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Abstract: Successive planting is the main pattern for cultivating Chinese fir (Cunninghamia. lanceolata
(Lamb.) Hook.). However, the influence of this management has not been totally investigated,
especially with respect to the changes in the soil microbial community and the relationship to soil
properties. This study investigated the physical and chemical properties of the soil, its enzyme
activities, and its microbial diversity in three adjoining plantations managed with different successive
planting models (long-term continuous growth without harvest, M1; single harvest cutting followed
by the construction of a pure plantation, M2; and double harvest cutting followed by the construction
of a mixed plantation, M3) to evaluate the impact of these forest management practices. In most
soil layers, M1 was observed to have significantly higher content of Na and Al ions, as well as
more polyphenol oxidase (PPO) activity, and M2 had a significantly higher field moisture capacity
(FMC) and content of Mg ions, while M3 had significantly higher urease (URE) activity. Changes
in the totals of N (TN) and C (TC), alongside the availability of P (AP), C/P, N/P, URE, sucrose
(SUC), and PPO values, correlated significantly with bacterial diversity, whereas the dynamics of
total K (TK), Na, C/P, N/P, and PPO levels were significantly related to fungal diversity. Among the
models, soil bacterial genera, including Burkholderia–Caballeronia–Paraburkholderia, Acidothermus,
and Paenibacillus, were mostly affected by TN, TC, AP, organic matter (OM), C/N, C/P, N/P,
SUC, and the performance of URE. The distribution of fungal genera in different models showed
significant differences. Talaromyces, Trichoderma, and Aspergillus were relatively abundant in
M1, while Umbelopsis and Saitozyma exhibited more adaptation in M3. These results illustrated
better soil properties and higher abundance of microbial diversity in M1 and M3, and furthermore,
demonstrated the strategic benefit of both prolonging the rotation period and of creating mixed
artificial plantations to maintain diversity. This study improves the understanding of the impact of a
successive planting strategy in C. lanceolata plantation sustainability.

Keywords: Cunninghamia lanceolata; artificial plantation; successive planting; plantation conversion;
soil physical and chemical properties; soil enzyme activities; soil microbial diversity

1. Introduction

Forest resources have been used throughout the history of human development [1,2].
When the output of natural forests was unable to satisfy the requirements of social devel-
opment, they were rapidly transformed into artificial plantations [3]. In a sense, artificial
plantations origininated to fulfill human needs.
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Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is an important, fast-growing
timber species in southern China [4,5] and has been cultivated for thousands of years.
Long-term plantations acquired a fixed pattern: A monoculture forest, multi-generation
successive plantings on the same site, and intensive management. Highly efficient timber
production is supported by this pattern [6], which allows the plantations to play an essential
role in social and economic development [7]. C. lanceolata has the largest proportion of the
timber supply market in China, accounting for over 25% [8].

However, the negative impacts of this successive pattern are also obvious. The ecosys-
tem formed by successive generations of C. lanceolata leads to excessive consumption of
soil nutritive elements [9]. After a certain length of time, the seedlings will not receive
enough nutrients owing to soil impoverishment [10]. C. lanceolata has also been proved
to secrete autotoxic secondary metabolites from its roots [11]. Successive planting leads
to these substances accumulating continuously in the soil [12], inhibiting the growth of
soil microorganisms. Dead leaves will cling to branches for years, or even decades, rather
than fall. This prevents the return of nutrients to the soil as the leaves do not decay and
decompose rapidly. Additionally, the simple ecosystem structure and low level of diversity
resulting from pure afforestation leads to a decline in self-regulation [13–15]. The high
frequency of human interference, and especially successive plantings, negatively influences
the soil properties of C. lanceolata plantation ecosystems to a considerable extent.

Researchers have now realized the disadvantages of this traditional pattern, as well
as the negative effect on a sustainable economy, and many improvements and adjust-
ments have been proposed. These include different combinations of manual fertilization
to restore plantation soil nutrients [16,17]; thinning to improve the environment of the
forest ecosystem [18]; mixing with other species that are prone to defoliation or have
different nutrient-absorbing preferences to compensate for the deficiencies in soil nutri-
ent cycling [19,20]; and prolonging the utilization cycle to form a natural-like plantation
ecosystem through its ability to self-regulate [21]. These various management types have
different principles and objectives. Methods that focus on the artificial replenishment of
soil nutrients and the expansion of forest space are more in line with the economic needs
of short-cycle planting for rapid timber production. However, building a mixed forest or
natural-like plantation can enrich the biodiversity of plantations, which is more suitable
for large-scale timber cultivation. Therefore, these improved management strategies are
effective in correcting the defects of the traditional successive pattern [16,19].

However, more attention has also been paid to the changes in the soil microbial com-
munity structure. Microbes rely on the environment provided by the soil and plants and the
effects of various functional activities [22,23]. A healthful forest environment usually means
rich microbial diversity in the soil. In contrast, environmental conditions non-conducive to
the growth of trees are often reflected in the decline of the microbial community [24]. Wu
et al. [25] reported that successive rotations caused a degenerated soil microbial community
structure and catabolic activity in C. lanceolata plantations, and this highlighted the dishar-
monious relationship occurring in patterns of high levels of artificial interference. Soil
in the forest is the basic element for the ecosystem [26,27]. It combines multiple ecologic
functions and provides the survival substrate for biological communities [28]. Changes
in soil nutrients, such as NH4

+-N, NO3
−-N, available phosphorus, and dissolved organic

carbon [29,30] caused by successive planting are considered to be appropriate regulators
for degenerated C. lanceolata plantations. However, most of this research has focused on
soil nutrients and is insufficient for a deep understanding of the correlation between soil
properties and microbial diversity.

