Exploration of Soil Microbial Diversity and Community Structure along Mid-Subtropical Elevation Gradients in Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Survey and Soil Sampling
2.3. Soil Physiochemical Analyses
2.4. DNA Extraction, Amplification
2.5. Illumina Sequence Processing
2.6. Statistical Analysis
3. Results
3.1. Plant Diversity and Soil Physiochemical Properties at the Low and High Elevation Levels of Forests
3.2. Variations in Soil Microbial Alpha-Diversity along Two Elevations
3.3. Variations in Soil Microbial Community Compositions at Low and High Elevation Level Forests
3.4. Environmental Determinants of Soil Microbial Community Structures
4. Discussion
4.1. Drivers of Soil Bacterial Diversity and Community Structure across Elevations
4.2. Soil pH Drove Soil Fungal Diversity Patterns across Elevations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandvik, V.; Halbritter, A.H.; Yang, Y.; He, H.; Zhang, L.; Brummer, A.B.; Klanderud, K.; Maitner, B.S.; Michaletz, S.T.; Sun, X.; et al. Plant Traits and Vegetation Data from Climate Warming Experiments along an 1100 m Elevation Gradient in Gongga Mountains, China. Sci. Data 2020, 7, 189. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.Y.; Llambí, L.D.; Case, B.S.; Buckley, H.L.; Toivonen, J.M.; Camarero, J.J.; Cairns, D.M.; Brown, C.D.; Wiegand, T.; Resler, L.M. A Global Framework for Linking Alpine-treeline Ecotone Patterns to Underlying Processes. Ecography 2021, 44, 265–292. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, E.; Lu, X.; Camarero, J.J.; Babst, F.; Shen, M.; Peñuelas, J. Warming-induced Shrubline Advance Stalled by Moisture Limitation on the Tibetan Plateau. Ecography 2021, 44, 1631–1641. [Google Scholar] [CrossRef]
- Ma, L.; Liu, L.; Lu, Y.; Chen, L.; Zhang, Z.; Zhang, H.; Wang, X.; Shu, L.; Yang, Q.; Song, Q.; et al. When Microclimates Meet Soil Microbes: Temperature Controls Soil Microbial Diversity along an Elevational Gradient in Subtropical Forests. Soil Biol. Biochem. 2022, 166, 108566. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Hazard, C.; Gosling, P.; van der Gast, C.J.; Mitchell, D.T.; Doohan, F.M.; Bending, G.D. The Role of Local Environment and Geographical Distance in Determining Community Composition of Arbuscular Mycorrhizal Fungi at the Landscape Scale. ISME J. 2013, 7, 498–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global Diversity and Geography of Soil Fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Li, X.; Cai, X.; Gai, J.; Li, X.; Christie, P.; Zhang, J. Soil Microbial Community Structure and Activity along a Montane Elevational Gradient on the Tibetan Plateau. Eur. J. Soil Biol. 2014, 64, 6–14. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H.; Liu, T.; Mao, P.; Zhang, W.; Shao, Y.; Fu, S. An Increase in Precipitation Exacerbates Negative Effects of Nitrogen Deposition on Soil Cations and Soil Microbial Communities in a Temperate Forest. Environ. Pollut. 2018, 235, 293–301. [Google Scholar] [CrossRef]
