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Abstract: Soil biodiversity and fuction have been altered by the increasing levels of nitrogen as a result
of fertilization and atmospheric deposition. Although soil microarthropods are a crucial component
of soil biodiversity and play a key role in a diverse range of soil functions, our understanding of the
mechanisms by which N addition affects them remains limited. Using a long-term nitrogen addition
experiment (2012–2016) in poplar plantations (Populus deltoides L. CL‘35’) located along the coast of
Yellow Sea Forest Park in northern Jiangsu, eastern China (32◦52′ N and 120◦49′ E), where the soil
was entisols, we examined the response of soil microarthropods across three soil depths (0–15 cm,
15–25 cm, 25–40 cm) to five N input levels (0, 5, 10, 15, 30 g N m−2 year−1) over four seasons. We
found that the number of microarthropods per unit area initially grew and then dropped as more
nitrogen was added to soils. Soil organic carbon (positive correlation, R2 = 0.53) and pH (negative
correlation, R2 = 0.19) were the two dominant factors driving the effects of nitrogen addition on
soil microarthropod densities at all soil depths. These results suggest that nitrogen input enhances
the density of soil microarthropods via the increase in fresh organic matter input. However, the
increase in organic matter may be offset by an indirect increase in acidity under high levels of N
addition, providing one possible explanation for the reduced density of microarthropods in heavily
fertilized soils.

Keywords: nitrogen addition; soil microarthropods; soil organic carbon; pH; poplar plantation; liner
mixed model

1. Introduction

Soil microarthropods contribute to carbon turnover and maintain soil fertility. Com-
mon soil microarthropods, such as free-living Acari and Collembola, decompose fresh
organic matter and increase the amount of inorganic N in soils, which commensurately
improves primary productivity [1–3].

Forest ecosystems, especially in the plantations of coastal eastern China, have ex-
perienced increased nitrogen (N) additions resulting from fertilization and atmosphere
deposition [4–6]. N pollution is likely to continue as fertilization practices and fossil-fuel
use increase in industrialized countries. This crisis is further exacerbated by land clearing
and burning regimes in developing regions [7–9]. Elevated levels of N deposition have
only a small effect on aboveground carbon (C) sequestration, but they impact underground
C processes significantly [10–12]. An extraordinarily high N concentration can reduce the
feeding activity and fecundity of microarthropods, which may lead to reduced density and
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individual death [7,13]. Given our understanding of the important role that microarthro-
pods play in the turnover of organic N, it is likely that their reduced abundance in high-N
soils may impact the carbon storage potential of these ecosystems. Despite this, the exact
role that N addition plays in microarthropod communities in forest soils is still poorly
understood due to the complexity of the interactions between C and N cycles.

In their review, Nijssen et al. concluded that the main effects of increased N deposition
on microarthropods were indirect [14], by altering food supply and abiotic conditions [15].
Although these mechanisms were not understood, they did observe an influence of N-
deposition on microarthropod communities. Ochoa-Hueso et al. conducted a study on
the shrub ecosystem in the semi-arid region of the Mediterranean Sea, indicating that
nitrogen addition reduced the number of small and medium-sized arthropods by 44%.
The addition of nitrogen has a significant impact on the individual number of Acari.
The abundance of Acari first increases and then decreases with the increase in nitrogen
application concentration. The addition of nitrogen has a promoting effect on the abundance
of Oribatida, and different species of Oribatida have different responses to nitrogen addition.
Ochoa-Hueso et al. also observed that the addition of 50 kg N ha−1 year−1 nitrogen is
beneficial to the growth of Pauropoda [16].

There are many reasons why N may influence microarthropod communities. First,
N deposition affects the food supply of soil microarthropods. Extra N input influences
plant productivity, both above- and below-ground, which then alters soil carbon accu-
mulation [16,17]. N addition also causes a shift in soil microbial communities by remov-
ing N limitation [18] and changing soil chemical properties [7,19], which is specifically
harmful to some soil microarthropods, including many species of Prostigmata [20]. The
addition of N can also cause soil acidification, which affects various soil ecological pro-
cesses [21]. Importantly, the abundance of soil microarthropods may be reduced in alkaline
soils [22,23]. In addition, N deposition has been shown to facilitate a buffered micro-
climate (levelled temperatures and greater humidity) mainly by increasing vegetation
density [24–26]. The dominant factors influencing soil microarthropods may differ between
different ecosystem types.

