., tree height, height-to-crown base, and crown width) of the model at
the individual tree level and with highly heterogeneous spatial structures by introducing
a NLME model and (2) to optimize the traditional rule-based 3D tree-modeling method
by incorporating individual parameters of spatial structures based on a small-scale forest
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stand in order to develop a new dominant species’ model library under heterogeneous
forest conditions.

2. Materials and Methods
2.1. Study Areas

Our study site was located in the ShanXia Forest Farm in Jiangxi Province in Southern
China (27◦44′45′′ N, 114◦39′15′′ E) (see Figure 1). The site has a mid-subtropical climate and
a mean annual temperature of 19.15 ◦C, with the highest temperature of 40.3 ◦C occurring
in June and July and the lowest temperature of−2.1 ◦C occurring in February. Furthermore,
annual precipitation totaled 1722.3 mm, with the majority of the precipitation falling in
April, May, and June. The annual photoperiod was 1657.4 h, with the longest photoperiod
occurring in July, August, September, and October and the shortest occurring in January
and February. The Chinese fir mixed plantations selected in this study were established in
1986 with an initial planting spacing of 1m × 1m. Thinning measures were taken when
the plantations were 13 years and 20 years old. The first thinning measure was to reduce
the intraspecific competition for resource by increasing the growth space and the second
thinning measure was to fell the low-quality trees and replant broadleaved trees, such
as Machilus pauhoi and Schima superba, which are high-value, fire-resistant trees. During
the development of the mixed plantations, some Chinese firs died, allowing companion
species or generations to develop in natural succession, such as Vernicia fordii, Liquidambar
formosana Hance, Paulowinia fortune, Sapium discolorr, Castanopsis fargesii, etc.
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Figure 1. Location of our study site in a subtropical area of China. Notes: the pink area in the left
map represents the study region at ShanXia Forest Farm; colorful points in the right map represent
different tree species in the study site.

2.2. Data Collection

The data was acquired from 5 ha sample plots of a planted mixed forest dominated
by Cunninghamia lanceolata, Machilus pauhoi, and Schima superba in March and April 2022
(Figure 2). To accurately locate the trees, the plot was divided into 10 subplots of 100 m
× 50 m each (Figure 2). Tree height (H), height-to-crown base (HCB), diameter at breast
height (DBH), and crown width (CW) were measured for all trees with a diameter at breast
height of (DBH) ≥ 5 cm, and their locations were recorded using a total station (TOPCON-
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GTS-602AF). Crown width was computed as the arithmetic mean of two crown widths
obtained from measurements of four crown radii, representing two azimuths [30]. The first
azimuth was defined as the direction from the subject tree to the center of the measurement
plot; the second azimuth was perpendicular to the first. In each quadrant, the crown radii
were measured as the horizontal distance from the center of the tree bole to the greatest
extent of the crown from the bole. The branch tip was located by vertical sighting with
a clinometer [31]. Figure 2 depicts a distribution map of the tree species, and each tree
population was assigned three layer classes, based on tree height, to select the dominant
trees: upper layer trees were H ≥ 20 m; middle layer trees were 10 m ≤ H < 20 m; and
lower layer trees were 1.3 m ≤ H < 10 m.
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Figure 2. Spatial distribution of eight dominant tree populations at different layers in 5 ha (50 m ×
100 m) planted mixed forest in Shanxia Forest Farm. The upper layer tree was tree height (H) > 20 m;
the middle layer tree was 10 m ≤ H <20 m; and the lower layer tree was 1.3 m ≤ H < 10 m. Different
sizes of circles represent the layers in the forest, where the large-size circle is the upper layer and the
middle-size circle is the middle layer, and the small-size circle is the lower layer in the mixed forest.

To eliminate edge effects and improve the accuracy of the spatial-structure parameters
(SSP), we established a 5 m buffer zone around the plot. In the statistical analysis, only the
trees in the reduced window (X, Y) = (300 m × 200 m, except (0 m–100 m, 0–50), (200 m–300
m, 0 m–50 m)) were used as reference trees, and the individual trees in the buffer zone were
only considered to be the nearest neighbors of the trees in the reduced window [32]. This
edge correction enabled the individual evaluation of each tree to determine whether all
n-nearest-neighbors were actually located within the plot.

2.3. Data Analysis
2.3.1. Identification of Dominant Populations for 3D Tree Modeling by the Important
Value Index

The importance value (IV) of a species was defined as the average of its relative
density (RD), relative frequency (RF), and relative dominance (Rd) and was calculated
using the quadratic method [33] for each layer of the planted mixed forest. A total of 32
tree species belonging to 30 genera and 21 families were identified in the planted mixed
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forest. The total stand density (DBH ≥ 5 cm) was nearly 996.8 trees/ha, with a total basal
area of 161.2 m2/ha. Table 1 shows the IVs of the forest’s eight dominant tree populations.
Cunninghamia lanceolata, Machilus pauhoi, and Schima superba accounted for 88.24% of the
total stand density, and their IVs were clearly superior to those of the other tree species in
different stand layers. As a result, they were identified as the dominant populations in the
forest for 3D tree modeling (Table 1).

Table 1. IV and characteristics of eight dominant tree populations in the planted mixed forest.

Species

Density IV (%) Stand Characteristics

(Trees ha−1) Upper
Layer

Median
Layer

Lower
Layer All DBH Height Basal

Area
Dominant
Height

(cm) (m) (m2) (m)

Cunninghamia
lanceolata

(Lamb.) Hook.
273.0 14.57 ± 7.14 15.13 ± 5.19 3.28 ± 1.86 17.18 ± 3.74 24.86 ± 8.91 16.50 ± 5.40 80.83 26.8

Machilus pauhoi
Kanehira 252.6 2.53 ± 1.68 10.38 ± 2.73 7.04 ± 3.13 11.13 ± 3.44 13.82 ± 8.25 10.63 ± 3.83 25.72 23.5

Schima superba
Gardn. et
Champ.

259.0 1.21 ± 1.25 12.78 ± 4.21 4.32 ± 1.88 12.39 ± 4.39 15.32 ± 7.02 11.85 ± 3.55 27.67 23.4

Osmanthus
fragrans

(Thunb.) Lour.
62.0 0.00 ± 0.00 0.00 ± 0.00 1.82 ± 3.56 1.65 ± 2.94 10.37 ± 3.31 5.74 ± 1.12 2.88 8.2

Machelia figo
(Lour.) Spreng. 48.0 0.07 ± 0.21 0.81 ± 0.90 1.12 ± 1.35 1.59 ± 1.60 13.69 ± 8.03 9.30 ± 3.76 4.36 18.8

Vernicia fordii
(Hemsl.) Airy

Shaw
35.6 0.21 ± 0.55 1.34 ± 1.23 0.41 ± 0.74 1.52 ± 1.65 22.60 ± 9.47 14.21 ± 3.40 7.54 21.1

Liquidambar
formosana

Hance
27.0 0.03 ± 0.09 0.63 ± 0.90 0.74 ± 0.86 1.24 ± 1.43 16.26 ± 7.63 12.19 ± 3.45 3.01 18.2

Sapium discolor
(Champ. ex

Benth.) Muell.
Arg.