In this study, three adjacent C. lanceolata artificial plantation sites with different manage-
ments were selected to evaluate the influence of forest management history on soil nutrient
concentrations and the soil microbial community structure. The results of this study may
provide a reference for more appropriate management of C. lanceolata plantations.
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2. Methods and Materials
2.1. Overview of the Survey Area

This study was conducted on a C. lanceolata plantation site belonging to Laizhou
Experimental Center of Yangkou State Forest Farm, Yanping District, Nanping City, Fujian
Province, China (118◦11′–118◦17′ E, 26◦40′–26◦65′ N, Supplementary Figure S1) with three
management models. The Experimental Center is located in the hilly gap between the Wuyi
and Daiyun Mountains, where the altitude ranges from 445 to 850 m, and the slope ranges
from 25◦ to 35◦. The study site belongs to the mountainous region of southern China. The
soil in this region is red, developed from shale, and has a pH value ranging from 4.0 to
5.0 Furthermore, the soil layer of the study site was deep and fertile. The climate of this
region is subtropical monsoon with abundant rainfall (the annual mean relative humidity
is 79% and the annual mean precipitation is 1663.9 mm) and sufficient light (annual mean
sunshine duration is 3423.2 h, annual mean temperature is about 24.6 ◦C to 28.9 ◦C).

The whole plantation site was planted with hardwoods before 1960. In March 1961
this site was re-established as a monoculture artificial plantation of C. lanceolata at an
initial density of 3000 individuals/ha. Subsequently, the completed site was subdivided
into three different models of forest management. The first model (M1), which covers
7.81 ha, was managed relatively conservatively and has not been harvested since it was
planted in 1961. The current density of this 60-year-old stand, however, has decreased
to 1100 individuals/ha because of long-term illegal logging. The second model (M2) is
adjacent to M1 and has an area of 15.15 ha. In 1980, wood from this model was harvested,
and the C. lanceolata was replanted in 1981. The initial density of M2 was similar to that of
M1 and was also affected by illegal logging. The density of M2 was currently only about
1200 individuals/ha. The third model (M3), which is adjacent to M2, covers 6.43 ha. Before
2000 it experienced the same management measures as M2. In March 2001, a mixed forest
of C. lanceolata and Masson pine (Pinus massoniana Lamb.) was planted at a ratio of 6:4,
respectively, to replace the C. lanceolata that was planted in 1981 and harvested in 2000.
The mixed forest in M3 had an initial density of 2500 individuals/ha, with thinning at
an intensity of 30% in 2015. However, it was actually based on a case study of pseudo-
duplicated samples, considering that there was no real duplication in different sampling
sites and the single sampling time.

2.2. Sample Plot Setting and Forest Stand Growth Survey

Three 20 × 20 m sample plots were set in each of the three models of forest manage-
ment in September 2020, a total of nine plots. The growth indexes included tree height,
diameter at breast height (DBH), clear bole height, and crown diameter, and these were
examined for each individual in each sampling plots (Supplementary Table S1).

2.3. Soil Sample Collection

Three vertical soil profiles were set in different slope positions on each sample plot.
Soil samples were collected from four layers (0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm)
in each vertical profile. The study used 100 cm3 cutting rings for the determination of
physical properties, while samples used for the detection of chemical properties and soil
enzyme activities were stored in sealed bags, and then stored at −20 ◦C. To investigate the
soil microbial community, soil samples from different depths of each plot were mixed at
equal mass to represent the plot’s microbial profile. Then these soil samples from nine plots
(three duplications per model) were stored at −80 ◦C.

2.4. Investigation of Physical and Chemical Properties and the Enzyme Activities of Soil Samples

The physical properties of the soil, including soil saturation capacity (SSC), field
moisture capacity (FMC), capillary moisture capacity (CMC), capillary porosity (CP), non-
capillary porosity (NCP), soil total porosity (STP), soil aeration (SA), and soil bulk density
(SBD) were examined following Pan’s report [31].
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To analyze the chemical properties, the samples were air-dried; inclusions were re-
moved, and the soil was ground before being filtered through a 0.149 mm sieve. The
filtered soil was divided into 0.1 g samples and digested following the perchloric acid
method [32]. The full-metal ion content was identified with the Inductively Coupled
Plasma-Atomic Emission Spectrometer (ICP-AES, PE optima 8000, Waltham, MA, USA).
The carbon dioxide-free water method was used to measure pH values. The total P (TP)
content was detected using the sodium hydroxide extraction and molybdenum–antimony
anti-colorimetric method. Available P (AP) contents were detected using the ammonium
fluoride and hydrochloric acid extraction and the molybdenum–antimony anti-colorimetric
methods [33]. Available K (AK) contents were detected using ammonium acetate extraction,
and the atomic absorption spectrophotometer analysis method. The total C (TC) and N
(TN) contents were detected with the Automatic Carbon & Nitrogen Analyzer (Elemental
Analyzer Vario ELIII, Hanau, Germany).

The activities of polyphenol oxidase (PPO), acid phosphatase (ACP), catalase (CAT),
urease (URE), and sucrose (SUC) were assessed by the relevant soil activity kits (Comin
Biotechnology Co., Ltd., Suzhou, China).

For the replicate sampling of small units caused by the particularity of the sampling
site, the physical and chemical properties of the soil and its enzyme activities were analyzed
by the Mann–Whitney test, using SPSS v22.0.0.0 software. The pairwise comparison of
a single parameter on three different models in the same soil layer was calculated to
investigate whether there was a significant difference (p < 0.05).

2.5. Soil Microbial Community Diversity Analysis

The ITS sequence and 16S rDNA created by the high-throughput sequencing method
were used to examine microbial characteristics. Total soil DNA was extracted using HiPure
Soil DNA Kits (Magen, Guangzhou, China) according to the manufacturer’s protocols,
followed by an examination using agarose gel electrophoresis. The qualified DNA was
diluted to 5 ng × µL−1 and immediately transmitted to GENE DENOVO Biotechnology
Co., Ltd. (Guangzhou, China) under carbon dioxide ice freezing for sequencing. The
process of amplification, library construction, and sequencing follows.

The ITS2 regions and 16S rDNA were amplified with specific primers containing a
barcode. The PCR amplification procedure was initial denaturation at 95 ◦C for 2 min,
denaturation at 98 ◦C for 10 s, annealing at 62 ◦C for 30 s, and extension at 68 ◦C for 30 s.
The above steps were carried out for 27 cycles, immediately followed by final extension at
68 ◦C for 10 min. The amplified products were purified and recovered by electrophoresis on
2% agarose gel. The purified products from each plot were then pooled in equimolar and
paired-end sequenced on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA).

