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Abstract: Leaf traits can reflect plant photosynthetic capacity, resource utilization strategy and
adaptability to the environment. However, whether species’ leaf traits are tightly related to the
functioning of their community and how that relationship varies with environmental gradients
remain largely unexplored. We measured 6 leaf traits, including petiole fineness (PF), specific leaf
area (SLA), leaf area (LA), leaf length–width ratio (LLWR), leaf nitrogen content (LN) and leaf
phosphorus content (LP), of 733 populations (415 species) of 19 woody angiosperm communities in
the eastern Qinghai–Tibetan Plateau across multiple climatic zones or vegetation types. Through
meta-analysis and relative importance analysis, the relationship between leaf traits of species and
their community dominance and its change with environments were analyzed. The results showed
that species dominance was correlated positively with their LA and LP, suggesting that species
with high light interception and resource utilization capacity can easily become dominant species in
woody angiosperm communities. Along the altitudinal gradient, the effect of PF and SLA on species
dominance increased and changed significantly in their pattern, from positive or nonsignificant
in temperate forests to negative in alpine and subalpine shrubs, suggesting that increasing petiole
mechanical support and lamina protection cost is a dominant leaf growth strategy in stressful high-
altitude environments. Our findings demonstrate that the demand for efficient light acquisition
and/or utilization and species adaptability or tolerance to specific environmental stress are key
mechanisms by which leaf traits govern community composition and functioning.

Keywords: altitudinal gradient; community structure; leaf chemical traits; petiole fineness; specific
leaf area; species dominance

1. Introduction

Leaf traits determine the response of plants to environmental factors and represent
various aspects of ecological strategies such as vegetative growth rate, mortality rate,
photosynthetic and nitrogen fixation capacity, nitrogen and phosphorus concentration, and
even reproductive progress and success [1,2]. In the context of global warming, leaf traits
serve as useful tools governing the sensitivity of species to environmental change and their
ecological role [3,4]. Thus, it is of great significance to study the variation in leaf traits along
environmental gradients to further our understanding of the adaptation strategies of plants
to environmental variation [1,5].

Leaf traits can be divided into morphological, chemical and physiological [6,7]. Mor-
phological traits refer to the structure of leaves, including leaf area, specific leaf area, leaf
thickness, shape, etc., which can reflect the plant’s survival strategies [5,8]. Chemical traits
represent leaf chemical investment and affect the physiological process and biochemical
activity of leaves [1,9]. Both morphological and chemical traits are easy to measure and
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are relatively evolutionarily stable [7,10]. In contrast, physiological traits, including net
photosynthetic rate, respiration rate, stomatal conductance, etc., reflect the leaf growth and
metabolic indices of leaves and have relatively large variations in time and space [11–14].
Because physiological traits are difficult to measure and are variable, they often exhibit
significant covariance with morphological and chemical traits used for large-scale or multi-
species ecological research [4,5].

Among leaf morphologic traits, leaf size and shape are the first considerations due
to their importance for energy balance and hydraulic structure [15–17]. Normally, large
or broad–round leaves are considered advantageous in cool, humid or shady habitats
because their thick leaf margins induce large resistance to the transport of heat and sub-
stances [15,18–20], whereas small or narrow leaves predominate in hot, dry and high-light
environments due to their capacity to decrease leaf temperature, avoid leaf damage and
maintain leaf water balance [16,21]. However, large or broad leaves are dominant under
the conditions of high temperature or light because they can promote leaf carbon acquisi-
tion [20,22]. Specific leaf area (SLA), the ratio of leaf area to dry leaf mass, has been used
widely to predict growth strategies and responses to environmental change [1,23]. It is a
key trait related to the tradeoff between leaf life span and nutrient concentration and photo-
synthetic rate [24,25]. In general, fast-growing species from nutrient- or water-rich habitats
usually have a high SLA to enhance leaf nutrient concentration and photosynthesis [5,24].