21.8 0.00 ± 0.00 0.91 ± 1.76 0.13 ± 0.40 0.74 ± 1.21 22.22 ± 7.83 13.33 ± 1.92 4.21 15.4

Notes: IVs, DBH, and Height are mean ± SD; the upper layer was tree height (H) ≥ 20 m; the middle layer was
10 m ≤ tree height (H) < 20 m; and the lower layer was 1.3 m tree height (H) < 10 m.

2.3.2. Nonlinear Mixed-Effect Morphological Model of Three Predominant Trees

(1) Base morphological model selection.
In this paper, we chose 16 H~DBH models, 5 HCB~H and DBH models, and 11

CW~DBH models from the literature for appraisal as the base models [27,28,34,35]. These
candidate base models were fitted to the 10 plot data (5 ha) using nonlinear least squares
regression. The three statistical variables (e.g., coefficient of determination (R2), mean error
(E), root-mean-squared error (RMSE)) were used to evaluate the performance of the base
models (see Figure 3). The H, HCB, and CW base models evaluated in this study are shown
in Table 2.
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Figure 3. Schematic diagram showing the nonlinear mixed-effect morphological model with spatial-
structure parameters (SSP). It includes three steps of morphological construction based on SSP and
NLME, evaluation index, and variance-stabilizing functions. The first step is the selection of the base
morphological models of SM, BHN, and MH; the second step is the selection of the morphological
model with spatial-structure parameters (SSP); and the third step is the construction of the nonlinear
mixed-effect of SM, BHN, and MH. SM, BHN, and MH represent Cunninghamia lanceolata, Machilus
pauhoi, and Schima superba, respectively.
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Table 2. Base model selection: H is the total tree height (m), DBH is the diameter at breast height (cm),
HCB is the height-to-crown base (m), and CW is the crown width (m); a, b, and c are the parameters
of the model. M1~M32 represents the formulae of the morphological characteristic models.

Model Formula Model Form Model Formula Model Form

M1 H~1.3 + DBH2/(a∗DBH + b)2 Naslund M17 HCB~H/(1 + exp(a + b∗DBH)) Walters

M2 H~1.3 + a∗DBH/(1 + DBH)b Curtis M18 HCB~H/(1 + exp(a + b∗DBH))1/2 Rijal 1

M3 H~1.3 + a∗exp(−b/DBH) Schumacher M19 HCB~H/(1 + exp(a + b∗DBH))1/6 Rijal 2

M4 H~1.3 + a∗(1 − exp(−b∗DBH)) Meyer M20 HCB~H/(a + exp(−b∗DBH)) Popoola

M5 H~1.3 + a∗DBHb Power M21 HCB~H/(1 − a∗exp(−b∗DBH)) Rijal 3

M6 H~1.3 + a∗DBH/(b + DBH) Michaelis-Menten M22 CW~a + b∗DBH Linear

M7 H~1.3 + exp(a − b/(DBH + 1)) Wykoff M23 CW~a + b∗DBH + c∗DBH2 Quadratic

M8 H~1.3 + a∗((1 − exp(-b∗DBH))) Chapman–Richards M24 CW~a∗DBHb Power

M9 H~1.3 + DBH2/(a∗DBH2 + b∗DBH + c) Prodan M25 CW~a∗(1−exp(−b∗DBH)) Monomolecular

M10 H~1.3 + a/(1 + b∗exp(−c∗DBH)) logistic M26 CW~(DBH/(a + b∗DBH))2 Hossfeld I

M11 H~1.3 + a∗(1-exp(−b∗DBHc)) Weibull M27 CW~a∗(b)DBH Compound

M12 H~1.3 + a∗exp(−b∗exp(−c∗DBH)) Gomperz M28 CW~exp(a + b∗DBH) Growth

M13 H~1.3 + a∗DBH(b∗DBH−c) Sibbesen M29 CW~a∗exp(b∗DBH) Exponential

M14 H~1.3 + a∗exp(−b∗DBH−c) Korf M30 CW~a∗(1 − exp(−b∗DBH)) Richards

M15 H~1.3 + a∗exp(−b/(DBH + c)) Ratkowsky M31 CW~a/(1 + b∗exp(−c∗DBH)) Logistic

M16 H~1.3 + a/(1 + 1/(b∗DBHc)) Hossfeld IV M32 CW~a∗(1 − exp(−b∗DBH)) Weibull

(2) Additional predictor variables.
A structural unit was defined as a neighborhood consisting of a focal tree and its

four nearest neighbors [36]. In a mixed forest, tree size (DBH or crown), tree crowding,
tree species, and tree distribution in space were used to describe any structural unit syn-
chronously. These variables were easily expressed by a set of structural stand parameters:
Wi, Mi, Ci, and Ui [37,38]. Therefore, there were 16 different combinations of Wi, Mi, Ci,
and Ui for selecting the best performing model according to two rules: higher prediction
accuracy and lower computational cost (see Figure 3).

Wi =
1
n∑n

j=1 Zij, Zij =

{
1, i f α− angle is smaller than α0
0, otherwise

(1)

where Wi is defined as the proportion of angles α smaller than the standard angle α0 (72◦)
and reflects the degree of uniformity of tree distribution.

Mi =
1
n∑n

j=1 Vij, Vij =

{
1, i f neighbor j is not the same species as re f erence tree i
0, otherwise

(2)

where Mi is defined as the proportion of the four nearest neighbors that are of a different
species than reference tree i, and it reflects the spatial segregation of different species in a
multispecies forest.

Ui =
1
n∑n

j=1 Kij, Kij =

{
0, i f neighbor j is smaller than re f erence tree i

1, otherwise
(3)

where Ui is defined as the degree of DBH differentiation in this paper and represents the
relationship between the size of the reference tree i and its four nearest neighbors.

Ci =
1
n∑n

j=1 Pij, Pij =


1, i f average crowns o f neighbor j and re f erence tree i

is smaller than that o f re f erence i
0, otherwise

(4)

where Ci reflects the relationship between the canopy of the reference tree i and its four
nearest neighbors and can reveal the degree of crowding of the reference tree i.
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(3) Construction of mixed-effect morphological model.
We have incorporated the fixed effects for all parameters in the morphological char-

acteristics models and compared different combinations of all parameters with random
effects in the model to identify the parameters that needed to be included, according to
the value of the Akaike information criteria (AIC) and Schwarz’s Bayesian information
criterion (BIC), which were the main criteria for evaluating the fitting performance. In
order to solve the problem of heteroscedasticity in the morphological models, we used
three typical variance-stabilizing functions (e.g., exponential function, power function, and
constant-plus-power function) (4–6) (Figure 3) and selected the best-performing function
based on the AIC and the log-likelihood (Loglik) values (see Figure 3).