To get high-quality clean reads, raw reads were further filtered according to the
following rules, using FASTP v.0.18.0 software [34]:

(1) Removing reads containing more than 10% of unknown uncleotides (N);
(2) Removing reads containing less than 50% of bases with quality (Q-value) >20.

Parid-end clean reads were merged as raw tags using FLASH v.1.2.11 [35] with a
minimum overlap of 10 bp and mismatch error rates of 2%. Noisy sequences of raw tags
were filtered under specific conditions [36] to obtain high-quality clean tags. The filtering
conditions are as follows:

(1) Break raw tags from the first low-quality base site where the number of bases in the
continuous low-quality value (the default quality threshold is ≤3) reaches the set
length (the default length is 3 bp);

(2) Then, filter tags whose continuous high-quality base length is less than 75% of the
tag length.

The clean tags were clustered into operational taxonomic units (OTUs) of ≥97%
similarity using UPARSE v9.2.64 [37] pipeline. All chimeric tags sequences were removed
using the UCHIME algorithm [38] and effective tags were finally obtained for further
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analysis. The tag sequence with highest abundance was selected as the representative
sequence within each cluster.

2.6. Taxonomy Annotation and Community Composition, Diversity, Function and Environmental
Factor Analysis

The representative OTU sequences were classified into organisms by a native Bayesian
model using an RDP classifier v2.2 based on the SILVA database v138.1 [39] or ITS2 database
version update_2015 [40], with the confidence threshold of 0.8.

The abundance statistics of each taxonomy was visualized using Krona v2.6 [41].
Between groups, Venn analysis was performed in an R project VennDiagram package
v1.6.16 to identify unique and common genera. Species comparison between/among
groups was calculated in an R project Vegan package v2.5.3 [42]. Biomarker features in
each group were screened by LEfSe software v1.0 [43]. A ternary plot of species abundance
was plotted using R ggtern package v3.1.0.

In alpha diversity analysis, Chao1, Ace, Shannon, Simpson, Good’s coverage, and
Pielou’s evenness index were calculated in QIIME v1.9.1 [44] based on the OUT sequences.
The PD-whole tree index was calculated in the Picante v1.8.2. OTU rarefaction curve,
and rank abundance curves were plotted in the R project ggplot2 package v2.2.1. In the
beta diversity analysis, sequence alignment was performed using Muscle v3.8.31 and a
phylogenetic tree was constructed using FastTree v2.1, and then weighted and unweighted
unifrac distance matrices were generated by the GuniFrac package v1.0 in R project [45]. The
Jaccard and Bray–Curtis distance matrix was calculated in R project Vegan package v2.5.3.
Principal component analysis (PCA), multivariate statistical techniques, and statistical
analysis of Welch’s t-test, the Wilcoxon rank test, Tukey’s HSD test, the Kruskal-Wallis H
test, and the Adonis and Anosim test were also generated in this package.

The KEGG pathway analysis of the OTUs was inferred using Tax4Fun v1.0 [46]. Micro-
biome phenotypes of bacteria were classified using BugBase. The Functional Annotation
of Prokaryotic Taxa (FAPROTAX) database and associated software v1.0 were used for
generating the ecological functional profiles of bacteria [47]. The Functional group (guild)
of Fungi was inferred using FUNGuild v1.0.

Canonical correspondence analysis (CCA), variation partition analysis (VPA), the
mantel test, and the envfit test were executed in the R project Vegan package v2.5.3 to
clarify the influence of environmental factors on community composition. The Pearson
correlation coefficient between environmental factors and species was calculated in R
project Psych package v1.8.4.

3. Results
3.1. Effect of Different Models on Soil Physical Status Changes

To measure the change in the soil-water-holding capacity caused by different models,
SSC, FMC, and CMC values were analyzed (Figure 1A–C). In general, the soil-water-
holding capacities of M2 were greater than those of the other two models in all layers. The
results revealed many significant superiorities (p < 0.05), including SSC in the 40–60 cm layer
(M2 = 648.22± 77.36 g× kg−1), compared with M3 (405.66± 69.27 g× kg−1); FMC in 0–10
(M2 = 626.79 ± 68.37 g × kg−1), 10–20 (M2 = 6.9.11 ± 233.42 g × kg−1), and 40–60 cm (M2
= 528.82 ± 46.49 g × kg−1) layers compared with M1 (596.79 ± 73.15 g × kg−1 in 0–10 cm
layer, 564.49 ± 81.64 g × kg−1 in 10–20 cm layer, and 451.77 ± 55.02 g × kg−1 in 40–60 cm
layer), and M3 (319.23 ± 103.90 g × kg−1 in 0–10 cm layer, 263.04 ± 87.80 g × kg−1 in
10–20 cm layer, and 207.78 ± 37.90 g × kg−1 in 40–60 cm layer); and CMC in the 40–60 cm
layer (M2 = 582.50 ± 54.85 g × kg−1) compared with M1 (493.45 ± 60.91 g × kg−1) and
M3 (352.53 ± 39.40 g × kg−1).
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Figure 1. Comparison of soil physical properties in different soil layers. (A) Performance of soil
saturation capacity (SSC) of the three models in different soil layers. (B) Performance of field
moisture capacity (FMC). (C) Performance of capillary moisture capacity (CMC). (D) Performance of
capillary porosity (CP). (E) Performance of non-capillary porosity (NCP). (F) Performance of soil total
porosity (STP). (G) Performance of soil aeration (SA). (H) Performance of soil bulk density (SBD). The
horizontal axis indicates the depth of soil in centimeters. Two columns connected by a horizontal line
with an asterisk above indicate significant differences (p < 0.05) between them.

