Bioaccumulation and Health Risk Assessment of Nickel Uptake by Five Wild Edible Saprotrophic Mushroom Species Collected from Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Soil and Mushroom Sample Collection
2.3. Nickel Analysis Using ICP-OES
2.4. Bioaccumulation and Health Risk Calculation
2.5. Data Analysis
3. Results and Discussion
3.1. Results of Ni Content in Soil
3.2. Results of Ni Contents in Selected Mushroom Species
3.3. Results of Multivariate Analyses
3.4. Results of Ni Bioaccumulation and Correlation Analyses
3.5. Results of Health Risk Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Tian, Y.; Menolli, N.; Ye, L.; Karunarathna, S.C.; Perez-Moreno, J.; Rahman, M.M.; Rashid, M.H.; Phengsintham, P.; Rizal, L.; et al. Reviewing the World’s Edible Mushroom Species: A New Evidence-Based Classification System. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1982–2014. [Google Scholar] [CrossRef] [PubMed]
- Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy Metal Bioaccumulation by Wild Edible Saprophytic and Ectomycorrhizal Mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252. [Google Scholar] [CrossRef] [PubMed]
- Wendiro, D.; Wacoo, A.P.; Wise, G. Identifying Indigenous Practices for Cultivation of Wild Saprophytic Mushrooms: Responding to the Need for Sustainable Utilization of Natural Resources. J. Ethnobiol. Ethnomed. 2019, 15, 1–15. [Google Scholar] [CrossRef]
- Tsing, A. Arts of Inclusion, or, How to Love a Mushroom. Aust. Humanit. Rev. 2011, 22, 191–203. [Google Scholar] [CrossRef]
- Bertelsen, C.D. Mushroom: A Global History; Reaktion Books: Clerkenwell, UK, 2013; ISBN 9781780231754. [Google Scholar]
- Jones, B.; Jones, W.A. The Deerholme Mushroom Book: From Foraging to Feasting; TouchWood Editions: Victoria, BC, Canada, 2013; ISBN 9781771510042. [Google Scholar]
- Tibuhwa, D.D. Wild Mushroom- an Underutilized Healthy Food Resource and Income Generator: Experience from Tanzania Rural Areas. J. Ethnobiol. Ethnomed. 2013, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.W.; Anders, E. Chemical Composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. USA 1980, 77, 6973–6977. [Google Scholar] [CrossRef]
- Cheltsov, A.N.; Sosnin, L.Y.; Khamylov, V.K. Centrifugal Enrichment of Nickel Isotopes and Their Application to the Development of New Technologies. J. Radioanal. Nucl. Chem. 2014, 299, 981–987. [Google Scholar] [CrossRef]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A Comprehensive Review on the Sources, Essentiality and Toxicological Profile of Nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Uchida, R.; Silva, J.A. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. Plant Nutr. Manag. Hawaii’s Soils 2000, 4, 31–55. [Google Scholar]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The Importance of Mineral Elements for Humans, Domestic Animals and Plants: A Review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Saravanan, V.S.; Kumar, M.R.; Sa, T.M. Microbial Zinc Solubilization and Their Role on Plants. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 47–63. [Google Scholar] [CrossRef]
- Welch, R.M. The Biological Significance of Nickel. J. Plant Nutr. 1981, 3, 345–356. [Google Scholar] [CrossRef]
- Sidhu, P.; Garg, M.L.; Dhawan, D.K. Protective Role of Zinc in Nickel Induced Hepatotoxicity in Rats. Chem. Biol. Interact. 2004, 150, 199–209. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Bai, C. Role of Oxidative Stress in Nickel Chloride-Induced Cell Injury in Rat Renal Cortical Slices. Biochem. Pharmacol. 1999, 58, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Ważny, R.; Rozpądek, P.; Domka, A.; Jędrzejczyk, R.J.; Nosek, M.; Hubalewska-Mazgaj, M.; Lichtscheidl, I.; Kidd, P.; Turnau, K. The Effect of Endophytic Fungi on Growth and Nickel Accumulation in Noccaea Hyperaccumulators. Sci. Total Environ. 2021, 768, 144666. [Google Scholar] [CrossRef] [PubMed]
