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Abstract: Tree crown width relates directly to wood quality and tree growth. The traditional method
used to measure crown width is labor-intensive and time-consuming. Pairing imagery taken by
an unmanned aerial vehicle (UAV) with a deep learning algorithm such as a faster region-based
convolutional neural network (Faster-RCNN) has the potential to be an alternative to the traditional
method. In this study, Faster-RCNN outperformed single-shot multibox detector (SSD) for crown
detection in a young loblolly pine stand but performed poorly in a dense, mature loblolly pine
stand. This paper proposes a novel Faster-RCNN algorithm for tree crown identification and crown
width extraction in a forest stand environment with high-density loblolly pine forests. The new
algorithm uses Residual Network 101 (ResNet101) and a feature pyramid network (FPN) to build
an FPN_ResNet101 structure, improving the capability to model shallow location feature extraction.
The algorithm was applied to images from a mature loblolly pine plot in eastern Texas, USA. The
results show that the accuracy of crown recognition and crown width measurement using the
FPN_ResNet101 structure as the backbone network in Faster-RCNN (FPN_Faster-RCNN_ResNet101)
was high, being 95.26% and 0.95, respectively, which was 4.90% and 0.27 higher than when using
Faster-RCNN with ResNet101 as the backbone network (Faster-RCNN_ResNet101). The results fully
confirm the effectiveness of the proposed algorithm.

Keywords: ResNet101; FPN; UAV; deep learning; loblolly pine

1. Introduction

A tree crown comprises the part of the tree bearing live branches and foliage. Photo-
synthesis occurs in leaves, and its resulting products are translocated to other tree parts
via branches. Therefore, foresters always use the tree crown’s characteristics, particularly
the crown width, to describe a tree’s growth potential. Previous studies have confirmed
strong, positive relationships between crown width, tree growth, and carbon sequestra-
tion [1]. Hao et al. studied the relationship between teak growth factor and crown width,
and established a crown growth prediction model, providing theoretical support for the
management of teak plantations [2]. In a 10-year comparative study, Jones et al. demon-
strated relationships between crown damage and survival, diameter growth, and tree
height growth in Douglas firs [3]. Putney and Maguire studied nitrogen use efficiency in
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Douglas fir plantations in western Oregon, where tree growth was measured by changes in
crown shape and vertical leaf distribution [4]. Feng et al. argued that the vertical functional
variation in leaf traits might indicate niche partitioning within forests [5]. It has been noted
that crown width information is also vital in forest modeling, especially for models that
include competition indices [6–8]. Therefore, it is of great interest to foresters to develop
methods that can accurately measure crown characteristics such as crown width and height.