Among the three models, CP values in the 40–60 cm layer were found to be significantly
(p < 0.05) differently expressed, with M2 showing the highest level (60.70% ± 3.96%)
and M3 performing at the lowest level (45.36% ± 4.23%, Figure 1D). The NCP of M1 in
10–20 cm (12.82% ± 3.39%) was significantly higher (p < 0.05) than in M3 (9.25% ± 3.34%,
Figure 1E). The STP level of M3 (60.95% ± 7.33%) was also found to be significantly lower
(p < 0.05) than that of M1 (74.25% ± 1.86%) and M2 (72.65% ± 1.15%) in the 0–10 cm
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layer, and lower than M2 in the 40–60 cm layer (Figure 1F). The results of SA measurement
(Figure 1G) showed a similar trend in variation (in the 10–20 cm layer, M1 = 16.01% ± 1.15%
and M3 = 9.79% ± 1.80%) to NCP. There was no significant difference in SBD among the
samples of different models.

3.2. Effect of Different Models on Soil Nutrient Content Changes

Examination of differences in soil pH showed that the pH values of M1 were rel-
atively higher, especially in the 10–20 cm layer. This approached a significant level
(M1 = 4.37 ± 0.05, M2 = 4.19 ± 0.06, and M3 = 4.15 ± 0.08). In the 20–40 cm layer, the
pH of M2 (4.34 ± 0.07) was close to that of M1 (4.32 ± 0.03), and the values of both models
were significantly higher (p < 0.05) than that of M3 (4.11 ± 0.12, Figure 2A).
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Figure 2. Comparison of soil pH value and metal nutrient contents in different soil layers. (A) Differ-
ences in soil pH values of the three models in different soil layers. The same symbols in all panels
in this figure have the same meaning. (B) Differences in soil Al ion contents. (C) Differences in
soil Na ion contents. (D) Differences in soil Mg ion contents. (E) Differences in soil Fe ion contents.
(F) Differences in soil Ca ion contents. The horizontal axis indicates the depth of soil in centimeters.
Two columns connected by a horizontal line with an asterisk above indicates significant differences
(p < 0.05) between them.
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The Al, Na, and Mg ion contents varied considerably among the different models. In
the layer below 10 cm, the greatest Al content was detected in M1 (68.32 ± 1.44 g × kg−1),
followed by M3 (61.67 ± 12.35 g × kg−1), and both of these increased with depth. In
contrast, change in M2 showed an opposite trend (Figure 2B). The difference in Na ion con-
tents among the models was very clear. It showed an upward, downward, and fluctuating
trend with soil depth in M1, M2, and M3, respectively. Most samples exhibited significant
differences (p < 0.05) within groups (Figure 2C). Generally, M1 had a higher content of Mg
ions in the shallow soil layers, while M2 showed significantly higher content in the deep
layers (Figure 2D). The levels of Fe (Figure 2E) and Ca (Figure 2F) ions were not observed
to be significantly different.

After changes were made in the experimental models, differences in soil TN, TC, and
OM contents were not obvious. However, they all decreased with depth (Figure 3A–C). The
only significant difference found (p < 0.05) appeared in TN in the 0–10 cm layer between
M1 (3.57 ± 0.28 g × kg−1) and M3 (2.39 ± 0.60 g × kg−1). A similar situation occurred
when the AK, AP, TK, and TP contents were detected: they did not vary markedly either
(Figure 3D–G). The ratios of C/N, C/P, and N/P were also stable (Figure 3H–J). Therefore,
the effects of different models on these primary nutrients were probably low.

3.3. Effect of Different Models on Soil Enzyme Activities Changes

PPO activity showed similar trends among different layers. In M2 (24.26 ± 0.11 mg
× d−1 × g−1, 25.39 ± 1.75 mg × d−1 × g−1, 26.41 ± 3.24 mg × d−1 × g−1, and 22.42 ±
1.86 mg × d−1 × g−1 with increase in depth) and M3 (23.07 ± 1.59 mg × d−1 × g−1, 22.86
± 0.71 mg × d−1 × g−1, 22.64 ± 0.94 mg × d−1 × g−1, and 22.46 ± 1.39 mg × d−1 × g−1

with increase in depth), the activity values were assessed to be at very close levels and
significantly lower than in almost every layer of M1 (30.67 ± 2.54 mg × d−1 × g−1, 29.49
± 2.85 mg × d−1 × g−1, 29.23 ± 4.17 mg × d−1 × g−1, and 27.95 ± 2.59 mg × d−1 × g−1

with increase in depth, Figure 4A).
Another enzyme with a clear distinction was URE. It showed a characteristic of de-

creasing with depth. M2 had the lowest URE activity level (433.48 ± 49.63 µg × d−1 × g−1,
370.81± 31.85µg×d−1×g−1, 219.98± 35.72µg×d−1×g−1, and 173.88± 49.82 µg× d−1 × g−1

with increase in depth) among the three models. In the 0–10 cm layer, M1 had the highest
activity (754.71 ± 53.50 µg × d−1 × g−1); nevertheless, it became considerably inactivated
in the deeper layers, and was surpassed by values in M3 (Figure 4B).

The activities of CAT increased in the soil layers below 20–40 cm, especially in M2 and M3.
Significant differences (p < 0.05) were recorded between M2 (38.36 ± 3.69 µmol × d−1 × g−1)
and M3 (30.21 ± 2.07 µmol × d−1 × g−1) in the 0–10 cm layer, M1 (26.96 ± 4.87 µmol × d−1

× g−1), and M3 (51.37 ± 7.41 µmol × d−1 × g−1) in the 20–40 cm layer, and between M1
(28.89 ± 5.29 µmol × d−1 × g−1) and M2 (43.79 ± 3.41 µmol × d−1 × g−1) in the 40–60 cm
layer (Figure 4C).