- Fierer, N.; McCain, C.M.; Meir, P.; Zimmermann, M.; Rapp, J.M.; Silman, M.R.; Knight, R. Microbes Do Not Follow the Elevational Diversity Patterns of Plants and Animals. Ecology 2011, 92, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Goldmann, K.; Schöning, I.; Buscot, F.; Wubet, T. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems. Front. Microbiol. 2015, 6, 1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Wang, H.; An, S.; Bhople, P.; Davlatbekov, F. Geographic Distance and Soil Microbial Biomass Carbon Drive Biogeographical Distribution of Fungal Communities in Chinese Loess Plateau Soils. Sci. Total Environ. 2019, 660, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cong, J.; Lu, H.; Li, G.; Xue, Y.; Deng, Y.; Li, H.; Zhou, J.; Li, D. Soil Bacterial Diversity Patterns and Drivers along an Elevational Gradient on Shennongjia Mountain, China: Soil Bacterial Elevational Pattern. Microb. Biotechnol. 2015, 8, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Repr.; Elsevier/Acad. Press: Amsterdam, The Netherlands, 2008; ISBN 978-0-12-370526-6. [Google Scholar]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a pH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Millard, P.; Singh, B.K. Does Grassland Vegetation Drive Soil Microbial Diversity? Nutr. Cycl. Agroecosyst. 2010, 88, 147–158. [Google Scholar] [CrossRef]
- Keiblinger, K.M.; Hall, E.K.; Wanek, W.; Szukics, U.; Hämmerle, I.; Ellersdorfer, G.; Böck, S.; Strauss, J.; Sterflinger, K.; Richter, A.; et al. The Effect of Resource Quantity and Resource Stoichiometry on Microbial Carbon-Use-Efficiency: Resource Quantity/Quality Drives Microbial C-Use-Efficiency. FEMS Microbiol. Ecol. 2010, 73, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, X.; Liu, D.; Zhang, Y.; Chen, Y.; Wang, B.; Hua, J.; Zhang, J.; Peng, S.; Ge, Z.; et al. Diversity Patterns and Drivers of Soil Bacterial and Fungal Communities along Elevational Gradients in the Southern Himalayas, China. Appl. Soil Ecol. 2022, 178, 104563. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, X.; Han, L.; Liu, Z.; Kang, S.; Zhao, Y. Fungal Community Diversity in Soils along an Elevation Gradient in a Quercus Aliena Var. Acuteserrata Forest in Qinling Mountains, China. Appl. Soil Ecol. 2021, 167, 104104. [Google Scholar] [CrossRef]
- Shen, C.; Xiong, J.; Zhang, H.; Feng, Y.; Lin, X.; Li, X.; Liang, W.; Chu, H. Soil pH Drives the Spatial Distribution of Bacterial Communities along Elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Y.; Li, J.; Li, X.; Ruan, H.; Bhople, P.; Keiblinger, K.; Mao, L.; Liu, D. Interaction among Soil Nutrients, Plant Diversity and Hypogeal Fungal Trophic Guild Modifies Root-Associated Fungal Diversity in Coniferous Forests of Chinese Southern Himalayas. Plant Soil 2022, 481, 395–408. [Google Scholar] [CrossRef]
- Dedeyn, G.; Vanderputten, W. Linking Aboveground and Belowground Diversity. Trends Ecol. Evol. 2005, 20, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. Ecological Linkages between Aboveground and Belowground Biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Cajthaml, T.; Põlme, S.; Hiiesalu, I.; Anslan, S.; Harend, H.; Buegger, F.; Pritsch, K.; Koricheva, J.; et al. Tree Diversity and Species Identity Effects on Soil Fungi, Protists and Animals Are Context Dependent. ISME J. 2016, 10, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Ampoorter, E.; Baeten, L.; Koricheva, J.; Vanhellemont, M.; Verheyen, K. Do Diverse Overstoreys Induce Diverse Understoreys? Lessons Learnt from an Experimental–Observational Platform in Finland. For. Ecol. Manag. 2014, 318, 206–215. [Google Scholar] [CrossRef]
