Environmental Gradients and Vegetation Types Alter the Effects of Leaf Traits on the Dominance of Woody Angiosperm Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Leaf Traits
2.3.1. LA and LLWR
2.3.2. SLA
2.3.3. PF
2.3.4. LN and LP
2.4. Community Investigation and Species Dominance
2.5. Data Analysis
3. Results
3.1. Environmental Variation in the Relationships between Species Dominance and Their Leaf Traits
3.2. The Relative Importance of Leaf Traits in Species Dominance
4. Discussion
4.1. Overall Trends
4.2. Pattern of Different Climate Zones or Vegetation Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, T.-T.; Wang, H.; Harrison, S.P.; Prentice, I.; Ni, J.; Wang, G. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 2015, 12, 5339–5352. [Google Scholar] [CrossRef]
- Yao, L.; Ding, Y.; Yao, L.; Ai, X.; Zang, R. Trait Gradient Analysis for Evergreen and Deciduous Species in a Subtropical Forest. Forests 2020, 11, 364. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.P.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Cheng, X.; Ping, T.; Li, Z.; Wang, T.; Han, H.; Epstein, H.E. Effects of environmental factors on plant functional traits across different plant life forms in a temperate forest ecosystem. New For. 2021, 53, 125–142. [Google Scholar] [CrossRef]
- Mao, W.; Li, Y.-L.; Zhang, T.-H.; Zhao, X.-Y.; Huang, Y.-X.; Song, L.-L. Research advances of plant leaf traits at different ecology scales. J. Desert Res. 2012, 32, 33–41. [Google Scholar]
- Wang, R.; Yu, G.; He, N.; Wang, Q.; Zhao, N.; Xu, Z. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China. J. Geogr. Sci. 2016, 26, 15–26. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, T.-X. Advances in ecological studies on leaf lifespan and associated leaf traits. Chin. J. Plant Ecol. 2004, 28, 844. [Google Scholar]
- Bon, M.P.; Böhner, H.; Kaino, S.; Moe, T.; Bråthen, K.A. One leaf for all: Chemical traits of single leaves measured at the leaf surface using near-infrared reflectance spectroscopy. Methods Ecol. Evol. 2020, 11, 1061–1071. [Google Scholar]
- Wright, T.E.; Kasel, S.; Tausz, M.; Bennett, L.T. Leaf traits of Eucalyptus arenacea (Myrtaceae) as indicators of edge effects in temperate woodlands of south-eastern Australia. Aust. J. Bot. 2013, 61, 365–375. [Google Scholar] [CrossRef]
- Niklas, K.J. A mechanical perspective on foliage leaf form and function. New Phytol. 1999, 143, 19–31. [Google Scholar] [CrossRef]
- Malhado, A.C.M.; Whittaker, R.J.; Malhi, Y.; Ladle, R.J.; Ter Steege, H.; Butt, N.; Aragão, L.; Quesada, C.A.; Murakami-Araujo, A.; Phillips, O.L. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 2009, 6, 1577–1590. [Google Scholar] [CrossRef]
- Herrera, C.M.; Medrano, M.; Bazaga, P. Continuous within-plant variation as a source of intraspecific functional diversity: Patterns, magnitude, and genetic correlates of leaf variability in Helleborus foetidus (Ranunculaceae). Am. J. Bot. 2015, 102, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.; Zaragoza-Castells, J.; Bloomfield, K.J.; Turnbull, M.H.; Bonal, D.; Burban, B.; Salinas, N.; Cosio, E.; Metcalfe, D.J.; Ford, A. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytol. 2017, 214, 1064–1077. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Portsmuth, A.; Tobias, M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytol. 2006, 171, 91–104. [Google Scholar] [CrossRef]
- Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol. 2011, 190, 724–739. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Shrestha, N.; Xu, X.; Wang, Q.; Jia, W.; Wang, Z. Spatiotemporal variation in leaf size and shape in response to climate. J. Plant Ecol. 2020, 13, 87–96. [Google Scholar] [CrossRef]