In contrast, the activities of SUC were relatively high in the shallow soil layer. Ac-
tivity levels of M1 (0.12 ± 0.03 µg × d−1 × g−1) and M2 (0.25 ± 0.11 µg × d−1 × g−1)
exhibited significant (p < 0.05) differences (Figure 4D). The ACP activities were unchanged
with/within the groups (Figure 4E).
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Figure 3. Comparison of soil primary nutrient contents in different soil layers. (A) Differences in total
soil nitrogen (TN) contents in the three models in different soil layers. The horizontal axis indicates
the depth of soil in centimeters. The same symbols in all panels in this figure have the same meaning.
(B) Differences in total soil carbon (TC) contents. (C) Differences in soil organic matter (OM) contents.
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(D) Differences in soil’s available potassium (AK) contents. (E) Differences in available phosphorus
(AP) contents. (F) Differences in soil’s total potassium (TK) contents. (G) Differences in soil’s
total phosphorus (TP) contents. (H) Differences in soil’s carbon and nitrogen contents ratio (C/N).
(I) Differences in soil’s carbon and phosphorus contents ratio (C/P). (J) Differences in soil’s nitrogen
and phosphorus contents ratio (N/P). The horizontal axis indicates the depth of soil in centimeters.
Two columns connected by a horizontal line with an asterisk above indicates significant differences
(p < 0.05) between them.
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Figure 4. Comparison of soil enzyme activities in different soil layers. (A) Comparison of polyphenol
oxidase (PPO) activities in the three models in different soil layers. The horizontal axis indicates
the depth of soil in centimeters. The same symbols in all panels in this figure have the same
meaning. (B) Comparison of urease (URE) activities. (C) Comparison of catalase (CAT) activities.
(D) Comparison of sucrose (SUC) activities. (E) Comparison of acid phosphatase (ACP) activities.
The horizontal axis indicates the depth of soil in centimeters. Two columns connected by a horizontal
line with an asterisk above indicates significant differences (p < 0.05) between them.

3.4. Diversity, Function, and Correlation with Environmental Factors of Soil Bacteria

In detecting soil bacteria based on 16S rDNA sequencing, the average number of
sequences in the sample was found to be 78,564 after removing the low-quality sequences.
All sequences were classified into OTUs according to the standard of 97% similarity. A total
of 64,375 OTUs was obtained with an average per sample of 1788; sequencing coverage
was 99%.
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Sequence coverage and specific diversity assessment of the soil bacterial populations
among the models were estimated (Figure 5A). The Goods coverage, which can be used
to describe the truthfulness of the sequencing results, was calculated as 0.99 in all three
models. This illustrated that the sequencing results reflected the real species abundance
and population size almost completely. The three models also had equal levels of Simpson’s
index values (0.96± 0.01); however, the Shannon index value in M1 (7.21± 0.08) was higher
than in M2 (7.17 ± 0.04) or M3 (7.18 ± 0.03), implying a more complex community. In
contrast, both the Ace (2196.51± 66.05) and Chao (2114.43± 55.91) values of M2 performed
at the highest level, reflecting their relatively better species richness. The PD-whole-tree
index, which was used to evaluate the strength of lineage diversity according to the OTU
sequence phylogenetic relationship, also showed the highest level in M2 (174.60 ± 10.96).
Overall, the M1 and M2 ecosystems performed better in species richness and diversity.
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performed a clear functional bias. Only one pathway, the synthesis and degradation of 
ketone bodies, was found with a high enriched level in M1, while the bacterial chemotaxis 
pathway appeared in M2. Another 18 pathways, including biosynthesis of ansamycins; 
biosynthesis of vancomycin group antibiotics; and valine, leucine and isoleucine biosyn-
thesis were strongly enriched in M3. This indicated that soil bacteria in M3 may have 
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showed that the common interpretation of RDA1 and RDA 2 was 85.07%. The activities 

Figure 5. Soil bacterial diversity and functional enrichment. (A) Comparison of the diversity levels
among the three models. The performance of OTUs, sequencing truthfulness (good coverage),
diversity level (Simpson, Shannon, and PD-whole tree), and richness value (Ace and Chao) are
shown in the histogram. (B) Ternary diagram for the distribution of soil bacteria relative abundance
in different models. Different-colored dots represented the top ten bacterial genera with highest
relative abundances. Their size represented the average abundance of the genera in the three models,
and their locations were composed of the relative abundance proportion of the genera in the three
models. The closer the dot was to the marked angle, the higher the proportion of this genera in the
corresponding model. (C) Venn diagram showing the general quantities of the common/unique
bacteria via marking numbers on the overlapping/non-overlapping parts. (D) Heat map of the
soil bacterial function. Twenty functional pathways with the highest enriched level, which can be
distinguished by the cell color, are shown.
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Burkholderia–Caballeronia–Paraburkholderia (total of 237,354 OTUs and 8% of bacteria),
Acidothermus (total of 76,343 OTUs and 3% of bacteria), Paenibacillus (total of 71,180 OTUs
and 3% of bacteria, Supplementary Figure S2), and seven other genera of bacteria with the
highest abundance occupied dominant positions in the plots (Supplementary Figure S3).
Their distribution in the ternary diagram (Figure 5B) was relatively concentrated, indicating
the lower differences in relative abundance among these models. There were 108 differ-
entially expressed bacteria shared by all three models; and seven, nine, and ten endemic
bacteria were found in M1, M2, and M3, respectively (Figure 5C). This suggested a high
coessential level of composition over the converted models (Supplementary Figure S4).

Differences in soil bacterial function required further examination, and Figure 5D
shows the top 20 significantly enriched KEGG pathways. Soil bacteria in those models
performed a clear functional bias. Only one pathway, the synthesis and degradation of
ketone bodies, was found with a high enriched level in M1, while the bacterial chemotaxis
pathway appeared in M2. Another 18 pathways, including biosynthesis of ansamycins;
biosynthesis of vancomycin group antibiotics; and valine, leucine and isoleucine biosynthe-
sis were strongly enriched in M3. This indicated that soil bacteria in M3 may have higher
functional diversity.

Results of a redundancy analysis (RDA, Figure 6A and Supplementary Table S2)
showed that the common interpretation of RDA1 and RDA 2 was 85.07%. The activities
of SUC (p < 0.01), URE (p < 0.01), and PPO (p = 0.01); TC (p < 0.01), TN (p = 0.01), and AP
(p = 0.02) contents; and the ratios of C/P (p < 0.01) and N/P (p < 0.01) were significantly cor-
related with the variation in soil bacteria. The PPO activity showed the highest explanatory
value (12.03%). This represented the coincidence between the changes in environmental
factors and bacterial diversity and was followed by URE activity (11.07%, Figure 6B). In
addition, the correlations between the changes in the 20 genera with the highest abun-
dance and the soil properties are shown in Figure 6C. These genera were clustered into
four clades. Clade B consisted of six genera, including Acidothermus, Candidatus_Solibacter,
and Acidibacter, and clade D consisted of Paenibacillus and HSB_OF53-F07. Both of the
clades were significantly correlated with TN, TC, AP, and OM contents; ratios of C/N,
C/P, and N/P; and activities of both SUC and URE. However, clade B was positive while
clade D was negative. The other two clades (A and C) exhibited a similar (but slighter)
positive/negative correlation, compared with the clades mentioned above. Burkholderia–
Caballeronia–Paraburkholderia, which exhibited the highest relative abundance, was found to
have a significant positive correlation only with PPO activity.