Petiole is an important tissue connecting the stem and lamina, which has both me-
chanical support and transport functions [26,27]. The lamina is the main part of a leaf
for conducting photosynthesis to fix carbon, with, consequently, a limited investment in
petiole [15,21]. For a given petiole mass, the petiole shape can be long and thin to maximize
lamina light interception because petiole elongation can send the lamina to a higher and
farther position to avoid overlap with its neighbors [28–30], or be short and thick to provide
good mechanical support for the lamina and efficient nutrition/water transport [21,27].
Thus, ‘petiole fineness’ (the ratio of petiole length to petiole diameter) is a reliable indicator
of petiole shape and can identify the shift in the tradeoff between leaf light interception
and support/transport but has received little attention [27,31].

Nitrogen (N) and phosphorus (P) are two of the most important elements in the eco-
logical cycles [28,32]. The roles of N in enzymatic reactions and of P in protein synthesis
are irreplaceable [32–35]. Leaf N and P directly influence photosynthesis and respiration
during plant growth and development [14,35]. The study of leaf N and P stoichiometry
can contribute to the accurate prediction of ecological responses to global change [3,28],
whereby plants increase their leaf N and P concentration with decreasing temperature
and (or) available water to maintain the photosynthetic carbon gain [3,4,24,36]. However,
this large-scale leaf N and P variation trend have not been supported by local-scale re-
search [3,4,32,34,36], suggesting that some critical knowledge on how leaf stoichiometry
patterns respond to environmental change and influence plant performance has not been
revealed fully.

Most plant species grow in a community, and their performance in the community is
the result of two forces. The first is environmental filtering, which results in the selection
of species and their traits that allow adaptation to the environment [37,38]. The second is
the role of the ‘community’. Species with varying traits hold distinct community statuses
due to their differences in resource utilization and environmental adaptability through
interactions [39–41]. The two forces are both trait-related. For plant survival and reproduc-
tion, it must exist in an environment consistent with its tolerance level, and its own traits
play a crucial role [42]. The combination of different aspects of traits in plants can lead to
specific biotic interactions and community structure and ultimately can impact ecosystem
function [39]. Therefore, trait-based research is an excellent approach to exploring the com-
munity performance of species under the backdrop of global climate change [43]. However,
although environmental gradients or community factors in plant trait variation have been
revealed frequently [5,17,40,44], few studies considered them together [37,45], which leads
to confusion due to the often significant difference among sites or community types in leaf
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traits along an environmental gradient [2,7] or in the importance of leaf traits in structur-
ing plant communities [38,46]. Thus, the research quantifying the relationship between
species leaf traits and their community performance in a multi-trait and multi-community
space is crucial in examining plants’ local adaptation and community assembly, which still
remain largely unexplored [13,17,38,45,46]. Here, using leaf trait data of 733 populations
of 415 woody species from 19 sites spanning various climate zones or vegetation types
and representing a near 3000 m altitude gradient in an eastern part of the Qinghai–Tibetan
Plateau (QTP), we presented the first comprehensive investigation of the environmental
variation in the leaf trait–species (community) dominance relationship of an entire woody
flora. Specifically, we addressed the following questions:

(1) How do the leaf traits relate to species dominance on a site, and across a number of
sites, and are there main leaf traits governing species dominance?

(2) Across different environmental gradients, whether the relationship between leaf
traits and species dominance changes significantly, and which leaf traits are reliable indica-
tors of the local adaptability of woody angiosperm species in a specific environment and
their community performance?

To answer these questions, both meta-analysis and relative importance analysis were
used to examine the relationships within each site in different climate zones and vegetation
types and then across all the sites. We think this study can provide a clear understanding
of the importance of leaf trait variation in the local adaptation and community assembly
of plants.

2. Materials and Methods
2.1. Study Area

The study area was located on the eastern edge of the Qinghai–Tibetan Plateau
(101.38◦–104.33◦ E, 33.45◦–35.08◦ N, about 38,000 km2), and belongs to a transitional region
of semi-humid and semi-arid areas. The altitude difference within the territory is obvious,
forming a subtropical–warm temperate–temperate–subalpine–alpine vertical climate zone.
Meteorological factors and woody vegetation types also change obviously with altitude
(Table 1). Therefore, it is an ideal place to study trait variation in mountain plants.

Table 1. The meteorological parameters and vegetation characteristics of 19 studied sites.