The graphic exploration and correlational analysis were used for evaluation of the
contributions of the covariate predictors to the H, HCB, and CW models. All analyses were
conducted using R, version 4.1.2. The best-performing model was selected to include addi-
tional covariate predictors for formulations of the H, HCB, and CW mixed-effect models.

(4) Assessment and analysis of morphological models
The main differences between rule-based tree modeling (RTM) and 3D tree modeling

based on a structural unit (TMSU) were the morphological models’ parameter-estimation
model and whether the tree modeling considered the spatial structure. In general, the pa-
rameter estimation in a traditional morphological model in RTM was based on the ordinary
least squares (OLS) model, whereas in TMSU, it was based on a nonlinear mixed-effect
model (NLME). In order to validate the feasibility and superiority of the morphological
models in TMSU for 3D tree modeling, statistics (R2, E, RMSE) and a residual plot of
three dominant tree-based morphological models were applied to assess and analyze the
morphological models based on OLS and NLME.

2.3.2.1. 3D Tree Modeling Based on a Structural Unit

Rule-based tree modeling (RTM) employs morphological parameters, such as H, HCB,
DBH, and CW, to reconstruct a reference tree i. However, ignoring the influence of spatial
structure on reference tree i at a small scale would result in a decrease in the quality of 3D
tree modeling and the reality of a virtual forest in forest visualization applications. Our
research proposed a new method of 3D tree modeling based on a structural unit (TMSU)
that incorporated structural forest theory into 3D tree modeling and achieved 3D tree
modeling at the individual tree level with few parameters (see Figure 4). A nonlinear
mixed-effect model was introduced in this study to improve the prediction accuracy of the
morphological characteristics and parameters (e.g., H, HCB, CW) by avoiding the random
effect from the plot and increasing the applicability of the method by reducing the time
and computational demand. Based on the predicted morphological data, we reconstructed
a 3D tree model with our Creating Tree System (CTS) [39–42], which was developed by the
Institute of Forest Resource Information Techniques of the Chinese Academy of Forestry
(CAF). The CTS used in this study was based on an improved IFS algorithm [43], and it
provided a graphical user interface, 3D visualization tools, and a python scripting interface,
as well as the ability to create 3D tree models by selecting the tree species and inputting the
H, HCB, DBH, and CW parameters.
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3. Results
3.1. Three-Dimensional Tree Morphological Model Development at the Individual Tree Level

(1) Function selection.
Table 2 displays the fit statistics of the functions. Although the evaluation indices for all

the functions were nearly identical, M6
(
Chapman− Richard for SM and BHN′s H−D

)
,

M5 (Power for MH’s H−D), M17 (Walters for SM, BHN, and MH’s HCB−D), M31(Logistic
for SM and BHN’s CW−D), and M24 (Power for MH’s CW−D) performed slightly better
with the fewest parameters. As a result, these functions were chosen as the basic nonlinear
model for building the morphological model.

Morphological models of the three predominant trees were the following:
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morphological variation and, thus, were included in Equations (5-13). The following was 

the final base model used to build the morphological variation mixed-effect model: 

where Hij, Dij, HCBij, CWij are the height (m), the diameter at breast height (cm), the height-
to-crown base (m), and the crown width (m) of tree i in the plot j; a, b, and c are the formal
parameters; and εij is an error term.

(2) Incorporating additional predictor variables.
We tested 16 different combinations of Wi, Mi, Ci, and Ui to select the variables

that made a significant contribution to the variation of the morphological characteristic
(H, HCB, CW) in order to determine the influence of the spatial structure of individual
trees. The statistical results showed that Ci, Mi, and Ui were strongly correlated with the
morphological variation and, thus, were included in Equations (5)–(13). The following was
the final base model used to build the morphological variation mixed-effect model:
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𝐻𝐶𝐵𝑖𝑗
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MH: 𝐻𝑖𝑗 = 1.3 + (𝛽1 + 𝑢1𝑗 + 𝛽3 ∗ 𝑀𝑖 + 𝛽4 ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗
𝛽2 + ε𝑖𝑗  (29) 

       𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 (𝛽1 + 𝑢1𝑗 + (𝛽2 ∗ 𝑀𝑖 + 𝛽3 ∗ 𝐶𝑖 + 𝛽4 ∗ 𝑈𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (30) 
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where β1 − β5  are mixed-effect parameters; u1j, u2j, u3j,  and u4j  are random-effect pa-

rameters generated by the plot on β1, β2, β3, β4, respectively; and εij is an error term. 

(4) Within-plot variance–covariance (R) structure 

Because our data did not show spatial autocorrelations, we assumed the matrix of 

the within-plot error autocorrelation was an identity matrix. However, we found heter-

oscedasticity in our preliminary analysis even after the random effects were included in 

the morphological model with SSP. We then evaluated three variance functions for their 

heteroscedasticity-reducing performances. The results showed that Equation (24), Equa-

tion (27), Equation (28), Equation (29), Equation (30), and Equation (31) produced signif-

icantly different results than the models without variance functions, whereas Equation 

(23), Equation (25), and Equation (26) did not. According to the AIC and Loglik values, 

the power variance function and constant power variance function performed the best 

where Hij, Dij, HCBij, CWij are the height (m), the diameter at breast height (cm), the height-
to-crown base (m), and the crown width (m) of tree i in the plot j; a, b, and c are the formal
parameters; Ci, Mi, and Ui are the degree of crowding, mingling, and dominance of the
reference tree i base on structural unit; and εij is an error term.

(3) Constructing mixed-effect model with parameters for the spatial structure.
After considering the model parameters (a, b, c, d, e) involved, there were seven

different combinations of random effects at the sample plot level for Equations (14), (15)
and (18), 15 different combinations for Equations (17), (19) and (20)–(22), and 31 different
combinations for Equation (16). When fitted to the data, only model alternatives 5, 6, and 10
converged in Equations (14)–(16), respectively; whereas 12, 6, and 1 converged in Equations
(17)–(19), respectively. Model alternatives 5, 9, and 6 converged in Equations (20)–(22),
respectively. Among the models that converged, the NLME model with random parameters
on a/b/c in Equation (14), c in Equation (15), a/b in Equation (16), b/c in Equation (17),
b/c in Equation (18), a/b/d in Equation (19), a in Equation (20), a in Equation (21), and c/d
in Equation (22) showed the smallest AIC and BIC. Three dominant trees’ morphological
models with mixed effects became the following:
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SM: 𝐻𝑖𝑗 = 1.3 + (𝛽1 + 𝑢1𝑗) ∗ (1 − 𝑒𝑥𝑝 ((−𝛽2 − 𝑢2𝑗 + (𝛽3 + 𝑢3𝑗) ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (23) 

𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 (𝛽1 + (𝛽2 + (𝛽3 + 𝑢1𝑗) ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (24) 