3.5. Diversity, Function, and Correlation to Environmental Factors of Soil Fungi

The average number of sequences in the sample was 121,164 after screening out the
low-quality sequences. The similarity threshold of OTU classification was set at 97%, and
finally produced 31,319 entries. The average OTUs of each sample were 846, and the
coverage was higher than 99%.

Compared with the soil bacteria, fungi differed more clearly in abundance within the
models (Figure 7A). The Simpson (M1 = 0.95± 0.01, M2 = 0.94± 0.03, and M3 = 0.93 ± 0.03)
and Shannon (M1 = 7.21 ± 0.08, M2 = 7.17 ± 0.04, and M3 = 7.18 ± 0.03) indexes did not
demonstrate conspicuous variation within groups. The change in Chao and Ace values
had a similar trend, and the order from high to low level was M2 (Chao = 1071.96 ± 77.68,
and Ace = 1086.07 ± 72.26), M3 (Chao = 1066.22 ± 34.72, and Ace = 1078.47 ± 29.90), and
M1 (Chao = 1044.65 ± 23.31, and Ace = 1049.94 ± 27.91). The PD-whole-tree difference
was the most observable. It had a greater level in M3 (307.27 ± 7.61), a medial but discrete
level in M2 (296.48 ± 21.33), and a relatively low level in M1 (289.14 ± 2.92), indicating that
ecosystems such as M3 seemed beneficial to the improvement in fungal diversity from a
phylogenetic viewpoint.
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Figure 6. Correlative analysis between soil properties and bacterial diversity at genus level. (A) Result
of redundancy analysis (RDA). The red lines represent the regression direction and degree of the
corresponding environmental factors. Only the factors with an envfit p value less than 0.05 are shown.
(B) Histogram of the explanatory analysis. The height of the column indicates the explanatory level
to which the corresponding environmental factors elucidate the difference in bacterial diversity.
(C) Heatmap of the correlation between soil properties and top 20 highest relative abundant bacterial
genera. Red cells represent a positive correlation, while blue cells represent a negative correlation.
An asterisk in the cell indicates the significance level. One asterisk means the correlation between the
corresponding factors performed significantly (p < 0.05), while three asterisks mean high significance
(p < 0.01).
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Figure 7. Soil fungal diversity and functional enrichment. (A) Comparison of the diversity levels
among the three models. Performance of OTUs, sequencing truthfulness (good coverage), diversity
level (Simpson, Shannon, and PD-whole tree), and richness value (Ace and Chao) are shown in the
histogram. (B) Ternary diagram for the distribution of the relative abundance of soil fungi in different
models. Different-colored dots represented the top 10 fungal genera with the highest relative abundances.
Their size represented the average abundance of the genera in the three models, and their locations
were composed of the relative abundance proportion of the genera in the three models. The closer
the dot is to the marked angle, the higher the proportion of these genera in the corresponding model.
(C) Venn diagram showing general quantities of the common/unique fungi via marking numbers on
the overlapping/non-overlapping parts. (D) Heat map of the soil fungal function. Twenty functional
pathways with the highest enriched level, which can be distinguished by the cell color, are shown.

The distribution of the ten fungi with the highest relative abundance was seen to be
more dispersed (Supplementary Figure S3). Dots in Figure 7B indicated that Talaromyces
(total of 170,327 OTUs and 4% of fungi), Trichodema (total of 112,272 OTUs and 3% of
fungi), and Aspergillus (total of 147,359 OTUs and 3% of fungi) were observed closer to
the M1 pole in the ternary phase diagram, indicating their larger population sizes and
dominant competitive positions. Similarly, Saitozyma (total of 151,292 OTUs and 4% of
fungi) and Umbelopsis (total of 40,678 OTUs and 0.9% of fungi) also constituted the dominant
fungal populations in M3. However, Mortierella (total of 52,413 OTUs and 1% of fungi,
Supplementary Figure S2) showed less difference in the proportion of distribution between
M1 and M3. In addition, these plots also contained more endemic fungi than soil bacteria.
More endemic fungi were detected (M1 = 37, M2 = 41, and M3 = 44), while 96 genera were
found to be common among them (Figure 7C; Supplementary Figure S5).

The functional enrichment analysis of soil fungi (Figure 7D) revealed an opposite result
to that shown in Figure 6c. Among the 20 functional KEGG pathway entries with highest
abundance, a large part was found to be highly expressed in M1, such as glycolysis III (from
glucose), the Calvin-Benson-Bassham cycle, and coenzyme A biosynthesis I. Five entries
were enriched in M2, including L-arginine biosynthesis I (via L-ornithine), gluconeogenesis
I, and L-ornithine biosynthesis. In M3, only two entries, L-methionine biosynthesis III and
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L-leucine degradation I, were displayed. Overall, the distribution of functional enrichment
showed a moderate trend, suggesting that the functional diversity of the fungal community
might decrease with the reconstruction of the artificial plantation.