Site Altitude
(m)

Climatic
Zone

Vegetation
Type

MAT
(◦C)

FFM
(Months)

LGS
(Days)

Canopy Height
(m)

1 1080 T-S DEF 14–16 >10 >300 15–20
2 1430 T-S DEF 12–15 9–10 280–300 15–18
3 1610 T-S DF 11–14 8–9 260–280 15–18
4 1750 T-S DF 10–13 7–8 240–270 12–18
5 1880 T-S DF 9–12 6–7 230–260 12–15
6 1930 Te DF 8–11 ca. 6 220–250 10–15
7 2080 Te DF 7–10 5–6 210–240 10–15
8 2170 Te DF 6–9 ca. 5 210–230 10–12
9 2300 Te DF 6–8 4–5 200–220 8–12
10 2640 Te DF 3–6 3–4 180–200 6–10
11 2800 SA DFS 2–5 ca. 3 170–190 5–9
12 2920 SA DFS 1–4 2–3 160–180 5–7
13 3100 SA DFS 0–3 1–2 150–170 3–6
14 3340 SA DFS −1 to 1 0–1 140–160 2–5
15 3500 SA DES −2 to 0 0 130–150 1–2.5
16 3610 Al DES −3 to −1 0 120–150 0.8–1.8
17 3740 Al DES −4 to −1 0 120–140 0.6–1.3

18 3840 Al DES −5 to −2 0 110–130 0.4–0.8
19 3930 Al DES −5 to −3 0 110–120 0.2–0.5

Note: Meteorological parameters, downloaded from National Meteorological Information Center (http://data.
cma.cn/, accessed on 25 April 2022), were the approximate range of climate change for many years. Vegetation
type was zonal woody-vegetation-type. MAT—mean annual temperature; FFM—the absolute frost-free months;

http://data.cma.cn/
http://data.cma.cn/


Forests 2023, 14, 866 4 of 13

LGS—the length of the growing season (based on the average phenological performance of the local dominant woody

species); T-S—warm temperate–subtropical; Te—temperate; SA—subalpine; Al—alpine; DEF—mixed deciduous–

evergreen forest; DF—deciduous forest; DFS—mixed deciduous forest–shrub; DES—mixed deciduous–evergreen shrub.

2.2. Field Sampling

From June to September in 2018 and 2019, we set up 19 study sites with an average
altitude gradient of 150 m (Table 1, Figure 1). At each site, 2 to 4 adjacent 300 m × 300 m
plots (altogether 41 plots) were sampled to avoid possible sampling bias. These sites can be
divided into four vegetation types: mixed deciduous–evergreen forest (DEF), deciduous
forest (DF), mixed deciduous forest–shrub (DFS) and mixed deciduous–evergreen shrub
(DES), as well as four climatic regions: warm temperate–subtropical (T-S), temperate (Te),
subalpine (SA) and alpine (Al). At every plot, leaf materials were gathered from each
woody angiosperm species unless they were extremely rare. For leaf materials of the same
species (as seen in Supplementary Data), different populations of the same species in the
same site were considered as one sample but in different sites were considered as different
samples. The total number of samples (populations) in all sites was 733, belonging to
415 angiosperm species in 143 genera of 59 families (based on the Angiosperm Phylogeny
Group IV classification system, as updated in 2016). For each sample, three to five well-
growing adult individuals were selected. Additionally, for each individual, 2 or 3 branches
with 5 to 20 mature, healthy, fully expanded and undamaged leaves on each branch were
chosen at the outer canopy to avoid obvious differences in light conditions [20,47]. The
picked leaves were then put into a portable refrigerator [47].
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Figure 1. Distribution of the 19 study sites across the eastern edge of the Qinghai–Tibetan Plateau.

2.3. Leaf Traits

For each population, we measured six leaf traits (Table 2), including four leaf mor-
phological traits: petiole fineness (PF), specific leaf area (SLA), leaf area (LA) and leaf
length–width ratio (LLWR), and two leaf chemical traits: leaf nitrogen content (LN) and
leaf phosphorus content (LP). These traits were measured as follows.
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Table 2. Ecological significance of six leaf traits.