- Gerwien, F.; Skrahina, V.; Kasper, L.; Hube, B.; Brunke, S. Metals in Fungal Virulence. FEMS Microbiol. Rev. 2018, 42, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K. Biosorption of Chromium and Nickel by Heavy Metal Resistant Fungal and Bacterial Isolates. J. Hazard. Mater. 2007, 146, 270–277. [Google Scholar] [CrossRef]
- Tel, G.; Çavdar, H.; Deveci, E.; Öztürk, M.; Duru, M.E.; Turkoǧlu, A. Minerals and Metals in Mushroom Species in Anatolia. Food Addit. Contam. Part B Surveill. 2014, 7, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Nnorom, I.C.; Eze, S.O.; Ukaogo, P.O. Mineral Contents of Three Wild-Grown Edible Mushrooms Collected from Forests of South Eastern Nigeria: An Evaluation of Bioaccumulation Potentials and Dietary Intake Risks. Sci. Afr. 2020, 8, e00163. [Google Scholar] [CrossRef]
- Doǧan, H.H.; Şanda, M.A.; Uyanöz, R.; Öztürk, C.; Çetin, Ü. Contents of Metals in Some Wild Mushrooms: Its Impact in Human Health. Biol. Trace Elem. Res. 2006, 110, 79–94. [Google Scholar] [CrossRef]
- Pereira, M.C.; Pereira, M.L.; Sousa, J.P. Evaluation of Nickel Toxicity on Liver, Spleen, and Kidney of Mice after Administration of High-Dose Metal Ion. J. Biomed. Mater. Res. 1998, 40, 40–47. [Google Scholar] [CrossRef]
- Državni Hidrometeorološki Zavod Dhmz DHMZ—Državni Hidrometeorološki Zavod (The State Hydrometeorological Institute). Available online: https://meteo.hr/index.php (accessed on 24 March 2023).
- Kalogiouri, N.P.; Manousi, N.; Mourtzinos, I.; Zachariadis, G.A. Multielemental Inductively Coupled Plasma–Optical Emission Spectrometric (ICP-OES) Method for the Determination of Nutrient and Toxic Elements in Wild Mushrooms Coupled to Unsupervised and Supervised Chemometric Tools for Their Classification by Species. Anal. Lett. 2022, 55, 2108–2123. [Google Scholar] [CrossRef]
- Alonso, J.; Garcia, M.A.; Parez-Lopez, M.; Melgar, M.J. The Concentrations and Bioconcentration Factors of Copper and Zinc in Edible Mushrooms. Arch. Environ. Contam. Toxicol. 2003, 44, 180–188. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Popović-Djordjević, J.; Solak, M.H. Wild Edible Mushrooms from Mediterranean Region: Metal Concentrations and Health Risk Assessment. Ecotoxicol. Environ. Saf. 2020, 190, 110058. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huang, Q.; Cai, H.; Guo, X.; Wang, T.; Gui, M. Study of Heavy Metal Concentrations in Wild Edible Mushrooms in Yunnan Province, China. Food Chem. 2015, 188, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Michopoulos, P. Nickel in Forests—A Short Review on Its Distribution and Fluxes. Folia Oecologica 2021, 48, 205. [Google Scholar] [CrossRef]
- Barcan, V. Leaching of Nickel and Copper from Soil Contaminated by Metallurgical Dust. Environ. Int. 2002, 28, 63–68. [Google Scholar] [CrossRef]
- Pelkonen, R.; Alfthan, G.; Järvinen, O. Cadmium, Lead, Arsenic and Nickel in Wild Edible Mushrooms; Finnish Environment Institute: Helsinki, Finland, 2006; ISBN 9521122749. [Google Scholar]
- Holmgren, G.G.S.; Meyer, M.W.; Chaney, R.L.; Daniels, R.B. Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the United States of America. J. Environ. Qual. 1993, 22, 335–348. [Google Scholar] [CrossRef]