Five environmental factors, Na (p = 0.03) and TK (p = 0.04) contents, N/P (p < 0.01) and
C/P (p = 0.02) ratio, and PPO activity (p < 0.01), correlated significantly with the divergence
in fungi based on the RDA result (Figure 8A and Supplementary Table S2). The variation
trend in the fungal diversity in different models could mainly be explained by the C/P
(10.29%) and N/P (10.81%) ratios; TK content (8.69%); and PPO (7.34%) and URE (5.81%)
activities (Figure 8B). The cluster results (Figure 8C) showed two major clades. The clade of
Aspergillus and Trichoderma (clade A), which abounded in M1, positively correlated with
C/P and N/P ratios, AK and TK contents, PPO activity, and NCP and CP levels. The other
major clade (B) divided into four subclades. Their correlative factors were observed separately
and positively. Umbelopsis and Saitozyma, which had high relative abundance levels in M3,
exhibited a negative correlation to soil pH value and a positive correlation to SBD level.
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Figure 8. Correlative analysis between soil properties and fungal diversity at genus level. (A) Result
of redundancy analysis (RDA). The red lines represent the regression direction and degree of the
corresponding environmental factors. Only the factors with an envfit p value less than 0.05 are shown.
(B) Histogram of the explanatory analysis. The height of the column indicates the explanatory level to
which the corresponding environmental factors explain the difference in fungal diversity. (C) Heatmap
of the correlation between soil properties and top 20 highest relative abundant fungal genera. Red cells
represent a positive correlation, while blue cells represent a negative correlation. Asterisks in the cell
represent the significance level. One asterisk means the correlation between the corresponding factors
performed significantly (p < 0.05), and three asterisks means a high significance (p < 0.01).
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4. Discussion
4.1. Soil Properties Change after Conversion of the Artificial Plantation Ecosystem

When an artificial plantation ecosystem is transformed, vegetation on the surface
will be damaged, further changing soil properties. The continuous increase in demand
for timber supplies has led to the pursuit of fast-growing timber, resulting in a shortened
growth cycle. Soil physical properties are mainly composed of solid [48], gaseous [49],
and liquid [50] particles. Only when they are well combined can the soil exhibit the most
favorable physical properties for plant growth. This study found that, with the increase in
conversion after harvest, soil water-holding capacity first increased and then decreased; in
particular, it was significantly greater in M2 and lower in M3 (Figure 1). These suggested
that M2 may be more conducive to soil water conservation and retention, and a mature root
system or a high degree of litter humus in M3 may impact the soil particles. These findings
indicate that rotation clear logging at appropriate time periods should be beneficial to the
enhancement in soil water-holding capacity, while excessive disturbance would inhibit
it [51,52]. A rotation of more than 20 years may be suggested for C. lanceolata. A possible
explanation for changes in water-holding capacity may be the squeezing effect of artificial
interference on non-capillary porosity. Extrusion, when appropriate intensity is applied,
may change large pores to smaller (capillary) pores, thus enhancing the capillary force on
soil water and avoiding its loss to the deeper layer, which is hard for roots to reach [53].

With respect to soil nutrient content performance, the differences in the models were
mainly reflected in the metal nutrients such as Na, Al, and Mg ions (Figure 2), while the
changes in the primary nutrients were not significant (Figure 3). These results contrast with
previous research [29,30], and the mixed management in the multiple conversion model
may reflect this difference.

Soil PPO is mainly derived from biochemical release via soil microbial activities, root
secretions, and the decomposition of plant or animal residues [54,55]. The M1 model had a
longer growth and development period, producing a more mature ecosystem, abundant
understory vegetation or litter, and vigorous root activity. All these factors further elevated
the level of PPO activity. URE is considered a soil microorganism secretory product,
which hydrolyzes the organic compound urea into ammonium nitrogen and converts soil
nutrients into the appropriate forms required by plants [56]. As organic matter content in
soil rises, URE activity has also been reported to increase [57,58].

4.2. Role of Manual Intervention in Succession of the Soil Microorganism Population Structure

The abundance, diversity, and functional bias of bacteria or fungi in the different
models showed a visible divergence (Figure 5B,C, and Supplementary Figure S3). Most of
the relatively abundant bacteria have been found to promote the availability of soil nutrients
or limit the survival of other microorganisms by secreting secondary metabolites [50,59–61].
For example, autotoxic ginsenosides of P. notoginseng can recruit Burkholderia–Caballeronia–
Paraburkholderia in rhizosphere soil. This plays a detoxification role by degrading the
ginsenosides and inhibits Ilyonectira destructans, a root rot pathogen [62]. The successive
planting of Cunninghamia lanceolata has also been confirmed to promote autotoxicity [63].
Burkholderia has been considered a pathogen in many reports [64], including a paper that
focused on harmful microbial change in a C. lanceolata plantation [30]. Those authors
believed that successive planting would lead to an accumulation of Burkholderia and limit
the growth of managed timbers. However, the abundant Burkholderia found in the long-
term model of forest management in this study challenges this conclusion, and further
research is clearly needed. Nevertheless, more metabolically related functions with a high
level of difference and confidence were enriched in M3 (Figure 6C), showing the superior
functional diversity of successive planting. Mixed plantings of C. lanceolata and Pinus.
massoniana should be effective in stimulating soil bacterial functional diversity.

Fungi, however, behaved quite differently from bacteria. More endemic fungal genera
were found in different models (Figure 7C), and the distribution of relative abundance
was more skewed (Figure 7B). Ascomycota and Basidiomycota, fungi with broad ecologi-
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cal niches, constituted the domain community in each model (Supplementary Figure S3).
They are considered the major mediator of lignin degradation in forest ecosystems [65].
Talaromyces, Trichoderma, and Aspergillus of Ascomycota were relatively abundant genera
in the M1 model, whereas Saitozyma of Basidiomycota and Umbelopsis of Mucoromycota
were highly distributed in M3. Nutrient cycling and soil properties after artificial harvest
and replanting may lead to this difference. In long-term management without a harvest
model, more accumulation of litter is found, for which more specific lignin decomposers
is demanded. The humification ability of Talaromyces is emphasized here, and this agrees
with previous research [66]. Talaromyces has also been reported as intertwining soil par-
ticles into large, stable fungus–soil spherical granules [67], coordinating some bacteria
to improve the circulation of soil gases and water exchange, promoting oxidation, hy-
droxylation, and epoxidation in soil; and finally enhancing the soil trophic structure and
promoting plant growth [68,69]. In addition, the influence of these abundant fungi is
reflected in the mediation of the soil microbial communities. These fungi also release
special secondary metabolites [41,70,71], affect host secretion [72], or recruit soil antibiotics
such as Penicillium [73], and further reform the rhizosphere-beneficial microbes involved
in suppression and adaption. Compared with M1, more roots remained in the soil of
M3, which experienced vigorous manual intervention, providing more suitable living
conditions for saprotrophic fungi. Umbelopsis is a typical fungal genus that can live on
rotten woody substrates. Its ability to degrade and reduce toxicity through its endocrine
activity [74] allows it to clean up the environment [75]. It not only produces quantities of
terpene metabolites [76] that have the same or similar components as the host, but also
modifies the exudation from the host to promote the production of highly oxygenated
schitiriterpenoids/schinortriterpenoids [77]. Saitozyma has also been reported to have the
ability to convert plant-derived lignocellulose into biochemical substances [78].