Soil microarthropods also exhibit temporal and spatial heterogeneity [27,28]. The sea-
sonal dynamics of temperature and plant species composition regulate litter decomposition
and soil microarthropod density [29–31]. Because of this, the effects of N addition on soil
biological processes may be magnified during the growing season [32]. The food source of
microarthropods is typically some form of vertically declining biomass of bacteria, fungi
and saprophagous soil fauna. The changes that occur with soil depth may also lead to a
decrease in predatory soil microarthropods [33]. Furthermore, the impact of N application
is expected to weaken with increased soil depth [34]. Plantations are important contributors
to global forest function and diversity, particularly in China. China has the largest area of
poplar (Populus) plantation (more than 7 × 104 km2) in the world, concentrated in a vast
area along the coast [35,36]. The rapidly growing poplars have multiple commercial uses
and can also be used to fix carbon dioxide to combat global climate change [37]. Previous
research conducted in a costal agroecosystem illustrated that total SOC in topsoil increased
by about 14% under the treatment of reduced tilliage with green manure when compared
to the no-tillage treatment [38]. Moreover, the afforestation of poplar benefits saline–alkali
coastal areas as it can tolerate high-salinity environmental conditions and enhances the
aggregation and enrichment of soil organic carbon (SOC) [6].

The objectives of this study were to: (1) examine the effects of inorganic N addition on
soil microarthropods in poplar plantations in coastal soils, and (2) evaluate any relation-
ships between soil moisture content and pH (representing the abiotic conditions important
to soil microarthropods), between SOC and soil microbial biomass carbon (SMBC) (repre-
senting the food supply of soil microarthropods), and the density of Acari and Collembola,
the dominant orders of microarthropods in the study area, as shown in our previous
research [23,39,40].
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2. Materials and Methods
2.1. Site Description

The research site is a coastal area of Yellow Sea Forest Park in northern Jiangsu, eastern
China (32◦52′ N and 120◦49′ E). It lies between the subtropical zone and warm temperate
zone, experiencing a conventional monsoon climate with distinct seasons and concentrated
rainfall. Temperatures reach a mean of 14.6 ◦C, and the area has approximately 1050 mm of
rainfall each year. The total annual duration of solar radiation is 2200 h [41].

Soils were predominantly entisols and had been desalinated before the reseach area
was converted into farmlands or forests. Originally, the soil was allunial soil. The soil
is now a sandy loam with high porosity and compressibility, with alkaline pH and a
conductivity of 2.68 ± 0.58 ds/m [6]. Farmland covers a total area of 3000 hm2, over 80% of
which is occupied with forests which takes up 2500 hm2. The terrain is relatively flat, the
stratum is mudstone interbedded with frequent siltstone, and the geological structure could
be categorized as an overlying loose layer. The main species of the forest farm include
Populus deltoides L., Metasequoia glyptostroboides Hu et Cheng, Ginkgo biloba L., Cinnamomum
camphora (L.) Presl, Robinia pseudoacacia L. with understory as Imperata cylindrica (L.) Beauv.,
Apocynum venetum L., Rosa multiflora Thunb., etc.

2.2. Experimental Design

Treatments were conducted in a 12-year-old pure poplar plantation (Populus deltoids
L. ‘35’) with understory vegetation mainly comprising Erigeron annuus, Artemisia argyi and
Oplismenus undulatifolius. The planting density of poplar trees was 333 stand ha−1. The
canopy coverage was 60% in the study area, and the average tree height was 21.2 m with a
mean diameter at breast height (DBH) of 23.2 cm. N was applied six times in the liquid
form of NH4NO3 throughout each growing season (approximately once per month from
May to October). The amount of water added to the soil through this N application was
equivalent to 1.2 mm rainfall, which is negligible.