Tree crown width is often defined as the average width of a tree crown in the north–
south and east–west directions [9]. Despite the wide use of tree crown width data in
managing forests, accurately measuring crown width is always challenging. Conventional
crown width measurement methods include the vertical sighting method [10] and the
projection method [11]. The vertical sighting method is quick but less accurate than the
projection method. The projection method takes a long time and has low measurement
efficiency [12]. However, trees often grow in rows, with tree crowns of varying shapes
overlapping, and there is also incompleteness caused by occlusion, making individual
tree crown extraction a challenging problem [13]. The use of new techniques to measure
crown width has become a hot topic in recent years. With the popularity of smart mobile
devices, some scholars have used smartphones to identify and measure tree crowns. For
example, Xinmei et al. proposed a passive method for the measurement of tree height and
crown diameter based on a smartphone monocular camera [14]. With the development
of artificial intelligence and unmanned aerial vehicle (UAV) technology, interest in using
UAVs equipped with laser radar and high-definition cameras to measure the crown width
of trees is increasing. For example, Ahmadi et al. proposed segmenting early Ganoderma-
infected oil palms based on UAV images and artificial neural networks [15]. Safonova et al.
proposed a method for extracting tree crowns from UAV images for species classification
and stand assessment [16]. Kolanuvada et al. used a UAV paired with a multispectral
camera to obtain photos of multiple frequency bands of a forest, employed a simple deep
learning convolutional neural network (CNN) to train the images, and developed a linear
clustering algorithm to optimize the crown extraction and obtain the crown measure-
ments [17]. Guerra-Hernández et al. used a UAV equipped with an aerial camera and a
laser scanner to obtain the high-density 3D point cloud of a eucalyptus plantation, and
then conducted 3D modeling to obtain the 3D canopy structure of the eucalyptus forest,
which was then incorporated into a prediction of the volume of eucalyptus plantations [18].
Gurumurthy et al. proposed a method for the semantic segmentation of mango trees in
high-resolution aerial images and a new method for single crown detection using the
segmentation output [19]. To mitigate the impacts of the great homogeneity of neighbor-
ing trees and the interlaced crown, Li et al. proposed a crown width estimation method
based on an adaptive neuro-fuzzy inference system to improve the intelligence level of
crown width estimation [20]. Ritter and Nothdurft proposed a multi-layer seeded region
growing-based approach for automatically assessing crown projection areas (CPAs) based
on 3D point clouds derived from terrestrial laser scanning (TLS) [21]. In a study based on
larch plantations with different stem densities, a two-stage individual tree crown (ITC)
segmentation method using airborne light detection and ranging (LiDAR) point clouds
was presented [22]. Quan et al. (2019, 2020) evaluated the ability of a UAV laser scanning
(UAVLS) system to extract crown structure information from larch plantations [23,24]. They
also compared the accuracy of the UAVLS system and airborne laser scanning (ALS) in
extracting crown feature attributes. Currently, most crown extraction methods are based
on laser scanning and semantic segmentation techniques. Laser scanning technology and
segmentation technology can extract more information about the crown, but laser scanning
equipment is expensive, and segmentation technology is complicated to use in terms of
dataset establishment and it requires outlining along the crown edge. Therefore, it is
necessary to find a low-cost, hardware-intensive crown extraction method. The dataset
construction of the object-detection model is highly convenient for rapid crown detection
and crown width measurement.
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Loblolly pine is the second most widely distributed tree species in the United States,
and it is the most important commercially in the southeastern United States. Therefore,
monitoring the growth of these loblolly pine stands is vital to efficiently manage the stands.
In 2021, Lou et al. applied object-detection technology to the measurement of loblolly
pine crowns [25]. A UAV was used to obtain the orthophoto images of young and mature
stands of Pinus taeda in eastern Texas, USA, and three advanced object-detection methods
were used to identify the crown and extract the crown width. The faster region-based
convolutional neural network (Faster-RCNN) method performed significantly better than
the single-shot multibox detector (SSD) on sparse young loblolly pine forests, but on the
mature loblolly pine stand, the Faster-RCNN model performed poorly in recognizing the
crown and measuring the crown width. The poor performance of Faster-RCNN in the
mature stand was unexpected since, in theory, Faster-RCNN is a second-order detector,
while you-only-look-once (YOLO) and SSD are single-order detectors. Compared with
single-order networks, second-order networks are often more accurate with advantages in
multi-scale, high-precision, and small-object detection [26]. Faster-RCNN also outperforms
the other two methods in handling the spatial constraints of the algorithm. The main Faster-
RCNN improvement is to enhance the adaptability of Faster-RCNN for the crown detection
and measurement of both sparse young stands and dense mature stands of loblolly pine.
In order to enhance the performance of Faster-RCNN in dense loblolly pine forest sample
sites, this study proposes two new Faster-RCNN algorithms, which are then applied to
a mature stand to evaluate their accuracy in recognizing tree crowns and measuring tree
crown widths.

2. Materials and Methods
2.1. Materials
2.1.1. Image Acquisition

Dataset creation is a critical step in object detection using deep learning models. The
study area was located in east Texas, which has a subtropical climate, with heavy rain
during the summer.