4.3. Correlation between Soil Properties and Microbial Composition

Diversity, abundance, and evenness of soil microorganisms have also been influenced
in different models. Primary nutrients were found to be involved in the formation of
the microbial community (Figures 6 and 8), as well as the URE and PPO activities. The
decomposition products of URE, ammonia and carbonic acid, are involved in soil nitrogen
and carbon cycling, and affect pH regulation as well. Phenol accumulation in successive C.
lanceolata plantations requires a high level of PPO for detoxification, so the activities of PPO
and URE are related to the nutrient supply and suitability of the living environment for
soil microbes. Cui et al. [79] reported that a high ratio of soil C/N indicated the presence
of large amounts of lignin and polyphenols in the soil, and this is more conducive to the
growth and reproduction of fungi, supporting this deduction.

Previous studies also suggested that soil pH was an important factor in microbial
community structure [80]. However, this effect did not appear to be significant in this
study. The geographical condition of the sampling site determined that the soil pH value
was relatively acidic [81,82]. In the present study, artificial disturbance seems to have little
influence on the changes in soil pH value, which negates its decisive role.

In conclusion, the effects of successive strategies on soil microbial community structure
succession and diversity formation are comprehensive, with multiple factors. However,
the importance of soil enzyme activities should probably be paid more attention. Their
levels are shaped by plant roots and soil microbial communities in the plantation [60],
and further influence soil nutrients via their functions in the circulation of ecosystem
materials [57]. Moreover, variations in soil microbial diversity caused by models may
ultimately be reflected in those functions.

4.4. Limitation and Suggession for Sustainable C. lanceolata Plantation Management

Factors in artificial plantation ecosystems are closely related. The biological character-
istics of the main timber species and the physical and chemical properties of the soil can
shape the differentiation of both microbial communities and functional types. As the most
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important woody species in China, C. lanceolata always experiences clearcutting, repeated
planting on the same sites, and other radical approaches to achieve efficient utilization and
economic returns. Whenever these measures are implemented, the population structure of
soil microbes will be reconstructed.

According to the present data, the diversity in artificial C. lanceolata plantation ecosys-
tems cannot be maintained under the high-intensity successive and pure plantation re-
constructive method. Extending the rotation period or building mixed forests may be
appropriate solutions that promote sustainability.

However, the flaws in this research are obvious. First, although the sampling site is
in a complete land, then divided into three plots using different management practices,
different environmental factors such as the soil and microclimate characteristics of the plots
cannot be ruled out. With the long periodic forests, these assessments currently can only be
made under limited conditions including the single point in time sampling method, and
further limit the ability to apply these findings broadly to management practices in this
region of China. Moreover, the replication did not address different areas, in view of the
difficulty of searching for similar forests managed the same way. This lack of a basis of
comparison may lead to the possibility that the conclusions might not fully represent the
general rule of those models. In view of this, the available findings were recommended
conservatively. Better experimental designs and longer observations are expected in the
future to confirm and complete this recommendation.

5. Conclusions

The present study provided an overview of the correlation between soil properties and
microbial diversity changes in an artificial C. lanceolata plantation in different management-
practiced models. By comparing changes in soil properties and microbial diversity in these
models, the effects of artificial management on environmental factors were clarified. The
contents of Na, Mg, and Al ions were significantly different in these models, and the trends
with soil depth were not similar. On the contrary, the assessment of the effects of plantation
conversion on primary nutrients was probably low. Higher PPO and URE activity levels
were found both in long-term continuous growing without a harvest model and a two-time
main harvest followed by the construction of a mixed plantation model. The dynamics of
URE and PPO and changes in primary nutrients were found to have a significant correlation
with microbial diversity. Fungi, but not bacteria, showed a bias toward greater distribution
among models, and this matched the characteristics of the ecosystems. Finally, when the
positive effects of a high level of artificial plantation biodiversity on economic and ecological
benefits are considered, long-term management and the construction of mixed forests were
proposed to be the more appropriate and applicable models for C. lanceolata sustainability.
Although the experimental design and sampling time were limited, the results could
provide reference for the construction and improvement of C. lanceolata plantations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f14050877/s1, Supplementary Table S1. Growth information of Cunninghamia lanceolata
in the sampling sites. Supplementary Table S2. Results of redundancy analysis. Supplementary
Figure S1. Geographic position of the sampling sites. Supplementary Figure S2. Krona analysis
showing the proportions of the microbe genera. A phylogenetic tree from phylum to genus level and
the community composition of the soil bacteria (A) and fungi (B) are shown in the pie chart based on
the Krona analysis. The number before the genus name represents the proportion of this genus in all
samples based on OTUs statistics. Supplementary Figure S3. Major microbial composition. Microbes
with highest relative abundance are shown in each sub-figure including phylum level of bacteria
(A) and fungi (B), and genus level of bacteria (C) and fungi (D). The stacked colored areas represent
the relative abundance level of the corresponding genus. Supplementary Figure S4. Bacterial Lefse
cladogram. Differentially expressed bacteria and their phylogenetic relationship are shown in the pie
chart. The colored background represents the distribution in the corresponding model. The histogram
with different colors represents the log10LDA score, which is used to evaluate the differential
expression level. Supplementary Figure S5. Fungal Lefse cladogram. Differentially expressed fungi
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and their phylogenetic relationship are shown in the pie chart. The colored background represents
the distribution in the corresponding model. The histogram with different colors represents the
log10LDA score, which is used to evaluate the differential expression level.
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