2.3. Experimental Setup

We established three blocks in 2012, each 30 m × 190 m, spaced > 1 km. Within each
block, we established five plots (25 m × 30 m), with 10 m spacing between plots. The N
addition treatments were 0, 5, 10, 15, 30 g N m−2 year−1. Soil samples were taken from the
0–15, 15–25 and 25–40 cm soil layer in each of the 15 plots in March, June, September and
December 2016. Five soil cores (2.5 cm diameter) were randomly taken in each of the three
soil layers in four sampling periods in all fifteen plots. All 5 cores were then homogenized
into 1 composite sample, leading to a total of 180 observations.

2.4. Sample Measurements
2.4.1. Soil Microarthropods Identification

We extracted soil microarthropods from 100 g of soil (fresh weight) with modified
Tullgren extractors [42]. The soil microarthropod density was calculated as the number
found per 100 g dry soil. This collection strategy depended on the efficiency of the ex-
traction technique. All extracted microarthropod samples were preserved in 75% ethanol
before they were sorted under a dissecting microscope (LeicaMZ 125, Leica Microsystems,
Wetzlar, Germany). Soil microarthropod community biodiversity was classified accord-
ing to taxonomic group, e.g., Oribatid, Mesostigmatid and Prostigmata, Collembola and
Hymenoptera [43]. Our results showed that the Collembola, Oribatida and Prostigmata
account for 12.36%, 46.38% and 19.25% of soil fauna, respectively, which is the dominant
group of soil fauna, accounting for 77.99% of the total. As a result, we only used data on
the communities of Oribatida, Prostigmata and Collembola in this research.

2.4.2. Soil Analysis

To calculate soil moisture content, we baked 10 grams of the fresh soil samples in
the oven at 105 ◦C for 12–24 h until achieving a constant weight. To determine SOC,
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we hydrolyzed the air-dried samples with HCL and then heated them at 60 ◦C to dry
the samples, as described previously by Chen et al. and Marin et al. [44,45]. Total C
and N were measured from the original air-dried samples with an elemental analyzer
(Elementar Vario EL, Hanau, Germany). C, N elements in samples were burned, producing
CO2 and NO2. The produced gas passed through a sensor that determines the elemental
composition of the gas based on its adsorption spectra. Soil pH was determined using a
glass electrode in a 1:2.5 soil: water solution (w/v). We used the fumigation–extraction
method, which was first described by Vance et al. for soil microbial biomass carbon (SMBC)
measured by TOC − VCPH + TNM − 1 (Shimazu Inc., Kyoto, Japan) [6,46]. The microbial
cell contents were released into soil after chloroform fumigation, which would greatly
increase the extractable carbon, nitrogen, phosphorus and sulfur in the soil. The contents
of total carbon and nitrogen in the extractive solution from the soil were extracted by
potassium bisulfate. Then, the the contents of microbial biomass carbon and nitrogen were
calculated by the comparison of total carbon and nitrogen in both extractive solutions, with
or without fumigation.

2.5. Statistical Analysis

To analyse the impacts of the addition to N to pH and SOC, and the abundance of the
three microarthropod orders as a whole and individually across four sampling dates and
three soil depths, the following linear mixed model was applied:

Yijklm = Ni + Lj + Dk + Ni × Lj + Ni ×Dk + Lj ×Dk + Ni × Lj ×Dk + π|B l + εm(ijkl) (1)

where Yijklm is soil microarthropod density, SOC or pH; Ni (i = 0, 1, 2, 3, 4) is the level of N
addition (0, 5, 10, 15, 30 g N m−2 year−1); Lj (j = 1, 2, 3) is soil layer (0–15, 15–25, 25–40 cm);
Dk (k = 1, 2, 3, 4) is sample date (March, June, September and December); π|B l represents
random plot effect (l = 1, 2, . . . 9) nested in the three random blocks; and εm(ijkl) (m = 1,
2, 3) is sampling error. We conducted the linear mixed effect analysis using the restricted
maximum likelihood estimation within the ‘lme4’ package [47].