The study area was located in Rusk, Cherokee County (31◦45′31.3′′ N, 95◦02′318′′ W).
The site was originally an old field on flat terrain. The site was planted with loblolly pine
seedlings in 2001, and in September 2019, when the photos were taken, it had become a
mature pine stand with a closed canopy and a high density. The trees averaged 22.2 cm in
diameter at breast height (DBH), 16.9 m in total height, and the stand had 35.2 m2 in basal
area per hectare. Figure 1 shows a global orthophoto image of the study area.
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The UAV model used in this study was the DJI Phantom 4 Pro, manufactured by
Shenzhen DJI Technology Co., Ltd. This UAV is equipped with a 1-inch 20-million-pixel
image sensor with a maximum ascent speed of 6 m/s, a maximum descent speed of 4 m/s,
and a maximum horizontal flight speed of 58 km/h in attitude mode. We used Pix4Dcapture
(PIX4D) software to control the flight and PhotoScan (v1.2.5) to generate the orthophoto
images. Pix4D capture is a mobile flight planning app that allowed us to set flight heights,
camera angles, image overlaps, and flight speeds. PhotoScan is an excellent real-world
modeling software that automatically generates high-quality 3D models based on images
without setting initial values or camera-check calibration. It can process photos according
to multi-view 3D reconstruction technology and generate 3D models with real coordinates
through control points. In order to maintain sufficient light and to reduce the influence of
clouds and ground shadows, the photos were taken during calm periods with stable light
intensity. In Pix4Dcapture, we selected the rectangular simple grid route planning mode to
instruct the UAV to collect images automatically. The UAV flight parameters were set as
follows: an altitude of 46 m, a camera angle of 90◦ vertically downward, an overlap rate
of 90%, and a flight speed of 27 km/h. The original image was in the JPEG format, and
the image data included position and orientation system (POS) data, along with precise
GPS coordinates. The main orthophoto production steps were as follows: (1) PhotoScan
quickly found matching points between all overlapping images, estimated the camera
position for each image, and built a sparse point cloud (the processing time depends on the
number of photos and the image resolution). (2) A dense point cloud was built. Based on
the estimated camera position, the software calculated its depth information and merged
it into a dense point cloud model. (3) A grid was generated. After the dense point cloud
was reconstructed, a polygon network model was generated based on the dense point
cloud data. (4) The DEM model was constructed based on the grid model, and then the
high-resolution orthophoto image was generated according to the DEM model. Figure 2
shows the UAV flight routes and the real-time images taken in the study area.
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2.1.2. Image Annotation and Development of the Dataset

In this study, the orthographic images were cut into several 500 × 500-pixel images,
each of which contained several loblolly pine tree crowns. LabelImg is a commonly used
dataset annotation tool for deep neural network training that is written in Python and uses
Qt (a cross-platform C++ graphical-user-interface application-development framework)
as its graphical interface. It was used to manually annotate the obtained samples, and the
rectangular boxes marked with this tool are shown in Figure 3.

A total of 207 samples were randomly selected from the whole orthoimage as datasets,
and the 207 samples were also cut into 500× 500-pixel datasets. During the training process,
the datasets were further divided into training sets and validation sets according to a 9:1
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ratio. In the model test section, 185 trees were selected as the test set independent of the
training samples. Figure 3 shows the annotated crowns.
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Figure 3. The crowns of each image in the training set were labeled using LabelImg software. The
red box is the location of the crown marked by LabelImg.

Each annotated image was saved in PASCAL VOC format as XML files [27]. The file
content included the image’s path, name, size, and annotated border coordinate.

2.1.3. Image Augmentation

The deep convolution neural network is ideal for many tasks in the field of computer
vision. However, using a neural network for object detection generally relies on thousands of
pictures for training. Therefore, it is necessary to fine-tune and optimize the model parameters
for distinct objects to facilitate the convergence of the model’s loss function to its global
minimum and enhance its efficacy in detecting diverse objects. However, in the process of real
data collection, it is not easy to collect such a huge amount of data; for the model to achieve a
better detection result in practical scenarios, and to improve the robustness and generalization
ability of the model, data augmentation on the existing dataset is needed [28].