- Prober, S.M.; Leff, J.W.; Bates, S.T.; Borer, E.T.; Firn, J.; Harpole, W.S.; Lind, E.M.; Seabloom, E.W.; Adler, P.B.; Bakker, J.D.; et al. Plant Diversity Predicts Beta but Not Alpha Diversity of Soil Microbes across Grasslands Worldwide. Ecol. Lett. 2015, 18, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, Y.; Nakano, T.; Hattori, M.; Nara, K. The Mid-Domain Effect in Ectomycorrhizal Fungi: Range Overlap along an Elevation Gradient on Mount Fuji, Japan. ISME J. 2014, 8, 1739–1746. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Li, L.; Wang, X.; You, J.; Li, J.; Chen, X. Elevational Is the Main Factor Controlling the Soil Microbial Community Structure in Alpine Tundra of the Changbai Mountain. Sci. Rep. 2020, 10, 12442. [Google Scholar] [CrossRef]
- Gai, J.P.; Tian, H.; Yang, F.Y.; Christie, P.; Li, X.L.; Klironomos, J.N. Arbuscular Mycorrhizal Fungal Diversity along a Tibetan Elevation Gradient. Pedobiologia 2012, 55, 145–151. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, Y.; Wang, S.; Xu, D.; Yu, H.; Wu, L.; Lin, Q.; Hu, Y.; Li, X.; He, Z.; et al. The Microbial Gene Diversity along an Elevation Gradient of the Tibetan Grassland. ISME J. 2014, 8, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Hua, J.; Zhang, J.; Liu, D.; Bhople, P.; Li, X.; Zhang, Y.; Ruan, H.; Xing, W.; Mao, L. Soil Nutrients and Plant Diversity Affect Ectomycorrhizal Fungal Community Structure and Functional Traits across Three Subalpine Coniferous Forests. Front. Microbiol. 2022, 13, 1016610. [Google Scholar] [CrossRef]
- Wang, J.-T.; Zheng, Y.-M.; Hu, H.-W.; Zhang, L.-M.; Li, J.; He, J.-Z. Soil pH Determines the Alpha Diversity but Not Beta Diversity of Soil Fungal Community along Altitude in a Typical Tibetan Forest Ecosystem. J. Soils Sediments 2015, 15, 1224–1232. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Lin, W.-X.; Chen, Z.-F.; Fang, C.-X.; Zhang, Z.-X.; Wu, L.-K.; Zhou, M.-M.; Chen, T. Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest: Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest. Chin. J. Plant Ecol. 2013, 37, 397–406. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, H.; Li, X.; Ren, Y.; Jin, C.; Xu, Z.; Lyu, M.; Xie, J. Characteristics of Soil Organic Carbon Mineralization in Low Altitude and High Altitude Forests in Wuyi Mountains, southeastern China. Chin. J. Ecol. 2018, 29, 748–756. [Google Scholar] [CrossRef]
- Wang, G.; Jin, Y.; Wang, F.; Wang, J.; Ruan, H. Temporal and Spatial Variations of Soil Microbial Biomass P under Different Vegetations along an Elevation Gradients in Wuyi Mountains in Southeast of China. J. Nanjing For. Univ. Nat. Sci. Ed. 2011, 35, 44–48. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Luo, Q.; Xu, H.; Liu, W.; Luo, T.; Tu, J. Seasonal Dynamics in Soil Microorganisms Diversity of Evergreen Broadleaved Forest in Wuyi Mountains, Southeastern China. J. Trop. Subtrop. Bot. 2017, 25, 115–126. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, W.; Chen, Z.; Fang, C.; Zhang, Z.; Wu, L.; Zhou, M.; Shen, L. Characteristics of Soil Microbial Community under Different Vegetation Types in Wuyishan National Nature Reserve, East China. Chin. J. Appl. Ecol. 2013, 24, 2301–2309. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, W.; Chen, Z.; Lin, J.; Fang, C.; Zhang, Z.; Wu, L.; Chen, T. Phospholipid Fatty Acid Analysis of Soil Microbes at Different Elevation of Wuyi Mountains. Sci. Silvae Sin. 2014, 50, 106–112. [Google Scholar]