- Serafín Muñoz, A.H.; Corona, F.G.; Wrobel, K.; Soto, G.M.; Wrobel, K. Subcellular Distribution of Aluminum, Bismuth, Cadmium, Chromium, Copper, Iron, Manganese, Nickel, and Lead in Cultivated Mushrooms (Agaricus bisporus and Pleurotus ostreatus). Biol. Trace Elem. Res. 2005, 106, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of Heavy Metals in Some Wild Edible Mushrooms Collected from Yunnan Province, China. Environ. Monit. Assess 2011, 179, 191–199. [Google Scholar] [CrossRef]
- Mititelu, M.; Ghica, M.; Ionită, A.C.; Morosan, E. The Influence of Heavy Metals Contamination in Soil on the Composition of Some Wild Edible Mushrooms. Farmacia 2019, 67, 398–404. [Google Scholar] [CrossRef]
- Širić, I.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Bachheti, R.K.; Bachheti, A.; Ajibade, F.O.; Kumar, V.; Taher, M.A.; Eid, E.M. Risk Assessment of Heavy Metals Occurrence in Two Wild Edible Oyster Mushrooms (Pleurotus Spp.) Collected from Rajaji National Park. J. Fungi 2022, 8, 1007. [Google Scholar] [CrossRef]
- Dimitrijevic, M.V.; Mitic, V.D.; Cvetkovic, J.S.; Stankov Jovanovic, V.P.; Mutic, J.J.; Nikolic Mandic, S.D. Update on Element Content Profiles in Eleven Wild Edible Mushrooms from Family Boletaceae. Eur. Food Res. Technol. 2016, 242, 1–10. [Google Scholar] [CrossRef]
- Cvetkovic, J.S.; Mitic, V.D.; Stankov-Jovanovic, V.P.; Dimitrijevic, M.V.; Nikolic-Mandic, S.D. Elemental Composition of Wild Edible Mushrooms from Serbia. Anal. Lett. 2015, 48, 2107–2121. [Google Scholar] [CrossRef]
- Moore, B.A.; Duncan, J.R.; Burgess, J.E. Fungal Bioaccumulation of Copper, Nickel, Gold and Platinum. Miner. Eng. 2008, 21, 55–60. [Google Scholar] [CrossRef]
- Brown, P.H.; Dunemann, L.; Schulz, R.; Marschner, H. Influence of Redox Potential and Plant Species on the Uptake of Nickel and Cadmium from Soils. Z. Für Pflanz. Und Bodenkd. 1989, 152, 85–91. [Google Scholar] [CrossRef]
- Mazurkiewicz, N.; Podlasińska, J. Bioaccumulation of Trace Elements in Wild-Growing Edible Mushrooms from Lubuskie Voivodeship, Poland. Chem. Ecol. 2014, 30, 110–117. [Google Scholar] [CrossRef]
- Isildak, O.; Turkekul, I.; Elmastas, M.; Aboul-Enein, H.Y. Bioaccumulation of Heavy Metals in Some Wild-Grown Edible Mushrooms. Anal. Lett. 2007, 40, 1099–1116. [Google Scholar] [CrossRef]
- Giannaccini, G.; Betti, L.; Palego, L.; Mascia, G.; Schmid, L.; Lanza, M.; Mela, A.; Fabbrini, L.; Biondi, L.; Lucacchini, A. The Trace Element Content of Top-Soil and Wild Edible Mushroom Samples Collected in Tuscany, Italy. Environ. Monit. Assess 2012, 184, 7579–7595. [Google Scholar] [CrossRef]
- European Union Commission Regulation (EC) No 629/2008 of 2 July 2008 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2008. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:173:0006:0009:EN:PDF#:~:text=Commission%20Regulation%20(EC)%20No%201881,metals%20lead%2C%20cadmium%20and%20mercury.&text=It%20is%20essential%2C%20in%20order,do%20not%20cause%20health%20concerns (accessed on 10 March 2023).
- U.S. EPA. Integrated Risk Information System US EPA. Available online: https://www.epa.gov/iris (accessed on 29 July 2022).
- JECFA Zearalenone. Safety Evaluation of Certain Food Additives and Contaminants; Joint FAO/WHO Expert Committee on Food Additives, Ed.; World Health Organization: Geneva, Swizerland, 2000. [Google Scholar]
- Sarikurkcu, C.; Sarikurkcu, R.T.; Akata, I.; Tepe, B. Metal Concentration and Health Risk Assessment of Fifteen Wild Mushrooms Collected from the Ankara University Campus (Turkey). Environ. Sci. Pollut. Res. 2020, 27, 32474–32480. [Google Scholar] [CrossRef]
- U.S. EPA. A Review of the Reference Dose and Reference Concentration Processes. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC, EPA/630/P-02/002F; 2002. Available online: https://www.epa.gov/osa/review-reference-dose-and-reference-concentration-processes (accessed on 10 March 2023).