Common augmentation techniques include flipping the image, moving the object
position in the image, adding Gaussian noise, improving image contrast, and exposing the
image. The crowns in this study exhibited similarities in spectral features. To capitalize
on these features, we augmented the dataset by applying operations that manipulate the
brightness levels and add Gaussian noise, enhancing the crown’s color characteristics.
Figure 4 shows a set of data enhancement samples.
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2.2. Methods

To improve the crown recognition and crown width extraction results of different
models, the orthophoto map of the whole sample plot was first input into the model for
recognition and extraction. However, the orthophoto map was too large so it was cut into
several small images using the cropped part of the picture in the crown width extraction
program. The size of each small graph was 900 × 900 pixels. To avoid missed detection in
the process of object detection, the two connected images maintained a 50% coincidence
degree for traversal identification. The prediction box was then scaled and offset. Finally,
the crown coordinates were identified. A red detection box was used to mark each identified
crown position, and the model could automatically extract the position coordinates of the
detection box, such as (990, 1245, 560, 962). Using the position coordinates of the detection
box, we computed the number of pixels corresponding to the length and width of the
detection box. We then computed the predicted length and width according to the actual
length corresponding to a single pixel. Finally, the predicted crown width was calculated
by averaging. To measure the actual size of the crown width, we used LabelImg to frame
the border of the tree crown, resulting in an XML file with generated position coordinates.
The program was then used to extract the coordinates of the framed border to compute the
number of pixels, along with the length and width. After extracting the number of pixels
for length and width, the real length and width were calculated according to the actual
length corresponding to a single pixel. The real crown width was obtained by averaging.

2.2.1. Crown Detection Using Faster-RCNN

As mentioned earlier, object detection in complex environments remains a challenge in
machine vision and deep learning. In the field of object detection, RCNN is a classic method.
Compared with the traditional method of extracting the target position by traversing images
with candidate boxes of different sizes, RCNN introduces the convolutional neural network
to extract the depth features, and then maps the extracted features to the classifier, which
determines whether the target is contained in the search area and calculates its confidence,
obtaining more accurate results.

Ren et al. proposed Faster-RCNN [29], which is based on RCNN and Fast-RCNN [30].
Compared with RCNN and Fast-RCNN, Faster-RCNN has dramatically improved detection
accuracy and efficiency. The notable improvement of Faster-RCNN over Fast-RCNN is that
it does not use a selective search to create region proposals. However, it introduces a region
proposal network (RPN) to extract candidate regions to realize the sharing of convolution
features between region proposal and object detection. It can conduct end-to-end training
for generating candidate regions, which saves training time.

Faster-RCNN is composed of two parts: Fast-RCNN and RPN. The primary function
of RPN is to filter out the high-quality regional proposal boxes in the feature map. Then,
the sliding window traverses each point in the feature map and configures k anchor boxes
of different sizes on each point. The anchor box is used to extract features, and the softmax
is used to determine whether the anchors extract objects that are positive or negative. The
bounding box regression is then used to correct them to obtain a more accurate regional
proposal. Subsequently, the proposal is input into the region of interest (ROI) pooling layer.
This layer mainly transforms the features corresponding to the candidate regions in feature
maps and proposals to a fixed size. It inputs the next whole connection layer (classifier) for
category judgment and object localization. Figure 5 shows the structure of Faster-RCNN.
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Figure 5. Flow chart of the Faster-RCNN algorithm based on VGG16 backbone network.

2.2.2. Proposed Algorithm: Faster-RCNN with ResNet101

The backbone network of Faster-RCNN is visual geometry group 16 (VGG16) [31],
composed of thirteen 3 × 3 convolution layers, three fully connected layers, and several
pooling layers. This improves the accuracy of classification results by increasing the
number of small convolution kernels and increasing the depth of the network. The network
structure is simple and uses the superposition of small convolution kernels instead of large
ones, with more nonlinear transformations than a single convolution layer. To further
optimize the model recognition effect, this study first adopted the method of deepening
the backbone network depth. However, with the deepening of the network, the model may
produce gradient disappearance in the training process.

Based on the above premise, this study used ResNet101 [32] to replace VGG16 as the
backbone network for feature extraction. Based on the ConvNet model, ResNet introduces
numerous identical mappings of y = x across the convolutional layers. Here, x and y
represent tensors within the input and output feature maps, respectively. Its main function
is to increase the network with depth change without producing the phenomenon of
gradient disappearance or weight attenuation. The residual block structure is shown in
Figure 6. F(x) and G(x) represent residuals, and G(x) + x is the mapping output; thus, the
final network output is H(x) = G(x) + x. Since there are three relu functions and three
convolution layers in the residual block of the instance, the final framework output results
can be expressed as follows:

F(x) = relu1(w1 × x) (1)

G(x) = relu2(w2 × F(x)) (2)