- Li, X.; Xie, J.; Zhang, Q.; Lyu, M.; Xiong, X.; Liu, X.; Lin, T.; Yang, Y. Substrate Availability and Soil Microbes Drive Temperature Sensitivity of Soil Organic Carbon Mineralization to Warming along an Elevation Gradient in Subtropical Asia. Geoderma 2020, 364, 114198. [Google Scholar] [CrossRef]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and Misuse of PLFA Measurements in Soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Dengler, J. A Flexible Multi-Scale Approach for Standardised Recording of Plant Species Richness Patterns. Ecol. Indic. 2009, 9, 1169–1178. [Google Scholar] [CrossRef]
- Bao, S.D. Agricultural Chemical Analysis of Soil, 3rd. ed.; China Agriculture Press: Beijing, China, 2016. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Yang, N.; Wang, B.; Liu, D.; Wang, X.; Li, X.; Zhang, Y.; Xu, Y.; Peng, S.; Ge, Z.; Mao, L.; et al. Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a Poplar Plantation. J. Fungi 2021, 7, 791. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, S.-I.; Senda, Y.; Nakaguchi, S.; Hashimoto, T. Multiplex PCR Using Internal Transcribed Spacer 1 and 2 Regions for Rapid Detection and Identification of Yeast Strains. J. Clin. Microbiol. 2001, 39, 3617–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Liu, D.; Bhople, P.; Keiblinger, K.M.; Wang, B.; An, S.; Yang, N.; Chater, C.C.C.; Yu, F. Soil Rehabilitation Promotes Resilient Microbiome with Enriched Keystone Taxa than Agricultural Infestation in Barren Soils on the Loess Plateau. Biology 2021, 10, 1261. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16S RRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE Database for Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic Classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Schultz, B.B. LEVENE’S Test for Relative Variation. Syst. Zool. 1985, 34, 449–456. [Google Scholar] [CrossRef]
- Student The Probable Error of a Mean. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 33–57. ISBN 978-1-4612-4380-9.
- Oksanen, J.; Blanchet, G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.0-10. Available online: https://CRAN.R-project.org/package=vegan:2013 (accessed on 11 January 2023).
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Buttigieg, P.L.; Ramette, A. A Guide to Statistical Analysis in Microbial Ecology: A Community-Focused, Living Review of Multivariate Data Analyses. FEMS Microbiol. Ecol. 2014, 90, 543–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantel, N. The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Hotelljng, H. Relations between Two Sets of Variates. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 162–190. ISBN 978-1-4612-4380-9. [Google Scholar]