        𝐶𝑊𝑖𝑗 = (𝛽1 + 𝑢1𝑗)/(1 + (𝛽2 + 𝑢2𝑗) ∗ 𝑒𝑥𝑝 ((−𝛽3 + 𝛽4 ∗ 𝐶𝑖 + 𝛽5 ∗ 𝑀𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (25) 

BHN:  𝐻𝑖𝑗 = 1.3 + 𝛽1 ∗ (1 − 𝑒𝑥𝑝 ((−𝛽2 − 𝑢1𝑗 + (𝛽3 + 𝑢2𝑗) ∗ 𝐶𝑖 + 𝛽4 ∗ 𝑈𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (26) 

        𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 (𝛽1 + (𝛽2 + 𝑢1𝑗) ∗ 𝐶𝑖 + (𝛽3 + 𝑢2𝑗) ∗ 𝑈𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (27) 

       𝐶𝑊𝑖𝑗 = (𝛽1 + 𝑢1𝑗)/(1 + (𝛽2 + 𝑢2𝑗) ∗ 𝑒𝑥𝑝 ((−𝛽3 + (𝛽4 + 𝑢3𝑗) ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (28) 

MH: 𝐻𝑖𝑗 = 1.3 + (𝛽1 + 𝑢1𝑗 + 𝛽3 ∗ 𝑀𝑖 + 𝛽4 ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗
𝛽2 + ε𝑖𝑗  (29) 

       𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 (𝛽1 + 𝑢1𝑗 + (𝛽2 ∗ 𝑀𝑖 + 𝛽3 ∗ 𝐶𝑖 + 𝛽4 ∗ 𝑈𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (30) 

       𝐶𝑊𝑖𝑗 = (𝛽1 + (𝛽3 + 𝑢1𝑗) ∗ 𝐶𝑖 + (𝛽4 + 𝑢2𝑗) ∗ 𝑀𝑖) ∗ 𝐷𝑖𝑗
𝛽2 + ε𝑖𝑗  (31) 

where β1 − β5  are mixed-effect parameters; u1j, u2j, u3j,  and u4j  are random-effect pa-

rameters generated by the plot on β1, β2, β3, β4, respectively; and εij is an error term. 

(4) Within-plot variance–covariance (R) structure 

Because our data did not show spatial autocorrelations, we assumed the matrix of 

the within-plot error autocorrelation was an identity matrix. However, we found heter-

oscedasticity in our preliminary analysis even after the random effects were included in 

the morphological model with SSP. We then evaluated three variance functions for their 

heteroscedasticity-reducing performances. The results showed that Equation (24), Equa-

tion (27), Equation (28), Equation (29), Equation (30), and Equation (31) produced signif-

icantly different results than the models without variance functions, whereas Equation 

(23), Equation (25), and Equation (26) did not. According to the AIC and Loglik values, 

the power variance function and constant power variance function performed the best 

where β1 − β5 are mixed-effect parameters; u1j, u2j, u3j, and u4j are random-effect parame-
ters generated by the plot on β1, β2, β3, β4, respectively; and εij is an error term.

(4) Within-plot variance–covariance (R) structure.
Because our data did not show spatial autocorrelations, we assumed the matrix

of the within-plot error autocorrelation was an identity matrix. However, we found
heteroscedasticity in our preliminary analysis even after the random effects were included
in the morphological model with SSP. We then evaluated three variance functions for
their heteroscedasticity-reducing performances. The results showed that Equations (24),
(27)–(30) and (31) produced significantly different results than the models without variance
functions, whereas Equations (23), (25) and (26) did not. According to the AIC and Loglik
values, the power variance function and constant power variance function performed the
best among the tested variance functions (Table 3). Therefore, the final modes were the
following: Equation (23) + null, Equation (24) + power function, Equation (25) + power
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function, Equation (26) + power function, Equation (27) + power function, Equation (28)
+ constant plus power function, Equation (29) + power function, Equation (30) + power
function, and Equation (31) + constant plus power function. By including the variance
function, the model’s AIC decreased from 3438.982 to 3421.136 in Equation (24), from
1935.082 to 1934.881 in Equation (25), from 3825.354 to 1934.881 in Equation (26), from
3322.544 to 3231.132 in Equation (27), from 3160.599 to 2342.501 in Equation (28), from
4316.121 to 4310.291 in Equation (29), from 3798.104 to 3699.936 in Equation (30), and from
2462.686 to 2416.827 in Equation (31).

Table 3. Performance of mixed-effect model Equations (23)–(31) using morphological data with
different variance functions. SM, BHN, and MH represent Cunninghamia lanceolata, Machilus pauhoi,
and Schima superba, respectively.

Species Model Evaluation
Indices

Residual Variance Function

Null Exponential
Function

Power
Function

Constant Plus
Power Function

SM

Equation (23)
AIC 4336.224 4337.334 4337.458 4339.477

Loglik −2158.11 −2157.667 −2157.729 −2157.739

p Value p > 0.05 p > 0.05 p > 0.05

Equation (24)
AIC 3438.982 3421.818 3421.136 3423.136

Loglik −1712.491 −1702.909 −1702.568 −1702.568

p Value p < 0.0001 p < 0.0001 p < 0.0001

Equation (25)
AIC 1935.082 1935.461 1934.881 1936.881

Loglik −960.5411 −959.7304 −959.441 −959.4404

p Value p > 0.05 p > 0.05 p > 0.05

BHN

Equation (26)
AIC 3825.354 3827.209 3825.14 3827.14

Loglik −1906.677 −1906.604 −1905.57 −1905.57

p Value p > 0.05 p > 0.05 p > 0.05

Equation (27)
AIC 3322.544 3249.631 3231.132 3235.042

Loglik −1906.677 −1616.815 −1607.57 −1608.521

p Value p < 0.0001 p < 0.0001 p < 0.0001

Equation (28)
AIC 3160.599 2365.384 2449.84 2342.501

Loglik −1574.299 −1175.692 −1217.92 −1163.251

p Value p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

MH

Equation (29)
AIC 4316.121 4313.26 4310.291 4312.291

Loglik −2150.061 −2147.63 −2146.145 −2146.145

p Value p < 0.05 p < 0.05 p < 0.05

Equation (30)
AIC 3798.104 3701.172 3699.936 3701.532

Loglik −1888.052 −1838.586 −1837.968 −1837.766

p Value p < 0.0001 p < 0.0001 p < 0.0001

Equation (31)
AIC 2462.686 2418.486 2427.477 2416.827

Loglik −1223.343 −1200.243 −1204.739 −1198.413

p Value p < 0.0001 p < 0.0001 p < 0.0001

(5) Estimation of parameters.
All parameter estimates of the OLS and NLME models at the sample plot level with

the power variance function or constant plus power variance function were significantly
different from zero (p < 0.05), and the parameters are listed in Table 4. When the fixed
parameters were substituted into Equations (23)–(31), the morphological model for SM,
BHN, and MH, respectively, became the following:



Forests 2023, 14, 639 12 of 24Forests 2023, 14, 639 12 of 24 
 

 