- Badshah, H.; Khan, M.U.; Mumtaz, A.S. Elucidating Heavy Metals Concentration and Distribution in Wild Edible Morels and the Associated Soil at Different Altitudinal Zones of Pakistan: A Health Risk Implications Study. Biol. Trace Elem. Res. 2022, 1–14. [Google Scholar] [CrossRef]
Location | Parts | Ni Concentration (mg/Kg) | ||||
---|---|---|---|---|---|---|
A. campestris | A. mellea | C. inversa | C. nebularis | M. procera | ||
Trakoscan | Cap | 3.55 (3.48–3.62) | 2.71 (2.65–2.79) | 2.49 (2.43–2.58) | 2.71 (2.63–2.78) | 3.51 (3.47–3.57) |
Stipe | 2.57 (2.44–2.66) | 1.91 (1.75–2.06) | 1.66 (1.60–1.75) | 1.82 (1.72–1.96) | 2.37 (2.27–2.42) | |
Medvednica | Cap | 3.23 (2.67–3.89) | 2.76 (2.26–3.28) | 2.70 (2.13–3.28) | 2.89 (2.60–3.20) | 2.99 (2.39–3.49) |
Stipe | 2.39 (1.99–2.94) | 1.45 (1.16–2.03) | 1.77 (1.23–1.75) | 2.08 (1.54–3.22) | 1.56 (1.15–2.04) | |
Petrova gora | Cap | 2.91 (2.38–3.40) | 2.79 (1.91–2.90) | 2.49 (2.14–3.03) | 2.68 (2.24–3.26) | 2.85 (2.39–4.39) |
Stipe | 2.28 (1.94–2.87) | 1.47 (1.25–1.79) | 1.72 (1.21–2.10) | 2.00 (1.57–2.26) | 1.56 (1.21–1.95) | |
Skrad | Cap | 2.29 (1.85–2.61) | 2.42 (1.91–2.90) | 1.55 (1.22–1.94) | 2.52 (2.04–2.95) | 2.72 (2.40–3.16) |
Stipe | 1.70 (1.39–2.03) | 1.80 (1.46–2.16) | 1.17 (0.91–1.74) | 1.66 (1.20–2.02) | 1.49 (1.18–1.90) | |
Krk | Cap | 3.06 (2.74–3.40) | 2.69 (2.29–3.03) | 2.49 (2.05–2.82) | 2.49 (2.03–2.90) | 2.78 (2.39–3.24) |
Stipe | 2.28 (2.01–2.46) | 1.34 (1.01–1.57) | 2.00 (1.61–2.21) | 2.05 (1.62–2.51) | 2.23 (1.91–2.61) | |
Labinstina | Cap | 3.49 (3.14–3.91) | 2.50 (2.23–2.73) | 2.50 (2.15–2.76) | 2.41 (2.02–2.50) | 2.85 (2.60–3.24) |
Stipe | 2.27 (2.01–2.67) | 1.36 (1.00–1.69) | 1.96 (1.67–2.36) | 1.93 (1.62–2.21) | 2.40 (2.01–2.70) | |
Motovun | Cap | 3.03 (2.70–3.39) | 2.25 (1.85–2.61) | 2.43 (2.02–2.78) | 2.22 (1.83–2.50) | 2.89 (2.41–3.15) |
Stipe | 2.06 (1.71–2.37) | 1.56 (1.24–1.80) | 1.93 (1.51–2.36) | 1.82 (1.46–2.10) | 2.00 (1.62–2.25) | |
Mean ± SD | Cap | 3.08 ± 0.42 bc | 2.59 ± 0.20 ab | 2.38 ± 0.38 ab | 2.56 ± 0.22 ab | 2.94 ± 0.27 bc |
Stipe | 2.22 ± 0.28 bc | 1.55 ± 0.22 ab | 1.75 ± 0.28 ab | 1.91 ± 0.15 bc | 1.94 ± 0.40 bc | |
Median | Cap | 3.06 | 2.69 | 2.49 | 2.52 | 2.85 |
Stipe | 2.28 | 1.47 | 1.77 | 1.93 | 2.00 |
Variables | Principal Components | |
---|---|---|
PC1 | PC2 | |
Eigenvalues | 1.74 | 0.23 |
Variance (%) | 80.96 | 10.86 |
AC (Cap) | 1.62 | 1.43 |
AC (Stipe) | −0.06 | 0.24 |
AM (Cap) | 0.48 | −1.65 |
AM (Stipe) | −1.45 | −0.70 |
CI (Cap) | 0.14 | 0.24 |
CI (Stipe) | −1.08 | 0.81 |
CN (Cap) | 0.53 | −1.12 |
CN (Stipe) | −0.73 | −0.17 |
MP (Cap) | 1.23 | −0.32 |
MP (Stipe) | −0.67 | 1.23 |
Trakoscan | 0.46 | 0.07 |
Medvednica | 0.45 | −0.20 |
Petrova gora | 0.39 | −0.28 |
Skrad | 0.30 | −0.54 |
Krk | 0.34 | 0.11 |
Labinstina | 0.39 | 0.38 |
Motovun | 0.22 | 0.64 |
Mushroom spp. | Part | Index | Locations | ||||||