H(x) = G(x) + x (3)

Figure 6 shows the specific structure of the residual block.
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The specific network structure of ResNet101 used in this experiment is shown in
Figure 7.
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2.2.3. Proposed Algorithm: Faster-RCNN with ResNet101 and FPN

To solve the problem of deep information loss that may occur when ResNet101 replaces
VGG16 as the backbone network, this study proposed a combination of ResNet101 and
a feature pyramid network to create the FPN_ResNet101 structure. The feature pyramid
network (FPN), proposed by Lin et al. [33], is a top-down feature fusion method with
horizontal connection. Common object-detection algorithms only use top-level features to
predict, while shallow location information is lost. Figure 8 shows the structure of FPN
fusing high-level and shallow features for prediction.
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Finally, the Faster-RCNN model based on FPN and ResNet101 was improved in this
study. Since the canopy occupies most of the area of each image in the dataset, while the
background area occupies only a tiny portion, to output the canopy color features with
greater weight during the training process, the RGB averaging module was added before
the base FPN_ResNet1010 structure. An image-averaging operation was performed before
inputting each dataset into the model. The resulting values were input to the model as part
of the parameters to facilitate more targeted canopy color features trained in the model.
The FPN_ResNet101 structure replaced the VGG16, and the Region Proposal Network
(RPN) in the Faster-RCNN was scale-separated. The FPN can fuse different scales for
detection, and it comprises a three-stage architecture that involves bottom-up feature map
generation at multiple scales, top-down feature enhancement, and lateral connections.
Given the convolutional outputs at different levels, denoted by Cx, the intermediate feature
maps represented by Mx, and the ultimately fused feature map illustrated by Px, the three
components are mutually aligned. In the five feature layers of FPN, anchors with different
sizes were defined, which were 32 × 32, 128 × 128, 256 × 256, and 512 × 512. There were
three ratios of 1:1, 1:2, and 2:1. Therefore, there were 15 anchors. The improved model
structure of FPN_Faster-RCNN_ResNet101 is shown in Figure 9.
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3. Results and Discussion
3.1. Experimental Procedures and Metrics
3.1.1. Experimental Configuration and Dataset

The network training configuration environment was Windows 11, Intel(R) CoreTM

i7-10750H CPU@2.60 GHz processor, 16 GB memory, and NVIDIA GeForce GTX 1650Ti
with 4 GB of video memory as the GPU. Microsoft headquarters in Redmond, Washington,
USA. Intel’s headquarters and NVIDIA’s headquarters are both located in Santa Clara,
California, USA. The experimental environment was Python 3.6, TensorFlow-GPU1.12,
CUDA9.0, and CUDNN7.3.

Since the Faster-RCNN model requires a large amount of data training to improve
its robustness, but the number of existing datasets is limited, migration learning helps to
improve this situation. Specifically, it trains on a large dataset and then takes the obtained
weight as the training initialization parameter. This study used the initial weights of
ResNet101 network model weights from pre-training on the ImageNet dataset. The total
number of iterations was 20,000, and the model was saved every 5000 times. The learning
rate was set to 0.001, and the batch_size was set to 256. The FPN_Faster-RCNN_ResNet101
model selected the ResNet101 network model, which was pre-trained on the ImageNet
dataset for initialization training. The format of the dataset was VOC, and the input image
size was set to 512 × 512.

3.1.2. Evaluation Index

For the model evaluation, it is necessary to evaluate the crown recognition and crown
width extraction of the model, respectively.

The crown recognition was evaluated by calculating the accuracy, precision, recall,
and F1-score:

Accuracy =
TP

TP + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-Score = 2× Precision× Recall
Precision + Recall

(7)

where TP is the number of correctly divided positive cases (i.e., the number of correctly
identified crowns); FP represents the number of incorrectly divided positive cases (i.e.,
the number of incorrectly identified crowns); and FN denotes the number of incorrectly
divided negative cases (in this paper, the number of unidentified crowns).

Among the four indexes of crown recognition (Equations (4)–(7)), the accuracy is used
to reflect the ability of the model to predict the whole sample, the precision is used to reflect
the proportion of the real target in the model prediction, the recall rate is used to reflect
the proportion of the model prediction positive cases to the number of real positive cases,
and the F1-score, also called the balanced F score, is defined as the harmonic average of the
precision and the recall rate.