SM:  𝐻𝑖𝑗 = 1.3 + (36.7543 + 𝑢1𝑗) ∗ (1 − 𝑒𝑥𝑝 ((−0.0236 − 𝑢2𝑗 + (−0.0045 + 𝑢3𝑗) ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (32) 

𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 ( 0.3896 + (0.0073 + (−0.0096 + 𝑢1𝑗) ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (33) 

𝐶𝑊𝑖𝑗 = ( 5.5212 + 𝑢1𝑗)/(1 + (2.4130 + 𝑢2𝑗) ∗ 𝑒𝑥𝑝 ((−0.0520 + (−0.0310 ∗ 𝐶𝑖) + 0.0162 ∗ 𝑀𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (34) 

BHN: 𝐻𝑖𝑗 = 1.3 + 20.0990 ∗ (1 − exp ( (−0.0399 − 𝑢1𝑗 + (−0.0133 + 𝑢2𝑗) ∗ 𝐶𝑖 + (−0.0078 ∗ 𝑈𝑖)) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (35) 

𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 (0.0408 + (−0.0308 + 𝑢1𝑗) ∗ 𝐶𝑖 + (0.0133 + 𝑢2𝑗) ∗ 𝑈𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (36) 

𝐶𝑊𝑖𝑗 = (6.7421 + 𝑢1𝑗)/(1 + (3.2953 + 𝑢2𝑗) ∗ 𝑒𝑥𝑝 ((−0.0721 + (−0.0455 + 𝑢3𝑗) ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (37) 

MH: 𝐻𝑖𝑗 = 1.3 + (2.3741 + 𝑢1𝑗 − 0.2014 ∗ 𝑀𝑖 + 0.0622 ∗ 𝐶𝑖) ∗ 𝐷𝑖𝑗
0.5686 + ε𝑖𝑗  (38) 

𝐻𝐶𝐵𝑖𝑗
= 𝐻𝑖𝑗/(1 + 𝑒𝑥𝑝 (0.5479 + 𝑢1𝑗 + (0.0277 ∗ 𝑀𝑖 + 0.0132 ∗ 𝐶𝑖 − 0.0026 ∗ 𝑈𝑖) ∗ 𝐷𝑖𝑗)) + ε𝑖𝑗  (39) 

𝐶𝑊𝑖𝑗 = (0.6514 + (0.2820 + 𝑢1𝑗) ∗ 𝐶𝑖 + (0.0519 + 𝑢2𝑗) ∗ 𝑀𝑖) ∗ 𝐷𝑖𝑗
0.5591 + ε𝑖𝑗  (40) 

Table 4. Parameter estimates and evaluation indices of each model. SM, BHN, and MH represent 

Cunninghamia lanceolata, Machilus pauhoi, and Schima superba, respectively. If the letters a, b, and c, 

are the same, it represents no significant difference between models; otherwise, there are signifi-

cant differences between models. ** and *** represent significant and extremely significant, respec-

tively. 

Species Formula Model 
Fixed Parameters Evaluation Indexes 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 AIC Loglik p Value 

SM 

H-D 

Equation (5) 33.4665 0.0266 —— —— —— 4686.538 −2340.27 a 

Equation (14) 32.5791 0.0252 −0.0037 —— —— 4350.543 −2168.27 b *** 

Equation (23) 36.7543 0.0236 −0.0045 —— —— 4336.224 −2158.11 c *** 

HCB-H 

Equation (6) 0.4501 −0.0012 —— —— —— 3488.336 −1741.17 a 

Equation (15) 0.4230 0.0061 −0.0087 —— —— 3441.651 −1716.83 b *** 

Equation (24) 0.3896 0.0073 −0.0096 —— —— 3421.136 −1702.57 c ** 

CW-D 

Equation (7) 5.9591 2.4952 0.0538 —— —— 2224.718 −1108.36 a 

Equation (16) 5.5826 2.3971 0.0461 −0.0367 0.0153 2030.871 −1009.44 b *** 

Equation (25) 5.5212 2.4130 0.0520 −0.0310 0.0162 1934.881 −959.441 c *** 

BHN 

H-D 

Equation (8) 19.3411 0.0540 —— —— —— 3970.13 −1982.07 a 

Equation (17) 19.6529 0.0399 −0.0123 −0.0072 —— 3935.849 −1962.93 b *** 

Equation (26) 20.0990 0.0399 −0.0133 −0.0078 —— 3825.14 −1905.57 c *** 

HCB-H 

Equation (9) 0.2933 0.0043 —— —— —— 3404.81 −1699.41 a 

Equation (18) 0.0384 −0.0310 0.0202 —— —— 3335.732 −1663.87 b *** 

Equation (27) 0.0408 −0.0308 0.0133 —— —— 3231.132 −1607.57 c *** 

CW-D 

Equation (10) 8.3246 4.1547 0.0885 —— —— 3218.003 −1605 a 

Equation (19) 8.4723 3.7601 0.0501 −0.0386 —— 3188.058 −1589.03 b *** 

Equation (28) 6.7421 3.2953 0.0721 −0.0455 —— 2342.501 −1163.25 c *** 

MH 

H-D 

Equation (11) 2.5166 0.5378 —— —— —— 4577.814 −2285.91 a 

Equation (20) 2.6616 0.5135 −0.3857 0.3370 —— 4526.287 −2258.14 b *** 

Equation (29) 2.3741 0.5686 −0.2014 0.0622 —— 4310.291 −2146.15 c *** 

HCB-H 

Equation (12) 0.8568 −0.0036 —— —— —— 3980.823 −1987.41 a 

Equation (21) 0.5636 0.0253 0.0185 −0.0103 —— 3919.156 −1954.58 b *** 

Equation (30) 0.5479 0.0277 0.0132 −0.0026 —— 3699.936 −1837.97 c *** 

CW-D 

Equation (13) 0.8478 0.5819 —— —— —— 2749.965 −1371.98 a 

Equation (22) 0.5918 0.5606 0.3178 0.1041 —— 2554.176 −1272.09 b *** 

Equation (31) 0.6514 0.5591 0.2820 0.0519 —— 2416.827 −1198.41 c *** 

In order to validate the effect of the plot level and SSP on the model parameters, we 

recorded the performance statistics and parameters of the final NLME and OLS models. 

According to the AIC, Loglik, and p-value in Table 4, As shown, Equations (23-25), 

Equations (26-28), and Equations (29-31) had the smallest AIC and the largest Loglik 

values, and there was a significant difference between Equation (5) and Equation (14); 

Equation (14) and Equation (23); Equation (6) and Equation (15); Equation (15) and 

Equation (24); Equation (7) and Equation (16); Equation (16) and Equation (25); Equation 

Table 4. Parameter estimates and evaluation indices of each model. SM, BHN, and MH represent
Cunninghamia lanceolata, Machilus pauhoi, and Schima superba, respectively. If the letters a, b, and c,
are the same, it represents no significant difference between models; otherwise, there are significant
differences between models. ** and *** represent significant and extremely significant, respectively.