Trait Abbreviation Values Ecological Significance

Petiole fineness PF Ratio Photosynthetic capacity, nutrient cycling, signal transduction
Specific leaf area SLA mm2 mg−1 Competitive ability, growth rate, stress tolerance

Leaf area LA cm2 Competitive ability, growth rate, stress tolerance
Leaf length–width ratio LLWR Ratio Light capture

Leaf N concentration LNC mg g−1 Metabolic activity, growth rate, nutrient cycling
Leaf P concentration LPC mg g−1 Metabolic activity, growth rate, nutrient cycling

2.3.1. LA and LLWR

For each population, 5–20 leaves (or 2–4 large leaves) from different individuals
were mixed, representing 1 replicate. In each replicate, all selected leaves were carefully
placed on a flatbed scanner (HP LaserJet 1320) to avoid overlap and fully expand bent or
contracted leaves. LA was determined by analyzing the scanned leaf pictures of three to
four repetitions with Image J software (http://rsb.info.nih.gov/ij, accessed on 1 October
2019). Leaf length, leaf width and petiole length were also determined by analyzing
scanned pictures (8 to 15 leaves were randomly selected for each population), and LLWR
was calculated as: LLWR = leaf length/leaf width.

2.3.2. SLA

The scanned leaves were dried at 65 ◦C to a constant mass and weighed to the nearest
0.0001 g. SLA was calculated as: SLA = leaf area/leaf dry weight.

2.3.3. PF

A spiral micrometer (at 0.001 mm) was used to measure the petiole diameter—the
diameter of the middle position from the lamina base to the end of the petiole. If the petiole
was cylindrical in shape, its diameter was used directly, whereas if it was ellipsoidal or
even flattened, the average of the maximum and minimum diameter was used. For each
population, the average diameter value of 10 petioles was finally used. PF was calculated
as: PF = petiole length/petiole diameter.

2.3.4. LN and LP

Three to five healthy, intact leaves were selected from each population. The leaves
were dried to constant weight in an oven at 70 ◦C, and then ground to a fine powder.
Leaf powder of 0.100 g was digested with 5 mL of H2SO4 and then measured using an
automated discrete analyzer (Smartchem 450, AMS Alliance, Rome, Italy) to obtain its leaf
nitrogen and leaf phosphorus contents.

2.4. Community Investigation and Species Dominance

Dominance is used to indicate a species’ performance and status in a community, but
there are differences in its definition and calculation. For a woody community, species
dominance can be calculated from one or more of the following indices: species abundance,
frequency, density, cover, height, diameter at breast height (DBH) and basal stem. We
excluded DBH and basal stem because they are not indices suitable for all woody species
(i.e., trees and shrubs). Leaf is a typical vegetative organ, and its traits are tightly related to
plant vegetative growth and resource utilization. Thus, we did not consider abundance,
frequency and density, the indices showing the individual number or the occurrence proba-
bility of a species within the community, reflecting mainly species’ dispersal, generation or
recovery ability (rather than their space occupancy and resource utilization capacity) that
are often related to plant reproductive traits [48]. Ultimately, cover and (average individual)
height were selected to calculate species dominance because they represent space occupancy
and light interception capacity of plants in horizontal and vertical directions, respectively.

http://rsb.info.nih.gov/ij
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Each plot was divided into nine subplots of 100 m × 100 m in order to ensure an
accurate estimate of species cover. Based on the method of Burrascano et al. [35], we
visually assigned each species in each subplot a cover value (named ‘C’) using an ordinal
cover class scale: 1 (<0.5%), 2 (0.5%–1%), 3 (1%–2%), 4 (2%–5%), 5 (5%–10%), 6 (10%–15%),
7 (15%–20%) and, thereafter, every 10% up to 100%, and an adult individual height class
scale (‘H’): 1 (<0.3 m), 2 (0.3–0.6 m), 3 (0.6–1.0 m), 4 (1.0–1.8 m), 5 (1.8–3.2 m), 6 (3.2–5.6
m), 7 (5.6–10.0 m), 8 (10.0–17.7 m) and 9 (17.7–31.6 m). For each site, the maximum C and
H were defined as Cmax and Hmax, respectively, and the relative cover (C′) and adult
height (H′) of species x can be calculated as C′x = Cx/Cmax and H′x = Hx/Hmax. The
dominance (D) of species x (Dx) is the mean value of C′x and H′x. In the following, we
used D as species community performance, and the results related to species cover (C) or
adult height (H) are shown in Figures S1–S3.