In the crown width extraction part, the following three indicators were calculated to
evaluate the accuracy of the crown width model (Equations (8)–(10)). Bias represents the
deviation between the estimated value and the actual value. The accuracy of the crown
width model is demonstrated by calculating the root mean square error (RMSE) and the
coefficient of determination (R2):

Bias =
1
N ∑N

i=1|ŷi − yi| (8)
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RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(9)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (10)

where ŷi represents the estimated value; yi denotes the actual value; N is the number of
samples; and y = 1

N ∑N
i=1 yi.

3.2. Results and Discussion
3.2.1. Identify Impressions

In our previous study, the Faster-RCNN, YOLO, and SSD models achieved good
results in young forests, for which Faster-RCNN had the highest recognition accuracy.
Figure 10 shows the crown-detection effect of the three models on young forests, and
Table 1 presents their respective detection results. The data comes from “Measuring loblolly
pine crowns with drone imagery through deep learning” [25]. Faster-RCNN outperformed
the other two methods in young forest detection.
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Figure 10. (a) Faster-RCNN detection effect image; (b) YOLO detection effect image; (c) SSD detection
effect image. The red square is the crown detected by the model.

Table 1. Classification detection results of Faster-RCNN, YOLO, and SSD [25].

Index Faster-RCNN YOLO SSD

TP 128 126 125
FP 1 6 1
FN 0 2 3

Precision (%) 99.22 95.45 99.21
Recall (%) 100.00 98.44 97.66

Accuracy (%) 99.22 94.03 96.90
F1-score (%) 99.61 96.92 98.43

However, in the mature forest, the original Faster-RCNN model performed poorly.
The objective of this research was to enhance the performance of Faster-RCNN and enhance
its versatility when operating in mature forest environments. Figure 11 shows the crown-
detection effect of the two models in orthophoto images.
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is the crown detected by the model.

3.2.2. Crown Identification

We use Method 1 to represent YOLO, Method 2 to represent SSD, Method 3 to represent
Faster-RCNN_ResNet101, and Method 4 to represent FPN_Faster-RCNN_ResNet101.

Due to the slow growth of trees, in crown identification, the accurate detection of
each canopy is more critical than rapid crown detection, so models with higher accuracy
are more suitable for this task. In this experiment, we used the computer mentioned in
Section 3.1.1 as the experimental equipment, and we selected the single crown recognition
time to measure the model detection speed. Two-stage detector recognition speed is slower
than a one-stage detector, but the accuracy is higher. It can be seen from Table 2 that
Method 1 and Method 2 were faster than Method 3 and Method 4. However, in this task,
FPN_Faster-RCNN_ResNet101 (Method 4) was better than SSD in recall, accuracy, and
F1-score, but slightly worse than SSD in precision. The two-stage detector, FPN_Faster-
RCNN_ResNet101 (Method 4), gave the best overall results, achieving better accuracy than
Method 2, even at a similar speed.

Moreover, Method 4 improved the accuracy by 4.9% over Method 3, which also proved
the feasibility of the improved method.
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Table 2. Classification detection results of YOLO, SSD [25], and two improved Faster-RCNN algo-
rithms.