To further study the mechanisms associated with changes in soil microarthropod
density, we tested how SOC, soil pH, soil moisture and SMBC responded to N application
rate, soil layer and sampling date using Equation 1. We then used Pearson correlation anal-
ysis, performed using the ‘PerformanceAnalysis’ package [48], to examine the association
between soil microarthropod density and these variables. All analyses were performed
using R Statistical Software [49].

3. Results

The density of soil microarthropods significantly varied with N application rate,
soil layer and sampling season (Table 1, Figure 1). Microarthropod density increased
with increases in N application up to a rate of 15 g N m−2 year−1. Beyond that, the
addition of N decreased soil microarthropod density (Figure 1A). Microarthropod density
decreased sharply from the topsoil to deep soil layers (Figure 1B). Across the four sampling
dates, microarthropod density increased from March to September and then decreased
in December (Figure 1C). Oribatida were most common, followed by Prostigmata and
Collembola. The response to N application rate, soil layer and sampling date was similar
in each group (Figure 1).

The effects of N application on soil microarthropod density was dependent on soil
depth and sampling season, as we identified a significant interaction among the three
factors (Table 1). In the topsoil, microarthropod density was insensitive or increased with
low N application rates and declined with high N application rates across all sampling dates,
although we identified that the point of change in N rate was dependent on the sampling
date (Figure 2). In both March and September, topsoil microarthropod density peaked at
an N application rate of 15 g N m−2 year−1, while it peaked at 10 g N m−2 year−1 in June
and 15 g N m−2 year−1 in December. Moreover, the seasonal patterns in the responses to N
application rate differed among the three soil layers (Figure 2).
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Table 1. The effects of nitrogen application rate (N), soil layer (L), sampling date (D) and their
interactions on soil microarthropod density. The linear mixed-effects model used the Kenward–Roger
method as the denominator of degrees of freedom.

Source df Sum Squares (×103) F p

N 4, 8 12.4 8.3 0.006
L 2, 110 144.7 194.0 <0.001
D 3, 110 26.8 24.0 <0.001

N × L 8, 110 1.4 0.5 0.877
N × D 12, 110 8.5 1.9 0.042
D × L 6, 110 10.8 4.8 <0.001

N × D × L 24, 110 4.8 0.5 0.958
Bold font indicates statistical significance (α = 0.05). The columns provide the degree of freedom (df), the sum
squares, F and p values.
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Figure 2. Soil fauna density in response to nitrogen application rate by soil layers and sampling dates.
Values are means with bootstrapped 95% confidence intervals (CI). Differences are significant at α =
0.05 when the CIs do not overlap with the means of other groups.

Soil organic carbon and soil pH showed a significant response to N application rate,
soil depth and sampling date, with multiple significant interaction terms (Table 2). N
application accounted for the majority of the variation in SOC and pH, but did not affect
soil’s relative moisture content or soil’s microbial biomass carbon (Table 2). Soil organic
carbon increased with N application rate, decreased with soil depth, and was higher in
September and December than in March and June, whereas soil pH showed contrasting
responses (Figure 3).

Table 2. The effects of nitrogen application rate (N), soil layer (L), sampling date (D) and their
interactions on soil organic carbon (SOC), pH, humidity and microbial biomass carbon (SMBC).
The linear mixed-effects model used the Kenward–Roger method as the denominator of degrees
of freedom.