2.5. Data Analysis

Data on PF, SLA, LA and LLWR were log-transformed before analysis to fit a normal
distribution. We first performed a meta-analysis to assess the binary relationship between
species dominance (D) and each of the leaf traits and the difference in the relationship
among the sites. Effect size of each binary relationship for each site was analyzed by
applying the random effects model with ‘Metafor’ package. The mean effect size across
sites and for each climate zone or vegetation type was calculated by weighting each site-
specific effect size by its corresponding standard error. The 95% confidence interval (CI) of
the mean effect was generated by bootstrapping with 4999 iterations. We used between-
group heterogeneity (Qbetween) to determine the differences in effect size between sites and
tested its significance. For each site, we then performed a relative importance analysis (a
part of multiple regression analysis with D as the dependent variable and all six leaf traits
as independent variables) to quantify the contribution of each leaf trait to D. All of the
above analyses were performed in R 4.2.2.

3. Results
3.1. Environmental Variation in the Relationships between Species Dominance and Their
Leaf Traits

Across all sites, the meta-analysis showed that the mean effect size was significantly
positive for the D-LA and D-LP relationships, while non-significantly negative for the
D-LLWR and D-SLA relationships and non-significantly positive for the D-PF and D-LN
relationships (Figures 2 and 3). Along the altitudinal gradient, the effect size of the D-PF
relationship decreased significantly (Qbetween = 17.338, p < 0.001). This relationship is
significantly positive in temperate and subtropical forests (T-S and Te, or DEF and DF) but
non-significantly different from zero in subalpine forests and shrubs (SA or DFS) and signif-
icantly negative in alpine shrub (Al or DES). The effect size of the D-SLA relationship also
decreased significantly with altitude (Qbetween = 16.345, p = 0.001), from non-significantly
different from zero in temperate and subtropical forests to significantly negative in sub-
alpine/alpine forests or shrubs (Figures 2 and 3). The D-LA relationship of all climate zones
and vegetation types was similar (Qbetween < 1.722, p > 0.632) and significantly positive.
Although altitudinal variations in the effect size of the D-LN, D-LP, and D-LLWR relation-
ships were statistically non-significant (p of Qbetween were all > 0.1), the effect size of the
D-LN and D-LP relationships was relatively high and (marginally) significantly positive
at the lowest altitude (T-S and DEF). However, the D-LLWR relationship was relatively
low and significantly negative in the middle-altitude DF and Te. In addition, when the C-
or H-leaf trait relationship was examined by using a meta-analysis, similar patterns were
found with the D-leaf trait relationship except for non-significant differences in the H-SLA
relationship among the climate zones (Figures S1 and S2).
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dominance (D) and petiole fineness (PF, (a)), specific leaf area (SLA, (b)), leaf area (LA, (c)), leaf
length–width ratio (LLWR, (d)), leaf nitrogen (LN, (e)) or leaf phosphorus (LP, (f)) for different
vegetation types. DEF—mixed deciduous–evergreen forest; DF—deciduous forest; DFS—mixed
deciduous forest–shrub; DES—mixed deciduous–evergreen shrub.
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3.2. The Relative Importance of Leaf Traits in Species Dominance

Across 19 sites, LA was the strongest predictor of D variation, with a mean explanatory
power of 0.165, followed by SLA (0.069), LN (0.050), PF (0.044) and LP (0.042), whereas
LLWR (0.027) was the worst predictor. The altitudinal gradient in the relative importance
of leaf traits in D variation was significant. At the low altitude (sites 1~9), LA was often the
only significant predictor of D variation, with the explanatory power ranging from 0.079 to
0.211, whereas PF had the lowest explanatory power, ranging from 0.003 to 0.064 (Figure 4).
At the middle and higher altitudes (sites 10~17), the explanatory power of LA on D
decreased, but that of other leaf traits increased, often resulting in a lack of dominant leaf
traits predicting D change. At the highest altitude (sites 18~19) where the predictive power
of LA regarding D change was low, SLA and PF were the strongest predictors. In addition,
the total explanatory power of leaf traits on D increased with altitude (ranging from 0.186 to
0.804), with SLA and PF (sometimes LN) contributing most to the increasing explanatory
power (Figure 4).
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Figure 4. The relative importance of leaf traits on species dominance (D) at 19 studied sites (woody
communities, as seen in Table 1). The horizontal axis is the relative importance of leaf traits, and the
vertical axis is different sites. The leaf traits from left to right on the histogram are petiole fineness
(PF), specific leaf area (SLA), leaf area (LA), leaf length–width ratio (LLWR), leaf nitrogen (LN) and
leaf phosphorus (LP). SSE—sum-squared error.