Species Formula Model
Fixed Parameters Evaluation Indexes

β1 β2 β3 β4 β5 AIC Loglik p Value

SM

H-D
Equation (5) 33.4665 0.0266 — — — — — — 4686.538 −2340.27 a
Equation (14) 32.5791 0.0252 −0.0037 — — — — 4350.543 −2168.27 b ***
Equation (23) 36.7543 0.0236 −0.0045 — — — — 4336.224 −2158.11 c ***

HCB-H
Equation (6) 0.4501 −0.0012 — — — — — — 3488.336 −1741.17 a
Equation (15) 0.4230 0.0061 −0.0087 — — — — 3441.651 −1716.83 b ***
Equation (24) 0.3896 0.0073 −0.0096 — — — — 3421.136 −1702.57 c **

CW-D
Equation (7) 5.9591 2.4952 0.0538 — — — — 2224.718 −1108.36 a
Equation (16) 5.5826 2.3971 0.0461 −0.0367 0.0153 2030.871 −1009.44 b ***
Equation (25) 5.5212 2.4130 0.0520 −0.0310 0.0162 1934.881 −959.441 c ***

BHN

H-D
Equation (8) 19.3411 0.0540 — — — — — — 3970.13 −1982.07 a
Equation (17) 19.6529 0.0399 −0.0123 −0.0072 — — 3935.849 −1962.93 b ***
Equation (26) 20.0990 0.0399 −0.0133 −0.0078 — — 3825.14 −1905.57 c ***

HCB-H
Equation (9) 0.2933 0.0043 — — — — — — 3404.81 −1699.41 a
Equation (18) 0.0384 −0.0310 0.0202 — — — — 3335.732 −1663.87 b ***
Equation (27) 0.0408 −0.0308 0.0133 — — — — 3231.132 −1607.57 c ***

CW-D
Equation (10) 8.3246 4.1547 0.0885 — — — — 3218.003 −1605 a
Equation (19) 8.4723 3.7601 0.0501 −0.0386 — — 3188.058 −1589.03 b ***
Equation (28) 6.7421 3.2953 0.0721 −0.0455 — — 2342.501 −1163.25 c ***

MH

H-D
Equation (11) 2.5166 0.5378 — — — — — — 4577.814 −2285.91 a
Equation (20) 2.6616 0.5135 −0.3857 0.3370 — — 4526.287 −2258.14 b ***
Equation (29) 2.3741 0.5686 −0.2014 0.0622 — — 4310.291 −2146.15 c ***

HCB-H
Equation (12) 0.8568 −0.0036 — — — — — — 3980.823 −1987.41 a
Equation (21) 0.5636 0.0253 0.0185 −0.0103 — — 3919.156 −1954.58 b ***
Equation (30) 0.5479 0.0277 0.0132 −0.0026 — — 3699.936 −1837.97 c ***

CW-D
Equation (13) 0.8478 0.5819 — — — — — — 2749.965 −1371.98 a
Equation (22) 0.5918 0.5606 0.3178 0.1041 — — 2554.176 −1272.09 b ***
Equation (31) 0.6514 0.5591 0.2820 0.0519 — — 2416.827 −1198.41 c ***

In order to validate the effect of the plot level and SSP on the model parameters, we
recorded the performance statistics and parameters of the final NLME and OLS models.
According to the AIC, Loglik, and p-value in Table 4, As shown, Equations (23)–(31) had the
smallest AIC and the largest Loglik values, and there was a significant difference between
Equations (5) and (14); Equations (14) and (23); Equations (6) and (15); Equations (15) and
(24); Equations (7) and (16); Equations (16) and (25); Equations (8) and (17); Equations (17)
and (26); Equations (9) and (18); Equations (18) and (27); Equations (10) and (19); Equations
(19) and (28); Equations (11) and (20); Equations (20) and (29); Equations (12) and (21);
Equations (21) and (30); Equations (13) and (22); and, finally, between Equations (22) and
(31), which indicated that the plot and SSP had significant effects on the morphological
models of SM, BHN, and MH.

(6) Assessment and analysis of morphological models.
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Most models of the morphological characteristics in TMSU differed significantly from
the models in RTM, according to Table 5. For example, as compared to the morphological
models of Equations (5)–(13) and (23)–(31), which were based on NLME and incorporated
variables of the spatial structurers, we were able to significantly increase the prediction
accuracy of the morphological characteristics by 10.4%, 3.02%, and 17.8% for SM’s H, HCB,
and CW, respectively; 6.5%, 7.6%, and 8.9% for BHN’s H, HCB, and CW, respectively; and
13.3%, 15.7%, and 13.4% for MH’s H, HCB, and CW, respectively.

Table 5. Parameter estimates and evaluation indices of each model. SM, BHN, and MH represent
Cunninghamia lanceolata, Machilus pauhoi, and Schima superba, respectively; u1j, u2j,u3j are the random
effect parameters caused by the jth sample plot on β1, β2, β3, respectively.

Species Formula Model
Variance Components Fit Statistics

σ2
u1j

σ2
u2j

σ2
u3j

σu1j σu2j σu1j σu3j σu2j σu3j R2 E RMSE

SM

H-D
Equation (5) — — — — — — — — — — — — 0.7155 −0.0201 2.7644
Equation (14) — — — — — — — — — — — — 0.7369 −0.0199 2.6584
Equation (23) 4.99 × 100 7.51 × 10−5 2.90 × 10−5 −9.86 × 10−1 8.83 × 10−1 −9.47 × 10−1 0.8203 −0.0190 2.1971

HCB-H
Equation (6) — — — — — — — — — — — — 0.6121 0.0635 1.4820
Equation (15) — — — — — — — — — — — — 0.6313 0.0739 1.4450
Equation (24) 3.78 × 10−6 — — — — — — — — — — 0.6406 0.0670 1.4265

CW-D
Equation (7) — — — — — — — — — — — — 0.4276 −0.0004 0.7671
Equation (16) — — — — — — — — — — — — 0.5341 −0.0004 0.6921
Equation (25) 1.24 × 10−1 2.95 × 10−2 — — −1.81 × 10−1 — — — — 0.5965 −0.0013 0.6441

BHN

H-D
Equation (8) — — — — — — — — — — — — 0.6752 0.0250 2.1741
Equation (17) — — — — — — — — — — — — 0.6887 0.0201 2.1285
Equation (26) 3.17 × 10−6 9.95 × 10−5 — — −8.83 × 10−1 — — — — 0.7376 0.0205 1.9542

HCB-H
Equation (9) — — — — — — — — — — — — 0.4095 0.0482 1.5897
Equation (18) — — — — — — — — — — — — 0.4542 0.0383 1.5284
Equation (27) 2.49 × 10−5 1.61 × 10−4 — — −4.30 × 10−1 — — — — 0.4860 0.0467 1.4832