- Leigh, A.; Sevanto, S.; Close, J.; Nicotra, A. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant Cell Environ. 2017, 40, 237–248. [Google Scholar] [CrossRef]
- Louf, J.-F.; Nelson, L.; Kang, H.; Song, P.N.; Zehnbauer, T.; Jung, S. How wind drives the correlation between leaf shape and mechanical properties. Sci. Rep. 2018, 8, 16314. [Google Scholar] [CrossRef]
- Kang, X.; Li, Y.; Zhou, J.; Zhang, S.; Li, C.; Wang, J.; Liu, W.; Qi, W. Response of Leaf Traits of Eastern Qinghai-Tibetan Broad-Leaved Woody Plants to Climatic Factors. Front. Plant Sci. 2021, 12, 679726. [Google Scholar] [CrossRef]
- Li, Y.; Kang, X.; Zhou, J.; Zhao, Z.; Zhang, S.; Bu, H.; Qi, W. Geographic Variation in the Petiole–Lamina Relationship of 325 Eastern Qinghai–Tibetan Woody Species: Analysis in Three Dimensions. Front. Plant Sci. 2021, 12, 2339. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.; Falster, D.S.; Groom, P.K.; Hikosaka, K.; Lee, W.; Lusk, C.H.; Niinemets, Ü.; Oleksyn, J. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 2005, 14, 411–421. [Google Scholar] [CrossRef]
- Guo, Z.; Lin, H.; Chen, S.; Yang, Q. Altitudinal patterns of leaf traits and leaf allometry in bamboo Pleioblastus amarus. Front. Plant Sci. 2018, 9, 1110. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 2001, 82, 453–469. [Google Scholar] [CrossRef]
- Kayama, M.; Kitaoka, S.; Wang, W.; Choi, D.; Koike, T. Needle longevity, photosynthetic rate and nitrogen concentration of eight spruce taxa planted in northern Japan. Tree Physiol. 2007, 27, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü.; Al Afas, N.; Cescatti, A.; Pellis, A.; Ceulemans, R. Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiol. 2004, 24, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Filartiga, A.L.; Klimeš, A.; Altman, J.; Nobis, M.P.; Crivellaro, A.; Schweingruber, F.; Doležal, J. Comparative anatomy of leaf petioles in temperate trees and shrubs: The role of plant size, environment and phylogeny. Ann. Bot. 2022, 129, 567–582. [Google Scholar] [CrossRef]
- Sarlikioti, V.; De Visser, P.; Marcelis, L. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional–structural plant model. Ann. Bot. 2011, 107, 875–883. [Google Scholar] [CrossRef]
- Perez, R.P.; Dauzat, J.; Pallas, B.; Lamour, J.; Verley, P.; Caliman, J.-P.; Costes, E.; Faivre, R. Designing oil palm architectural ideotypes for optimal light interception and carbon assimilation through a sensitivity analysis of leaf traits. Ann. Bot. 2018, 121, 909–926. [Google Scholar] [CrossRef]
- Zhong, M.; Castro-Díez, P.; Puyravaud, J.P.; Sterck, F.J.; Cornelissen, J.H. Convergent xylem widening among organs across diverse woody seedlings. New Phytol. 2019, 222, 1873–1882. [Google Scholar] [CrossRef]
- Takenaka, A. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol. Res. 1994, 9, 109–114. [Google Scholar] [CrossRef]
- Wang, J.; Wen, X.; Zhang, X.; Li, S.; Zhang, D.-Y. Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Sci. Rep. 2018, 8, 7406. [Google Scholar] [CrossRef] [PubMed]
- Anten, N.P.; Hirose, T. Limitations on photosynthesis of competing individuals in stands and the consequences for canopy structure. Oecologia 2001, 129, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Burrascano, S.; Ripullone, F.; Bernardo, L.; Borghetti, M.; Carli, E.; Colangelo, M.; Gangale, C.; Gargano, D.; Gentilesca, T.; Luzzi, G. It’s a long way to the top: Plant species diversity in the transition from managed to old-growth forests. J. Veg. Sci. 2018, 29, 98–109. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, G.; Li, M.; Zhang, M.; Zhang, L.; Zhang, X.; An, L.; Xu, S. C: N: P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLoS ONE 2015, 10, e0119935. [Google Scholar] [CrossRef]