4. Discussion

We showed different patterns for the relationship between species community perfor-
mance and their leaf morphological and chemical traits. These relationships also differed
significantly among the studied sites, climate zones and vegetation types. Overall, leaf area
was the best predictor of species dominance, but the explanatory power of leaf area and
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other leaf traits changed significantly with altitude and among climate zones or vegetation
types. Below, we explore the trends behind our findings, their possible causes and the
implications of these trends.

4.1. Overall Trends

Leaves are the major plant organs conducting photosynthesis and being in contact
with the atmospheric environment [3,5]. Thus, species whose leaf traits have high light
interception and utilization and strong environmental adaptability or tolerance are more
likely to dominate plant communities [37,38,49]. Our finding that leaf area was the best leaf
trait predicting (significantly positively related to) species dominance, height and cover
in most sites and almost all climate zones and vegetation types (Figures 2, 3, S1 and S2)
supports the widespread importance of the light acquisition capacity of species in their
community performance [50,51]. The finding also implies that, in most woody communities,
interspecific light competition is ubiquitous, and large leaves can help species form a dense
canopy to intercept light effectively and accumulate carbon quickly [16,28,33,52]. These
species, thus, tend to grow tall and occupy a wide space, which, in turn, enhances their
light competition. Similarly, the overall positive relationship between species dominance
and their LN and LP (or the negative relationship with LLWR) suggests that high leaf N
or P content and broad–round leaf shape, associated with high light interception, high
photosynthetic efficiency and rapid nutrient accumulation [15,16,18–20,34], enable woody
angiosperms to grow tall and have a wide crown. The more significant association of
species dominance with leaf P content than leaf N content potentially implies stronger P
limitation on leaf photosynthetic efficiency in the QTP region [3,33].

4.2. Pattern of Different Climate Zones or Vegetation Types

The role of petiole fineness in affecting species dominance differed significantly among
climate zones or vegetation types. In temperate or subtropical forests, species dominance
was positively related to petiole fineness, whereas dominant species of subalpine/alpine
forests or shrubs were characterized by low petiole fineness. This suggests that enhance-
ment of petiole elongation for maximizing light interception is an optimum leaf growth
strategy under high competition for light in low-altitude closed and tall forests [15,26,29,30],
whereas strong petiole shortening for maximizing lamina support is common for dominant
species in the stressful alpine and subalpine areas where leaves are exposed to the strong
natural drag forces (wind blowing, snow covering, air-moisture freezing, etc.) [19,21,27].
The dominant species of subalpine/alpine forests or shrubs, but not of temperate forests,
were also characterized by low SLA. The reason may be that low SLA, associated with
many lamina cell layers and a high proportion of protective tissue in the leaf epidermis,
can decrease the leaf transpiration rate and increase leaf protection against high solar radia-
tion or low temperatures [11,20], which help high-altitude dominant species thrive under
stressful environments. These dominant species can create a low-stress microhabitat for
high-SLA non-dominant species. On the contrary, in temperate forests with mild climates,
long growth periods and without significant environmental pressure, woody species may
obtain similar benefits from high SLA (high photosynthetic efficiency but short leaf lifespan)
and low SLA (slow photosynthate production but extended leaf longevity) [5,22,24,25],
resulting in a weak association of species SLA with their community performance.