CW-D
Equation (10) — — — — — — — — — — — — 0.4594 −0.0012 1.4319
Equation (19) — — — — — — — — — — — — 0.4782 −0.0015 1.4068
Equation (28) 3.59 × 100 3.41 × 100 3.47 × 10−13 1.00 × 100 −3.20 × 10−2 −3.20 × 10−2 0.5271 0.0032 1.3393

MH

H-D
Equation (11) — — — — — — — — — — — — 0.5161 0.0008 2.4594
Equation (20) — — — — — — — — — — — — 0.5426 −0.0021 2.3912
Equation (29) 7.43 × 10−2 — — — — — — — — — — 0.6473 −0.0029 2.0999

HCB-H
Equation (12) — — — — — — — — — — — — 0.3018 −0.0148 1.8170
Equation (21) — — — — — — — — — — — — 0.3468 −0.0177 1.7575
Equation (30) 3.77 × 10−2 — — — — — — — — — — 0.4282 0.0078 1.6443

CW-D
Equation (13) — — — — — — — — — — — — 0.5322 0.0020 0.9734
Equation (22) — — — — — — — — — — — — 0.6180 0.0054 0.8796
Equation (31) 1.10 × 10−2 2.76 × 10−3 — — −9.95 × 10−1 — — — — 0.6658 0.0077 0.8228

A box plot of the residuals of the dependent variable classes of three dominant trees
was examined to further assess the feasibility of the fitted models based on OLS and NLME
(see Figure 5). In each plot, nearly all absolute values of the standard residuals based on
OLS and NLME models were less than two. Furthermore, the residuals from the NLME
model showed no significant trends, whereas some residual plots from the OLS model did,
such as the HCB model of Cunninghamia lanceolata, Machilus pauhoi, and Schima superba, as
well as the CW model of Machilus pauhoi and Schima superba. Only a few larger deviations
were observed for trees that were unusually large or small. The residual from the NLME
model exhibited no variance in heteroskedasticity. As a result, the NLME models Equations
(32)–(40) had superior statistical performance and could be used for SM, BHN, and MH’s
3D tree modeling in TMSU, respectively.
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Figure 5. Box plots of standard residuals of three dominant tree morphological models. The box
length, whisker length, horizontal lines in red, and plus signs in a box represent the interquartile
range (IQR); the class minimum and maximum values in the IQR; and the class median and mean
values, respectively. Cunninghamia lanceolata, Machilus pauhoi, and Schima superba are represented by
SM, BHN, and MH, respectively.

3.2. Analysis of 3D Tree Modeling Based on a Structural Unit

We discovered that the reference tree’s Ci, Mi, and Ui had a substantial influence
on the morphological features of morphological characteristic of SM, BHN, and MH,
according to the analytical results of the nonlinear mixed-effect morphological models of
three dominant species. For example, (i) crowding and mingling had a significant impact
on SM’s morphological characteristics: the higher the degree of crowding, the higher the
tree height and the height-to-crown base, the smaller the crown width, while under the
same crowding, the higher the mingling, the bigger the crown width. (ii) Crowding and
dominance had an impact on BHN’s morphological characteristics: the bigger the crowding,
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the higher the tree height and the height-to-crown base, the smaller the crown width, while
under the same crowding, the higher the dominance, the bigger the tree height and the
lower the height-to-crown base. (iii) Crowding, dominance, and mingling all had an impact
on the morphological characteristics of MH: the bigger the crowding, the higher the tree
height and the smaller the crown width, while under the same crowding and mingling, the
higher the dominance, the higher the height-to-crown base. (see Figure 6).
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Figure 6. Three-dimensional tree modeling of three predominant trees based on a structural unit.

In this study, we have selected three very different scenes for SM, BHN, and MH as
examples to reconstruct 3D tree modeling with a structural unit (see Figure 7). Based on
the value classes of Ci, Mi, and Ui, we constructed the SM and BHN model libraries with
25 scenes each (see Appendix A Figures A1 and A2) and an MH model library with 125.
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4. Discussion 

Figure 7. Three-dimensional modeling of Cunninghamia lanceolata, Machilus pauhoi, and Schima superba
under different Ci, Ui, and Mi. The values of Ci, Ui, and Mi were 0.00, 0.25, 0.50, 0.75, and 1.00,
respectively. Cunninghamia lanceolata, Machilus pauhoi, and Schima superba are represented by SM,
BHN, and MH, respectively. Since Cunninghamia lanceolata (DBH = 25.9 cm), Machilus pauhoi (DBH =
14.4 cm), and Schima superba (DBH = 15.1 cm) occurred the most frequently in the study region, we
chose them as our examples.
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4. Discussion
4.1. The Development of Morphological Characteristic Models Involving Forest Spatial Structure
in TMSU

A model of morphological characteristics involving forest spatial structure is an
essential component of 3D tree modeling based on a structural unit. By acquiring several
morphological parameters for 3D tree reconstruction, such as tree height, height-to-crown
base, diameter at breast height, and crown width, RTM used fewer micro-characteristics
of the individual trees [4–7]. However, forest environments are not homogeneous even
at very small scales. The spatial structures must be incorporated into the morphological
characteristics in order to accurately model 3D trees in an environment with a high degree
of structural diversity and heterogeneity [12–14]. In our study, TMSU used four spatial-
structure variables (e.g., Wi, Mi, Ci, and Ui) to describe the spatial structures and their effects
on morphological traits. According to Table 4, we discovered that these spatial structures
could increase the precision with which morphological characteristics were predicted due
to the spatial heterogeneity of a reference tree. For example, as compared to the RTM
model Equations (5)–(13), the TMSU model Equations (14)–(22) incorporated variables
of the spatial structures and then improved its prediction accuracy of the morphological
characteristics by 2.1%, 1.9%, and 10.7% for SM’s H, HCB, and CW, respectively; 1.4%,
4.5%, and 1.9% for BHN’s H, HCB, and CW, respectively; and finally, 2.7%, 4.5%, and
8.9% for MH’s H, HCB, and CW, respectively. However, when developing morphological
characteristic models, researchers have suggested that adding excessive parameters affected
model convergence and lengthened the time to compute parameter estimates, especially
for the nonlinear mixed-effect modeling strategy used in this study [27,28,44]. Furthermore,
adding a number of tree or spatial-structure variables to the inventory increased the cost
and time required to obtain the measurements for those variables [29,44]. Therefore, for the
final morphological prediction model of SM in TMSU, we selected one tree variable (D)
and two spatial-structure variables (Ci, Mi); one tree variable (D) and two spatial-structure
variables (Ci, Ui) for the final morphological prediction model of BHN; and one tree variable
(D) and three spatial-structure variables (Ci, Ui, Mi) for the final morphological prediction
model of MH.