- Strickland, M.S.; Lauber, C.; Fierer, N.; Bradford, M.A. Testing the Functional Significance of Microbial Community Composition. Ecology 2009, 90, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, S.D.; Wallenstein, M.D.; Bradford, M.A. Soil-Carbon Response to Warming Dependent on Microbial Physiology. Nat. Geosci. 2010, 3, 336–340. [Google Scholar] [CrossRef]
- Shen, C.; Liang, W.; Shi, Y.; Lin, X.; Zhang, H.; Wu, X.; Xie, G.; Chain, P.; Grogan, P.; Chu, H. Contrasting Elevational Diversity Patterns between Eukaryotic Soil Microbes and Plants. Ecology 2014, 95, 3190–3202. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wu, X.; Shi, S.; Liu, H.; Liu, G. A Hollow Bacterial Diversity Pattern with Elevation in Wolong Nature Reserve, Western Sichuan Plateau. J. Soils Sediments 2016, 16, 2365–2374. [Google Scholar] [CrossRef]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Bryant, J.A.; Lamanna, C.; Morlon, H.; Kerkhoff, A.J.; Enquist, B.J.; Green, J.L. Microbes on Mountainsides: Contrasting Elevational Patterns of Bacterial and Plant Diversity. Proc. Natl. Acad. Sci. USA 2008, 105, 11505–11511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margesin, R.; Jud, M.; Tscherko, D.; Schinner, F. Microbial Communities and Activities in Alpine and Subalpine Soils: Communities and Activities in Alpine and Subalpine Soils. FEMS Microbiol. 2009, 67, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Ni, Y.; Liang, W.; Wang, J.; Chu, H. Distinct Soil Bacterial Communities along a Small-Scale Elevational Gradient in Alpine Tundra. Front. Microbiol. 2015, 6, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayranvand, M.; Akbarinia, M.; Salehi Jouzani, G.; Gharechahi, J.; Kooch, Y.; Baldrian, P. Composition of Soil Bacterial and Fungal Communities in Relation to Vegetation Composition and Soil Characteristics along an Altitudinal Gradient. FEMS Microbiol. 2021, 97, fiaa201. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Toots, M.; DiéDhiou, A.G.; Henkel, T.W.; KjøLler, R.; Morris, M.H.; Nara, K.; Nouhra, E.; Peay, K.G.; et al. Towards Global Patterns in the Diversity and Community Structure of Ectomycorrhizal Fungi: Global Metastudy of Ectomycorrhizal Fungi. Mol. Ecol. 2012, 21, 4160–4170. [Google Scholar] [CrossRef]
- Chu, H.; Neufeld, J.D.; Walker, V.K.; Grogan, P. The Influence of Vegetation Type on the Dominant Soil Bacteria, Archaea, and Fungi in a Low Arctic Tundra Landscape. Soil Sci. Soc. Am. J. 2011, 75, 1756–1765. [Google Scholar] [CrossRef] [Green Version]
- Orwin, K.H.; Buckland, S.M.; Johnson, D.; Turner, B.L.; Smart, S.; Oakley, S.; Bardgett, R.D. Linkages of Plant Traits to Soil Properties and the Functioning of Temperate Grassland: Links of Plant Traits to Soil Properties. J. Ecol. 2010, 98, 1074–1083. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Eichenberg, D.; Bruelheide, H.; Kröber, W.; Kühn, P.; Li, Y.; von Oheimb, G.; Purschke, O.; Scholten, T.; Buscot, F.; et al. Soil and Tree Species Traits Both Shape Soil Microbial Communities during Early Growth of Chinese Subtropical Forests. Soil Biol. Biochem. 2016, 96, 180–190. [Google Scholar] [CrossRef]
- Thoms, C.; Gattinger, A.; Jacob, M.; Thomas, F.M.; Gleixner, G. Direct and Indirect Effects of Tree Diversity Drive Soil Microbial Diversity in Temperate Deciduous Forest. Soil Biol. Biochem. 2010, 42, 1558–1565. [Google Scholar] [CrossRef]