- Šímová, I.; Violle, C.; Kraft, N.J.; Storch, D.; Svenning, J.C.; Boyle, B.; Donoghue, J.C.; Jørgensen, P.; McGill, B.J.; Morueta-Holme, N. Shifts in trait means and variances in North American tree assemblages: Species richness patterns are loosely related to the functional space. Ecography 2015, 38, 649–658. [Google Scholar] [CrossRef]
- E-Vojtkó, A.; de Bello, F.; Durka, W.; Kuehn, I.; Goetzenberger, L. The neglected importance of floral traits in trait-based plant community assembly. J. Veg. Sci. 2020, 31, 529–539. [Google Scholar] [CrossRef]
- Illa, E.; Ninot, J.M.; Anadon-Rosell, A.; Oliva, F. The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities. Folia Geobot. 2017, 52, 199–215. [Google Scholar] [CrossRef]
- Akram, M.A.; Zhang, Y.; Wang, X.; Shrestha, N.; Malik, K.; Khan, I.; Ma, W.; Sun, Y.; Li, F.; Ran, J. Phylogenetic independence in the variations in leaf functional traits among different plant life forms in an arid environment. J. Plant Physiol. 2022, 272, 153671. [Google Scholar] [CrossRef]
- Han, Z.-Q.; Liu, T.; Liu, H.-F.; Hao, X.-R.; Chen, W.; Li, B.-L. Derivation of species interactions strength in a plant community with game theory. Ecol. Model. 2019, 394, 27–33. [Google Scholar] [CrossRef]
- Winemiller, K.O.; Fitzgerald, D.B.; Bower, L.M.; Pianka, E.R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 2015, 18, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Šímová, I.; Rueda, M.; Hawkins, B.A. Stress from cold and drought as drivers of functional trait spectra in North American angiosperm tree assemblages. Ecol. Evol. 2017, 7, 7548–7559. [Google Scholar] [CrossRef]
- Akram, M.A.; Wang, X.; Hu, W.; Xiong, J.; Zhang, Y.; Deng, Y.; Ran, J.; Deng, J. Convergent variations in the leaf traits of desert plants. Plants 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Siefert, A.; Fridley, J.D.; Ritchie, M.E. Community functional responses to soil and climate at multiple spatial scales: When does intraspecific variation matter? PLoS ONE 2014, 9, e111189. [Google Scholar] [CrossRef]
- Mori, A.S.; Shiono, T.; Koide, D.; Kitagawa, R.; Ota, A.T.; Mizumachi, E. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glob. Ecol. Biogeogr. 2013, 22, 878–888. [Google Scholar] [CrossRef]
- Gagliardi, S.; Martin, A.R.; Virginio Filho, E.d.M.; Rapidel, B.; Isaac, M.E. Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes. Agric. Ecosyst. Environ. 2015, 200, 151–160. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, H.; An, L. Plant size influences abundance of floral visitors and biomass allocation for the cushion plant Thylacospermum caespitosum under an extreme alpine environment. Ecol. Evol. 2019, 9, 5501–5511. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 2006, 87, 1733–1743. [Google Scholar] [CrossRef]
- Selaya, N.G.; Oomen, R.J.; Netten, J.J.; Werger, M.J.; Anten, N.P. Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. J. Ecol. 2008, 96, 1211–1221. [Google Scholar] [CrossRef]
- Thakur, D.; Rathore, N.; Chawla, A. Increase in light interception cost and metabolic mass component of leaves are coupled for efficient resource use in the high altitude vegetation. OIKOS 2019, 128, 254–263. [Google Scholar] [CrossRef]