Nonlinear mixed-effect models are appealing for the analysis of hierarchically struc-
tured data that are auto-correlated, as compared to the OLS model because of their flexibility
in accounting for the covariate structure that is overlooked in conventional regression pro-
cedures. Therefore, in this study, we selected the Chapman–Richards, Walters, logistic, and
power models as the base morphological models based on the statistical variables R2, E,
and RMSE, and then we integrated them with a nonlinear mixed-effect model approach at
the plot level to construct morphological models of three dominant trees involving spatial-
structure parameters. As shown in Table 5, a random effect model in TMSU Equations
(23)–(31) outperformed a model without a random effect in RTM Equations (14)–(22) in
terms of prediction accuracy for the full dataset. The result was consistent with most
research conclusions [24–28]. As a result, morphological models of three dominant trees
in TMSU were chosen for 3D tree modeling due to their higher precision and spatial ca-
pabilities. In addition, the morphological models in TMSU were limited in their capacity
to handle changes in spatial structures (e.g., those caused by human activity or natural
succession) [45] and complete data acquisition that could reflect different spatial-structure
conditions. Generally, as the spatial structure of the planted mixed forest would not be
significantly altered in a short time, the models in TMSU could be utilized for producing a
short-term forecast (less than 5 years). Therefore, in order to improve the applicability of the
morphological model in TMSU, we will consider climate variables, in addition to natural
succession and human activities, and devise more plots with different spatial-structure
conditions in our next project [46,47].
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4.2. Three-Dimensional Tree Modeling in a Highly Heterogeneous Forest Environment

In forest visualization research, accurate 3D tree modeling with heterogeneous spatial
forest structures is required (e.g., forest quality assessment, health supervision, and forest
management planning and assessment) [48]. Given the complexity of forest structures
and heterogeneous habitats, describing the relationship between any individual tree and
its neighbors in a 3D tree model is a significant issue. In this study, we addressed the
challenges of 3D tree modeling in a complex and highly heterogeneous forest environment
in order to determine the spatial-structure variables, explore the relationships between
spatial structures and morphological characteristics, and achieve 3D tree modeling based
on a structural unit.

Most researchers have developed various qualitative and quantitative indices to
describe the reference tree and its neighbor trees in a forest stand, such as the index of Clark
and Evans [49], the diffusion index [50], Ripley’s K-function [51], the K-function [52], the O-
ring statistic [53], the Gini coefficient [54], Pielou’s isolation index [55], the mean directional
index [56], Gadow’s species mingling [57], the mixed ratio [58], and the uniform angle
index [59,60]. However, some of these indices have been predominantly used in forestry
and ecology, and they do not meet the prerequisites for visually and intuitively portraying
3D tree modeling based on a structural unit [19,20]. In addition, certain approaches for
analyzing spatial structures consider the neighboring tree species to some extent, although
they can only describe the overall or unilateral structure of the reference tree population.
For example, the size differentiation, mixed conditions, and the degree of crowding of the
reference tree at different distance scales remained unknown when using Wi to analyze the
distribution patterns. Therefore, these methods solely considered the distribution pattern
and overlooked factors such as the tree size, the degree of crowding, and the degree of
species aggregation. Furthermore, an entirely different structure could yield the same
outcome. Obviously, it has been challenging to accurately depict the spatial structure of
a tree population. The forest is a complex and dynamic ecosystem, particularly when it
contains many different species and has a highly heterogeneous spatial structure. The four
most significant characteristics of the population structure for any species in a mixed forest
may be interspecific and intraspecific variances in tree sizes, species mingling, crowding,
and distribution patterns [60]. The spatial structural parameters Wi, Mi, Ci, and Ui were
used in TMSU to describe the relationships between any reference tree and its four adjacent
neighboring trees. It uncovered reference tree population characteristics and modeled a 3D
tree in a more accurate and thorough manner by simultaneously employing two or more
pieces of structural information.

According to TMSU-based morphological models, we found that Ci, Mi, and Ui had a
strong influence on the morphological characteristic of SM, BHN, and MH. For example,
in SM, BHN, and MH, there was an identical phenomenon where the degree of crowding
had a positive relationship with tree height, height-to-crown base, and crown width, which
could be related to a growth response strategy of trees in a crowded and highly competitive
environment to increase the tree’s height to occupy the main layer of the forest and obtain
more resources, such as light, moisture, and nutrition [17,60]. This could also promote
the self-thinning of the branches, which increases the height-to-crown base for the limited
availability of the light resource [10], as well as retaining a narrow crown width due to
competition with conspecific and nonspecific species [16]. Furthermore, under the same
degree of crowding, mingling was positively correlated with tree crown width in SM, and
dominance was positively correlated with tree height but negatively correlated with the
height-to-crown base in BHN; under the same crowding and mingling conditions, the
dominance was positively correlated with the height-to-crown base in MH. The results
could be linked to the competitive response mechanism of various tree species, such as light
transmittance, shade tolerance, and biological characteristics. Therefore, considering the
unique coupling responses between the spatial-structure parameters and the morphological
characteristics, we created model libraries for the three dominant species with 25 scenes
based on the value classes of Ci and Mi for SM; 25 scenes based on the value classes of
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Ci and Ui for BHN; and 125 scenes based on the value classes of Ci, Mi, and Ui for MH,
respectively.

5. Conclusions

This study provided a new approach for 3D tree modeling TMSU. The differences
between RTM and TMSU were focused on: (i) Four spatial structural parameters (Wi,
Mi, Ci, and Ui) were incorporated into the morphological characteristic models of the
reference trees and revealed the relationship between the spatial-structure variables and
the morphological features. (ii) The nonlinear mixed-effect model was introduced into
the parameter estimation of the TMSU-based morphological model for higher precision
and applicability. By comparing the two approaches, RTM and TMSU, we found that
(i) the prediction accuracy of the TMSU-based morphological model increased by 10.4%,
3.02%, and 17.8% for SM’s H, HCB, and CW, respectively; 6.5%, 7.6%, and 8.9% for BHN’s
H, HCB, and CW, respectively; and 13.3%, 15.7%, and 13.4% for MH’s H, HCB, and CW,
respectively, as compared to the RTM morphological models. (ii) TMSU provided more
spatial-structure information with fewer parameters in the morphological models and
revealed the relationships between the spatial structures and the morphological traits of
the reference tree.
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Figure A1. Three-dimensional modeling of SM under different Ci and Mi. The values of Ci and Mi

were 0.00, 0.25, 0.50, 0.75, and 1.00. Since Cunninghamia lanceolata (SM) (DBH = 25.9 cm) occurred
most frequently in the study region, we chose it as an example.
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Figure A2. Three-dimensional modeling of BHN under different Ci and Ui. Notes: Di <

Da, Db, Dc, Dd indicated that the diameter of tree i was smaller than tree a, b, c, and d; Ti ∩ Ta, Tb, Tc, Td
indicated that the canopy of tree i and tree a, b, c, and d overlapped; Ci and Ui had values of 0.00, 0.25,
0.50, 0.75, and 1.00. Since Machilus pauhoi (BHN) (DBH = 14.4 cm) occurred most frequently in the
study region, we chose it as an example.
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