The positive effect of leaf N and P content on species dominance was stronger in the
lowest-altitude warm temperate–subtropical forests (T-S and DEF) than in the other climate
zones or vegetation types. The lowest altitude is characterized by high temperature, high
humidity and a long growing season. Dominant species can benefit from high leaf N and
P concentrations at the lowest altitude for their long-time advantages in photosynthetic
efficiency and nutrient accumulation [32,53]. This may be important for species to maintain
their community performance, especially when they need to consume large amounts of
fixed carbon through respiration [3,14,34]. Surprisingly, the D-LLWR relationship was
significantly negative in the mid-altitude temperate deciduous forests (Te and DF) but was
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non-significant in the other woody communities. For a given leaf area, light interception
and photosynthetic or transpiration rates were higher for broad–round leaves (low LLWR)
than long–narrow ones [12,31]. This result implies that, in temperate deciduous forests
where environmental stress is low, temperatures are suitable, but the growing season is
relatively short, and the time for leaf development and photosynthesis is limited. Broad–
round leaves (low LLWR) can help plants accumulate more nutrients during a growing
season [17,18]. A long growing season in the lowest-altitude warm temperate–subtropical
forests may allow for uncoupling species dominance from their leaf shape to a large extent.
The reason why broad–round leaves are not dominant in the high-altitude subalpine and
alpine areas may be that they are prone to strong natural drag forces and high temperature
loss (caused by transpiration) on the lamina surface [1,10,12,19].

Our data show that, with increasing altitude, the total explanatory power of leaf traits
on species dominance increased and the leaf traits additional to leaf area, especially petiole
fineness and SLA, contributed significantly to species dominance. This indicates that, in the
low-altitude forests lacking environmental stress, interspecific light competition should be the
only primary factor affecting the role of leaf traits in the woody community assembly [46]. As
environmental stress increases with altitude, species’ environmental adaptability or tolerance
becomes increasingly important in determining their survival and abundance [54]. Different
leaf traits, representing the adaptability of plants to different environmental stresses, are, thus,
statistically significantly related to their community performance.

5. Conclusions

We provide evidence that leaf traits change significantly with environmental gradi-
ents, as well as strongly influence the local adaptation of plant species. In most woody
communities, leaf area is the most important trait affecting (positively) species commu-
nity performance, implying that woody species within the community follow a resource
acquisition strategy, most of the time, and focus on efficient light acquisition and utilization.
Among all the selected leaf traits, the association of petiole fineness or SLA with species
dominance changes most dramatically with altitudes, climate zones and vegetation types,
indicating that they are reliable leaf traits for predicting the environmental adaptability
of woody species and their community performance in a given environment. In addition,
with the increase in altitude, the total explanatory power of leaf traits on species dominance
increases, supporting the view of a great impact of plant biological traits on community
assembly in stressful environments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14050866/s1, Figure S1: Mean effect size and 95% confidence intervals
(CIs) of the relationship between species cover class (C, part A) or adult height class (H, part B) and
petiole fineness (PF, a), specific leaf area (SLA, b), leaf area (LA, c), leaf length–width ratio (LLWR, d),
leaf nitrogen content (LN, e) or leaf phosphorus content (LP, f) for different climate zones. T-S—warm
temperate-subtropical; Te—temperate; SA—subalpine; Al—alpine; Figure S2: Mean effect size and 95%
confidence intervals (CIs) of the relationship between species cover class (C, part A) or adult height class
(H, part B) and petiole fineness (PF, a), specific leaf area (SLA, b), leaf area (LA, c), leaf length–width
ratio (LLWR, d), leaf nitrogen content (LN, e) or leaf phosphorus content (LP, f) for different vegetation
types. Abbreviations of leaf traits are as specified in Figure S1. DEF—mixed deciduous–evergreen
forest; DF—deciduous forest; DFS—mixed deciduous forest–shrub; DES—mixed deciduous–evergreen
shrub; Figure S3: The relative importance of leaf traits on species cover class (C) or height class (H)
at 19 sites (woody communities, as seen in Table 1). The horizontal axis is the relative importance of
leaf traits, and the vertical axis is different sites. The leaf traits from left to right on the histogram are
petiole fineness (PF), specific leaf area (SLA), leaf area (LA), leaf length–width ratio (LLWR), leaf nitrogen
(LN) and leaf phosphorus (LP). SSE—sum-squared error; Supplementary Data: A comparison of 6 leaf
traits for 415 woody species (733 populations) in 19 studied sites. PF—petiole fineness; LA—leaf area
(cm2); SLA—specific leaf area (cm2/g); LLWR—leaf length–width ratio; LN—leaf nitrogen content (%);
LP—leaf phosphorus content (%).
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