- Milcu, A.; Allan, E.; Roscher, C.; Jenkins, T.; Meyer, S.T.; Flynn, D.; Bessler, H.; Buscot, F.; Engels, C.; Gubsch, M.; et al. Functionally and Phylogenetically Diverse Plant Communities Key to Soil Biota. Ecology 2013, 94, 1878–1885. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.; Majcherczyk, A.; Schall, P.; Schröter, K.; Schöning, I.; Schrumpf, M.; Ehbrecht, M.; Boch, S.; Kahl, T.; Bauhus, J.; et al. Ectomycorrhizal and Saprotrophic Soil Fungal Biomass Are Driven by Different Factors and Vary among Broadleaf and Coniferous Temperate Forests. Soil Biol. Biochem. 2019, 131, 9–18. [Google Scholar] [CrossRef]
- Dickie, I.A. Host Preference, Niches and Fungal Diversity. New Phytol. 2007, 174, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Shi, N.N.; Liu, Y.X.; Peay, K.G.; Zheng, Y.; Ding, Q.; Mi, X.-C.; Ma, K.-P.; Wubet, T.; Buscot, F.; et al. Host Plant Genus-Level Diversity Is the Best Predictor of Ectomycorrhizal Fungal Diversity in a Chinese Subtropical Forest. Mol. Ecol. 2013, 22, 3403–3414. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Bignell, D.E.; Brown, V.K.; Brussard, L.; Mark Dangerfield, J.; Wall, D.H.; Wardle, D.A.; Coleman, D.C.; Giller, K.E.; Lavelle, P.; et al. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience 2000, 50, 1049. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Li, C.; Kou, Y.; Wang, Y.; Tu, B.; Zhang, S.; Li, X. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types along the Elevational Gradients of Gongga Mountain, China. Front. Microbiol. 2018, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Nevarez, L.; Vasseur, V.; Le Madec, A.; Le Bras, M.A.; Coroller, L.; Leguérinel, I.; Barbier, G. Physiological Traits of Penicillium Glabrum Strain LCP 08.5568, a Filamentous Fungus Isolated from Bottled Aromatised Mineral Water. Int. J. Food Microbiol. 2009, 130, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Beales, N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Comp. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef]
Elevations (m a.s.l.) | Levels | Latitude | Longitude | Slope (°) | Coverage (%) | DBH (cm) | Density (Trees/ha) |
---|---|---|---|---|---|---|---|
556 | L1 | 27°42′11″ | 117°44′38″ | 20 | 70 | 13.63 ± 7.69 | 1075 |
563 | L2 | 27°42′17″ | 117°44′43″ | 26 | 70 | 9.13 ± 4.68 | 3075 |
650 | L3 | 27°42′38″ | 117°45′04″ | 34 | 90 | 13.28 ±12.82 | 1475 |
700 | L4 | 27°42′47″ | 117°45′09″ | 33 | 50 | 13.73 ± 8.83 | 2100 |
1020 | H1 | 27°44′00″ | 117°46′23″ | 34 | 50 | 13.87 ± 9.22 | 1450 |
1020 | H2 | 27°43′53″ | 117°46′15″ | 37 | 60 | 15.52 ± 9.71 | 1125 |
1025 | H3 | 27°43′51″ | 117°46′16″ | 32 | 80 | 14.40 ± 9.97 | 2225 |
1038 | H4 | 27°44′05″ | 117°46′26″ | 34 | 60 | 10.00 ± 5.79 | 2150 |
Variables | Low Elevation | High Elevation | |
---|---|---|---|
Soil | MC (%) | 0.29 ± 0.19 a | 0.34 ± 8.39 a |
pH | 4.92 ± 0.21 a | 4.88 ± 0.26 a | |
NO3− (mg/kg) | 4.23 ± 6.61 a | 3.95 ± 5.72 a | |
NH4+ (mg/kg) | 27.77 ± 32.18 a | 14.50 ± 12.81 a | |
DOC (mg/kg) | 655.95 ± 143.70 a | 532.55 ± 175.70 a | |
AP (mg/kg) | 5.85 ± 0.99 a | 6.12 ± 1.89 a | |
SOC (g/kg) | 31.10 ± 11.31 a | 44.50 ± 9.54 a | |
Plant | Richness | 22.25 ± 6.55 a | 15.67 ± 0.58 a |
Diversity | 2.65 ± 0.15 a | 2.44 ± 0.60 a |