- Falster, D.S.; Westoby, M. Leaf size and angle vary widely across species: What consequences for light interception? New Phytol. 2003, 158, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Zhuang, H.; Wu, L.; Liu, Q.; Shen, G.; Berg, B.; Man, R.; Liu, C. Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: An analysis based on local observations. For. Ecol. Manag. 2011, 261, 195–202. [Google Scholar] [CrossRef]
- Arévalo, J.R.; Delgado, J.D.; Otto, R.; Naranjo, A.; Salas, M.; Fernández-Palacios, J.M. Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect. Plant Ecol. Evol. Syst. 2005, 7, 185–202. [Google Scholar] [CrossRef]
Site | Altitude (m) | Climatic Zone | Vegetation Type | MAT (°C) | FFM (Months) | LGS (Days) | Canopy Height (m) |
---|---|---|---|---|---|---|---|
1 | 1080 | T-S | DEF | 14–16 | >10 | >300 | 15–20 |
2 | 1430 | T-S | DEF | 12–15 | 9–10 | 280–300 | 15–18 |
3 | 1610 | T-S | DF | 11–14 | 8–9 | 260–280 | 15–18 |
4 | 1750 | T-S | DF | 10–13 | 7–8 | 240–270 | 12–18 |
5 | 1880 | T-S | DF | 9–12 | 6–7 | 230–260 | 12–15 |
6 | 1930 | Te | DF | 8–11 | ca. 6 | 220–250 | 10–15 |
7 | 2080 | Te | DF | 7–10 | 5–6 | 210–240 | 10–15 |
8 | 2170 | Te | DF | 6–9 | ca. 5 | 210–230 | 10–12 |
9 | 2300 | Te | DF | 6–8 | 4–5 | 200–220 | 8–12 |
10 | 2640 | Te | DF | 3–6 | 3–4 | 180–200 | 6–10 |
11 | 2800 | SA | DFS | 2–5 | ca. 3 | 170–190 | 5–9 |
12 | 2920 | SA | DFS | 1–4 | 2–3 | 160–180 | 5–7 |
13 | 3100 | SA | DFS | 0–3 | 1–2 | 150–170 | 3–6 |
14 | 3340 | SA | DFS | −1 to 1 | 0–1 | 140–160 | 2–5 |
15 | 3500 | SA | DES | −2 to 0 | 0 | 130–150 | 1–2.5 |
16 | 3610 | Al | DES | −3 to −1 | 0 | 120–150 | 0.8–1.8 |
17 | 3740 | Al | DES | −4 to −1 | 0 | 120–140 | 0.6–1.3 |
18 | 3840 | Al | DES | −5 to −2 | 0 | 110–130 | 0.4–0.8 |
19 | 3930 | Al | DES | −5 to −3 | 0 | 110–120 | 0.2–0.5 |
Trait | Abbreviation | Values | Ecological Significance |
---|---|---|---|
Petiole fineness | PF | Ratio | Photosynthetic capacity, nutrient cycling, signal transduction |
Specific leaf area | SLA | mm2 mg−1 | Competitive ability, growth rate, stress tolerance |
Leaf area | LA | cm2 | Competitive ability, growth rate, stress tolerance |
Leaf length–width ratio | LLWR | Ratio | Light capture |
Leaf N concentration | LNC | mg g−1 | Metabolic activity, growth rate, nutrient cycling |
Leaf P concentration | LPC | mg g−1 | Metabolic activity, growth rate, nutrient cycling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Kang, X.; Liu, Y.; Duan, L.; Bu, H.; Li, W.; Zhang, A.; Li, Y.; Qi, W. Environmental Gradients and Vegetation Types Alter the Effects of Leaf Traits on the Dominance of Woody Angiosperm Species. Forests 2023, 14, 866. https://doi.org/10.3390/f14050866
Zhou J, Kang X, Liu Y, Duan L, Bu H, Li W, Zhang A, Li Y, Qi W. Environmental Gradients and Vegetation Types Alter the Effects of Leaf Traits on the Dominance of Woody Angiosperm Species. Forests. 2023; 14(5):866. https://doi.org/10.3390/f14050866
Chicago/Turabian StyleZhou, Jieyang, Xiaomei Kang, Yanjun Liu, Lijie Duan, Haiyan Bu, Weiqin Li, Aoran Zhang, Yanan Li, and Wei Qi. 2023. "Environmental Gradients and Vegetation Types Alter the Effects of Leaf Traits on the Dominance of Woody Angiosperm Species" Forests 14, no. 5: 866. https://doi.org/10.3390/f14050866
APA StyleZhou, J., Kang, X., Liu, Y., Duan, L., Bu, H., Li, W., Zhang, A., Li, Y., & Qi, W. (2023). Environmental Gradients and Vegetation Types Alter the Effects of Leaf Traits on the Dominance of Woody Angiosperm Species. Forests, 14(5), 866. https://doi.org/10.3390/f14050866