Effects
SOC pH Humidity SMBC

SS F p SS F p SS F p SS (×103) F p

N 316.0 83.0 <0.001 0.7 33.9 <0.001 0.006 1.3 0.350 20.3 0.3 0.866
L 2656.7 1396.3 <0.001 3.3 341.9 <0.001 0.1 59.2 <0.001 390.6 11.7 <0.001
D 242.5 85.0 <0.001 6.7 460.6 <0.001 0.1 33.1 <0.001 6936.6 139.0 <0.001

N × L 38.6 5.1 <0.001 0.1 1.3 0.236 0.007 0.8 0.645 78.2 0.6 0.786
N × D 42.0 3.7 <0.001 0.4 6.2 <0.001 0.01 1.1 0.403 214.1 1.1 0.390
D × L 38.8 6.8 <0.001 0.1 4.8 <0.001 0.03 4.5 <0.001 244.1 2.4 0.029

N× D× L 81.5 3.6 <0.001 0.3 2.4 0.001 0.03 1.0 0.425 334.9 0.8 0.680

Bold font indicates statistical significance (α = 0.05). The columns provide the sum squares (SS), F and p values.

Pearson correlation analysis showed that soil microarthropod density was positively
related to SOC and negatively related to soil pH (Figure 4). Soil moisture was positively
related to SOC but negatively related to soil pH. Soil microarthropod density was not
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significantly related to soil microbial biomass carbon, although microbial soil carbon was
positively correlated with soil pH.
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Figure 3. The responses of soil organic carbon ((A) for correlation between N addition and soil
organic carbon, (C) for correlation between soil layer and soil organic carbon, (E) for correlation
between sampling date and soil organic carbon) and pH ((B) for correlation between N addition and
soil pH, (D) for correlation between soil layer and soil pH, (F) for correlation between sampling date
and soil pH) to nitrogen application rate in three soil depths over four sampling dates. Values are
means with bootstrapped 95% confidence intervals (CI). Differences are significant at α = 0.05 when
the CIs do not overlap with the means of other groups.
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Figure 4. Pearson correlations between soil microarthropod density (Abund), soil organic carbon
(SOC), soil pH, soil moisture (humidity) and soil microbial biomass carbon (SMBC). Below the
diagonal are the bivariate scatter plots with a smooth line. Above the diagonal, the correlation
coefficients and the significance level (* p < 0.05, *** p < 0.001) are shown. Units associated with
variables are shown in Figures 1–3.

4. Discussion

We found that the density of soil microarthropods increased at low N application
rates. Soil microarthropod communities are expected to be affected by N-driven ecosystem
changes [50]. The addition of N was shown to enhance microarthropod density at first,
due to the additional litter input and improved litter quality [25]. Soil microarthropod
density was shown to vary in its response to N addition, depending on the duration of the
experiment and the intensity of the N addition. In the short term (addition for fewer than
3 years), the impacts of N addition were varied, possibly leading to positive linear increases
in soil microarthropod biomass and density or the lack of any relationship [23,51,52].
However, our data showed that soil microarthropod density decreased after only five
years of heavy N addition (30 g N m−2 year−1). This finding suggests that, under high-N
conditions, the decrease in soil pH may affect soil’s physical and chemical properties,
potentially leading to a change in the osmotic potential of a number of soil ions [53], which
may create an environment that is toxic to soil microarthropods [54,55]. The decrease
in soil pH may also restrict predation and increase the incidence of epidermal burns on
microarthropods. We observed that the moderate addition of nitrogen is beneficial for the
growth of Oribatida. The density of Oribatida first increases and then decreases with the
increase in nitrogen concentration, which is consistent with the trend of changes in the total
density of soil fauna (Figure 1). Origami mites can serve as indicator organisms to reflect
the impact of nitrogen addition on soil animals.

We found a strong effect of soil layer on soil microarthropod density. Soil depth
stratification was observed, likely due to the soil compaction and lower biological activity
in the lower layer [56]. Soil animals have previously been reported to gradually decrease
in number and diversity in deep soils [57]. Correspondingly, we observed that soil fauna
living in the 0–10, 10–25, 25–40 cm layer account for 60.71%, 24.18% and 15.12% of the
total, respectively. This may be related to the decrease in root biomass, soil organic matter,
temperature and water at these lower depths [58–60]. Our analysis provides direct evidence
that SOC decreased while soil pH increased with depth, and we also observed that soil



Forests 2023, 14, 880 9 of 13

microarthropod density was strongly related to both soil organic matter and soil pH,
although we acknowledge that the correlation between pH and soil microarthropods
density was weaker than the influence of SOC (Figure 4). We observed that both SOC and
soil microarthopod density were extremely variable.