Variables | Bacteria | Fungi | |||
---|---|---|---|---|---|
Chao 1 | Shannon | Chao 1 | Shannon | ||
Soil | MC | 0.281 | 0.743 | 0.285 | 0.423 |
pH | 0.368 | –0.067 | 0.875 | 0.895 | |
NO3− | 0.770 | 0.382 | 0.119 | –0.031 | |
NH4+ | 0.459 | –0.460 | 0.137 | –0.087 | |
DOC | 0.249 | –0.340 | 0.860 | 0.867 | |
AP | 0.170 | –0.170 | 0.622 | 0.536 | |
SOC | 0.537 | 0.549 | 0.528 | 0.307 | |
Plant | Richness | 0.216 | 0.341 | –0.074 | 0.167 |
Diversity | 0.105 | 0.861 | 0.310 | 0.155 |
Type | Predictor Variables | Slope (SE) | t-Value | p |
---|---|---|---|---|
Bacterial diversity | (Intercept) | 0.169 (0.025) | 0.000 | 1.000 |
Plant diversity | 0.879 (0.194) | 4.531 | 0.004 | |
Fungal diversity | (Intercept) | 0.131 (0.045) | 0.000 | 1.000 |
pH | 1.105 (0.202) | 5.466 | 0.003 |
Variables | Bacteria | Fungi | ||
---|---|---|---|---|
r | p | r | p | |
MC | −0.120 | 0.688 | 0.361 | 0.063 |
pH | −0.139 | 0.711 | −0.174 | 0.769 |
NO3− | −0.106 | 0.656 | −0.017 | 0.534 |
NH4+ | 0.020 | 0.423 | −0.410 | 0.929 |
DOC | −0.111 | 0.638 | −0.020 | 0.546 |
AP | 0.254 | 0.136 | −0.471 | 0.987 |
SOC | 0.126 | 0.275 | 0.056 | 0.438 |
PR | 0.415 | 0.019 | 0.186 | 0.261 |
PS | 0.487 | 0.004 | 0.312 | 0.135 |
Fungal Trophic Guild | Low Elevations (556–700 m asl) | High Elevations (1020–1038 m asl) |
---|---|---|
Symbiotroph | 65.704 ± 0.496 a | 61.978 ± 1.165 a |
Saprotroph | 29.282 ± 0.351 a | 30.766 ± 1.012 a |
Pathotroph | 5.013 ± 0.168 a | 7.257 ± 0.175 a |
Fungal Trophic Guild | Variables | Explained (%) | F | p |
---|---|---|---|---|
Symbiotroph | PS | 18.3 | 1.1 | 0.006 |
DOC | 17.4 | 1.1 | 0.396 | |
NH4+ | 16.8 | 1.1 | 0.436 | |
NO3− | 16.8 | 1.1 | 0.454 | |
MC | 14.8 | <0.1 | 1 | |
Saprotroph | NH4+ | 21.3 | 1.4 | 0.112 |
AP | 19.8 | 1.3 | 0.196 | |
SOC | 16.2 | 1.3 | 0.338 | |
PS | 10.4 | <0.1 | 1 | |
Pathotroph | PR | 25 | 1.7 | 0.02 |
AP | 19.2 | 1.4 | 0.188 | |
pH | 15.1 | 1.2 | 0.354 | |
DOC | 15.2 | <0.1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Wang, Y.; Liu, B.; Zhang, J.; Hua, J.; Liu, D.; Bhople, P.; Zhang, Y.; Zhang, H.; Zhang, C.; et al. Exploration of Soil Microbial Diversity and Community Structure along Mid-Subtropical Elevation Gradients in Southeast China. Forests 2023, 14, 769. https://doi.org/10.3390/f14040769
Yang N, Wang Y, Liu B, Zhang J, Hua J, Liu D, Bhople P, Zhang Y, Zhang H, Zhang C, et al. Exploration of Soil Microbial Diversity and Community Structure along Mid-Subtropical Elevation Gradients in Southeast China. Forests. 2023; 14(4):769. https://doi.org/10.3390/f14040769
Chicago/Turabian StyleYang, Nan, Yuchao Wang, Boran Liu, Jiangbao Zhang, Jiani Hua, Dong Liu, Parag Bhople, Yirong Zhang, Huiguang Zhang, Chenhui Zhang, and et al. 2023. "Exploration of Soil Microbial Diversity and Community Structure along Mid-Subtropical Elevation Gradients in Southeast China" Forests 14, no. 4: 769. https://doi.org/10.3390/f14040769
APA StyleYang, N., Wang, Y., Liu, B., Zhang, J., Hua, J., Liu, D., Bhople, P., Zhang, Y., Zhang, H., Zhang, C., Ruan, H., & Wang, W. (2023). Exploration of Soil Microbial Diversity and Community Structure along Mid-Subtropical Elevation Gradients in Southeast China. Forests, 14(4), 769. https://doi.org/10.3390/f14040769