---|---|---|---|---|---|---|---|---|---|
Trakoscan | Medvednica | Petrova Gora | Skrad | Krk | Labinstina | Motovun | |||
A. campestris | Cap | HRI | 0.0026 | 0.0024 | 0.0021 | 0.0017 | 0.0022 | 0.0025 | 0.0022 |
DIM | 0.1295 | 0.1176 | 0.1058 | 0.0836 | 0.1113 | 0.1270 | 0.1105 | ||
Stipe | HRI | 0.0019 | 0.0017 | 0.0017 | 0.0012 | 0.0017 | 0.0017 | 0.0015 | |
DIM | 0.0935 | 0.0872 | 0.0832 | 0.0618 | 0.0831 | 0.0828 | 0.0751 | ||
A. mellea | Cap | HRI | 0.0020 | 0.0020 | 0.0020 | 0.0018 | 0.0020 | 0.0018 | 0.0016 |
DIM | 0.0988 | 0.1006 | 0.1016 | 0.0882 | 0.0981 | 0.0912 | 0.0821 | ||
Stipe | HRI | 0.0014 | 0.0011 | 0.0011 | 0.0013 | 0.0010 | 0.0010 | 0.0011 | |
DIM | 0.0694 | 0.0527 | 0.0535 | 0.0655 | 0.0487 | 0.0496 | 0.0568 | ||
C. inversa | Cap | HRI | 0.0018 | 0.0020 | 0.0018 | 0.0011 | 0.0018 | 0.0018 | 0.0018 |
DIM | 0.0908 | 0.0984 | 0.0907 | 0.0563 | 0.0908 | 0.0909 | 0.0886 | ||
Stipe | HRI | 0.0012 | 0.0013 | 0.0013 | 0.0009 | 0.0015 | 0.0014 | 0.0014 | |
DIM | 0.0605 | 0.0645 | 0.0627 | 0.0427 | 0.0730 | 0.0714 | 0.0704 | ||
C. nebularis | Cap | HRI | 0.0020 | 0.0021 | 0.0020 | 0.0018 | 0.0018 | 0.0018 | 0.0016 |
DIM | 0.0986 | 0.1054 | 0.0976 | 0.0917 | 0.0908 | 0.0878 | 0.0807 | ||
Stipe | HRI | 0.0013 | 0.0015 | 0.0015 | 0.0012 | 0.0015 | 0.0014 | 0.0013 | |
DIM | 0.0663 | 0.0759 | 0.0729 | 0.0604 | 0.0745 | 0.0702 | 0.0663 | ||
M. procera | Cap | HRI | 0.0026 | 0.0022 | 0.0021 | 0.0020 | 0.0020 | 0.0021 | 0.0021 |
DIM | 0.1280 | 0.1090 | 0.1038 | 0.0990 | 0.1014 | 0.1038 | 0.1051 | ||
Stipe | HRI | 0.0017 | 0.0011 | 0.0011 | 0.0011 | 0.0016 | 0.0017 | 0.0015 | |
DIM | 0.0862 | 0.0567 | 0.0570 | 0.0544 | 0.0811 | 0.0874 | 0.0730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Širić, I.; Rukavina, K.; Mioč, B.; Držaić, V.; Kumar, P.; Taher, M.A.; Eid, E.M. Bioaccumulation and Health Risk Assessment of Nickel Uptake by Five Wild Edible Saprotrophic Mushroom Species Collected from Croatia. Forests 2023, 14, 879. https://doi.org/10.3390/f14050879
Širić I, Rukavina K, Mioč B, Držaić V, Kumar P, Taher MA, Eid EM. Bioaccumulation and Health Risk Assessment of Nickel Uptake by Five Wild Edible Saprotrophic Mushroom Species Collected from Croatia. Forests. 2023; 14(5):879. https://doi.org/10.3390/f14050879
Chicago/Turabian StyleŠirić, Ivan, Katarina Rukavina, Boro Mioč, Valentino Držaić, Pankaj Kumar, Mostafa A. Taher, and Ebrahem M. Eid. 2023. "Bioaccumulation and Health Risk Assessment of Nickel Uptake by Five Wild Edible Saprotrophic Mushroom Species Collected from Croatia" Forests 14, no. 5: 879. https://doi.org/10.3390/f14050879
APA StyleŠirić, I., Rukavina, K., Mioč, B., Držaić, V., Kumar, P., Taher, M. A., & Eid, E. M. (2023). Bioaccumulation and Health Risk Assessment of Nickel Uptake by Five Wild Edible Saprotrophic Mushroom Species Collected from Croatia. Forests, 14(5), 879. https://doi.org/10.3390/f14050879