Unsurprisingly, we found strong seasonal variations in soil microarthropod density.
In winter, the change in soil microarthropods with the increasing amounts of nitrogen
application was not as obvious as in other seasons (Figure 2), likely due to the increase in
environmental stress, such as the lower temperature, precipitation [61] and the loss of food
availability [62].

As Nijssen et al. reviewed, microarthropods are most affected by how an increased N
deposition alters their environmental stressors and habitat suitability, including changes in
fresh organic matter input and competitive predator–prey relationships [14]. Our results
show that SOC and pH were the two most dominant factors driving soil microarthropod
density with N addition. It has been reported that short-term N addition enhances SOC
via extra litter input. Nitrogen input can promote plant growth and facilitate the net
accumulation of plant biomass, thereby increasing the input of SOC through plant litter.
This is because nitrogen is an important nutrient, which is necessary to produce the
chlorophyll and enzymes responsible for photosynthesis. Because of this, nitrogen input
directly impacts photosynthesis and, thus, the plant’s carbon sequestration ability [19,63].
In our study, we found that SOC reached its peak with the addition of 15 g N m−2 year−1,
but a further rise in N led to either no increase or a slight decline in SOC. This finding
corroborates that long-term and excessive N addition decreases SOC by changing the
biomass allocation of plants [64]. The three types of soil fauna involved in this research were
as follows: the Oribatida is saprophagous; most of the Prostigmata feed on microorganisms;
there are both plant-eating, saprophagous and fungivorous soil microarthropods in the
order Collembola. The increase in vegetation biomass and SOC caused by the addition
of nitrogen, as well as the increase in soil microbial biomass caused by increased organic
matter input, increased the food source for these three types of soil microarthropods, thus
increasing their density.

Our results showed that N-induced acidification reduced soil microarthropod density,
mitigating the positive effects of N-induced increases in SOC. However, soil was alkaline
in our plantations, and even under the highest level of N addition, the soil was still
alkaline (Figure 3). Because of this buffered system, the direct effect of reduced pH on
soil microarthropods in our sites may be minimal. Instead, we suggest that the effect of
N addition on pH could be mediated by two mechanisms: First, when soils are saturated
with N, the excess NO3

- then induces the leachate of Ca2+, Mg2+ and other base cations,
reducing the pH of the soil and increasing the flux of toxic cations such as Al3+, Mn2+

and Rb+ [65]. Secondly, the additional N input could lead to an increase in free acidic soil
solution due to the enhanced decomposition of litter [66], which was supported by the
correlation analysis in our results (Figure 4). These can be taken up by soil microarthropods
directly, but they are toxic [67].

Soil moisture was positively correlated with SOC and negatively correlated with pH
in our study, although no significant correlation between soil moisture and microarthropod
density was detected. N-addition-induced increases in SOC may enhance the increase in
soil moisture, mainly via changing the physical structure of the soil [68]. In turn, this wetter
soil could provide a more suitable habitat for soil biota [69]. We suggest that, given time,
wetter soils may enhance soil microarthopod density, although this was not observed over
the course of this experiment. The effects of soil moisture on pH depended on the initial
pH [70]. In our experimental site, soil pH was alkaline (>8.38 ± 0.26). Leaching rates are
higher in moist soils, leading to a decrease in pH and soil neutralization [71], as shown in
our results.
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5. Conclusions

In summary, we found that the densities of soil microarthropods (Oribatid, Prostigmata
and Collembola) in poplar plantations in coastal soil first increased and then decreased
with the addition of inorganic N. The dominant driving forces for these changes were SOC
and pH, although SOC played a much more important role. The results indicated that the
increased input of fresh organic matter, which was mainly caused by the increase in plant
litter, dominated the effect of N addition on soil microarthropods in these young and sandy
plantation soils.
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