Index (1) YOLO (2) SSD (3) Faster-
RCNN_ResNet101

(4) FPN_Faster-
RCNN_ResNet101

Time (ms) 55 57 72 69
TP 175 180 170 181
FP 3 4 13 5
FN 10 5 6 4

Precision (%) 98.31 97.83 93.19 97.31
Recall (%) 94.59 97.30 96.74 97.84

Accuracy (%) 93.09 95.24 90.36 95.26
F1-Score (%) 96.42 97.56 94.93 97.58

In the actual training process, with the deepening of the network depth, the gradient
is backward propagation. After increasing the network depth, the forward gradient will
be minimal, while the model also has problems such as learning stagnation and gradient
disappearance. Table 1 presents the models’ performance in crown recognition based on
the independent test dataset. After replacing VGG16 with ResNet101, Method 3 improved
the efficiency of crown recognition, with the precision, recall, accuracy, and F1-score
reaching 93.19%, 96.74%, 90.36%, and 94.93%, respectively. The accuracy and precision
were comparable, although slightly weaker, than those for Method 1 and Method 2. After
fusing FPN and ResNet101, VGG16 was replaced by the FPN_ResNet101 structure. In
crown recognition, the four indexes of Method 4 were improved to varying degrees, of
which accuracy was the most improved, reaching 95.26%. Compared with Method 3, the
four indexes increased by 4.12%, 1.10%, 4.90%, and 2.65%, respectively. Using the FPN to
help detect objects at different scales can theoretically improve the small-target-detection
effect of the model. The experimental results in Table 1 also prove this. It was verified that
the improved method helps to enhance the canopy detection performance of Faster-RCNN
in dense loblolly pine forests, and the feasibility of the improved means was well illustrated.

3.2.3. Extraction of Crown Width

Table 3 and Figure 12 present the results of the models estimating crown width using
the independent test dataset. Overall, the application of Method 3 did not achieve the same
accuracy and precision as Method 1 and Method 2. Through the study of the residual block
structure, it was found that the ResNet101 network has a deep information loss problem.
In ResNet101, identity mapping must be used when the size of the building block does
not match the size of the next building block. According to Figure 7, in the four mapping
stages of ResNet101, there are only four continuous 1 × 1 convolutions, but there is no
linear relationship between the two, which limits its learning ability and eventually leads
to the loss of deep information.

Table 3. The mature loblolly pine crown-width-measurement effect index of YOLO, SSD [25], and
two improved Faster-RCNN algorithms.

Index (1) YOLO (2) SSD (3) Faster-
RCNN_ResNet101

(4) FPN_Faster-
RCNN_ResNet101

Bias (m) 0.92 0.99 1.15 0.98
RMSE (m) 0.66 0.31 1.06 0.45

R2 0.69 0.94 0.68 0.95
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regression graphs of (4) the FPN_Faster-RCNN_ResNet101 model.

The FPN is a way to fuse low-level and high-level features. The shallow feature
map has a small receptive field and less semantic information, but the spatial location
information is accurate. After the fusion of ResNet101 using the FPN, we created a new
network structure, named FPN_ResNet101, and applied this structure to Faster-RCNN.
Method 4 measured crown width very accurately and precisely, resulting in a bias of 0.98,
an RMSE of 0.45, and an R2 of 0.95. These estimates were comparable to those of Method 2,
but more improved than those of Method 1. Compared with Method 3, the RMSE decreased
by 0.61 and the R2 increased by 0.27.

FPN_Faster-RCNN_ResNet101 offers a huge improvement in crown width measure-
ment, with a higher R2 than all the other methods. The feasibility of using FPN and
ResNet101 to improve the original model is illustrated.

4. Conclusions

In this study, high-resolution orthophotos, obtained by UAVs shooting a mature
loblolly pine forest in eastern Texas, were used as the data source. ResNet101 and
FPN_ResNet101 replaced the backbone network VGG16 of the original Faster-RCNN
model. Using FPN_ResNet101, the crown recognition accuracy rate of Method 4 reached
95.26%, and the crown width extraction R2 reached 0.95. Compared with Method 3, the
two indexes had increased by 4.90% and 0.27, respectively, which proves the feasibility
of improving the original model using FPN_ResNet101 network architecture and the su-
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periority of the improved model in this research field. At the same time, with regard
to recognition speed, the improved Method 4 (FPN_Faster-RCNN_ResNet101) was also
enhanced to a certain extent in comparison with Method 3 (Faster-RCNN_ResNet101). The
speed of the two-stage detector was improved to a level similar to that of the single-stage
detector, and some progress was made in comparison with Method 2 (SSD) in terms of
crown detection and crown width extraction. However, due to the similarity of trees, the
accurate identification and classification of tree crowns in mixed forests remains a signifi-
cant challenge. In terrain such as hills, accurate canopy width measurement is impossible
due to the change in relative distance between the UAV and the ground, which is a crucial
direction for future research. Nonetheless, the excellent accuracy of Faster-RCNN suggests
the model’s applicability in dense loblolly pine forests, providing an alternative for forestry
practitioners in tree mensuration.
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