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Abstract: The growth quality of Pinus massoniana (Lamb.) seedlings is closely related to the survival
rate of afforestation. Moisture content detection is an important indicator in the cultivation of
forest seedlings because it can directly reflect the adaptability and growth potential of the seedlings
to the soil environment. To improve the accuracy of quantitative analysis of moisture content in
P. massoniana seedlings using near-infrared spectroscopy, a total of 100 P. massoniana seedlings were
collected, and their near-infrared diffuse reflectance spectra were measured in the range of 2500 to
800 nm (12,000 to 4000 cm−1). An integrated learning framework was introduced, and a quantitative
detection model for moisture content in P. massoniana seedlings was established by combining
preprocessing and feature wavelength selection methods in chemometrics. Our results showed
that the information carried by the spectra after multiple scattering correction (MSC) preprocessing
had a good response to the target attribute. The stacking learning model based on the full-band
spectrum had a prediction coefficient of determination R2 of 0.8819, and the prediction accuracy
of moisture content in P. massoniana seedlings could be significantly improved compared to the
single model. After variable selection, the spectrum processed by MSC and feature selection with
uninformative variable elimination (UVE) showed good prediction effects in all models. Additionally,
the prediction coefficient of determination R2 of the support vector regression (SVR)—adaptive
boosting (AdaBoost)—partial least squares regression (PLSR) + AdaBoost model reached 0.9430.
This indicates that the quantitative analysis model of moisture content in P. massoniana seedlings
established through preprocessing, feature selection, and stacking learning models can achieve high
accuracy in predicting moisture content in P. massoniana seedlings. This model can provide a feasible
technical reference for the precision cultivation of P. massoniana seedlings.

Keywords: NIR spectroscopy; Pinus massoniana seedlings; non-destructive detection; multi-learner
model

1. Introduction

Pinus massoniana (Lamb.) is highly adaptable and widely distributed, with a horizontal
distribution spanning about 20◦ longitude and 12◦ latitude. It is a major afforestation species
with high economic value in southern China [1,2]. The use of advanced technical tools
for monitoring and quantitatively analyzing dynamic phenotypic changes in seedlings is
crucial for achieving rapid and accurate evaluation of seedling vigor. This is particularly
important for the cultivation of intensive industrial timber forests and the improvement of
precise forestry management in China [3].

The moisture content of seedling leaves is an important indicator of vitality and plays
an important role in photosynthesis, material transport, and the maintenance of physiologi-
cal functions [4]. To improve the survival rate of P. massoniana plantations, leaf moisture
content should be detected before seedling transplanting. Commonly used methods for
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moisture content testing include the constant weight method, vacuum drying method, fixed
temperature and time drying, and other chemical methods, etc. The mentioned testing
methods are more accurate; however, they are cumbersome, have a long cycle time, and
result in irreversible damage to seedling samples, leading to wastage of resources and not
being conducive to the sustainable development of seedlings [5,6].

Near-infrared (NIR) spectroscopic imaging combines the advantages of spectroscopic
and imaging techniques and is widely used as a mature non-destructive detection tech-
nique in the fields of agriculture and forestry, pharmaceuticals, food, petrochemicals, and
tobacco [7–11]. There are information redundancy, noise, and background factors in the
variables of spectral measurements. Extracting effective information from complex spectral
data to identify component changes is a hot topic in spectral analysis research. NIR spectra
(NIRS) were processed using discrete wavelet transforms (DWT), which decomposed the
original spectrum into six layers of denoising. Information variables were then selected by
reducing the dimensionality of sub-layer reconstruction spectra through the bootstrap soft
shrinkage algorithm (BOSS), leading to the establishment of an effective non-destructive
prediction model for tea moisture content [12]. Various preprocessing strategies and feature
variable selection methods based on visible and near-infrared (Vis–NIR) technology, such as
competitive adaptive reweighted sampling (CARS) and uninformative variable elimination
(UVE), have been used to develop regression analysis models such as partial least squares
regression (PLSR), support vector regression (SVR), and random forest (RF) to significantly
improve the accuracy of predicting soil organic matter (SOM) content [13]. A model was
established between leaf moisture content (LWC) and water index (WI) based on NIR
reflectance, which provided a non-destructive and immediate measurement method for
monitoring the water status of sunflower plants [14]. Moisture content detection and visual-
ization of peanuts were achieved in the 900–1700 nm band, but only the weighted regression
coefficient method was used to extract the characteristic wavelength [15]. The above stud-
ies show that NIR combined with different preprocessing, data dimension reduction, and
feature extraction methods can achieve non-destructive detection of components.

Classical prediction models such as PLSR, SVR, back propagation neural network
(BPNN), and RF are commonly used. However, to overcome the limitations of a single
prediction model in various application scenarios, researchers have attempted to improve
the accuracy and convergence speed of the model through two approaches: optimizing the
core parameters of the algorithm or integrating different models. As a result, they have
achieved good results [16–19]. The use of a radial basis function network (RBF) based on
a self-organizing feature map (SOM) resulted in the successful prediction of key nutrient
content in Lanzhou lily. This approach combined the self-organizing clustering features of
SOM with the nonlinear approximation ability of RBF, leading to prediction results that
were 5.6% higher than the correlation coefficient of prediction (Rp) obtained using the PLSR
method [20]. Mixed linear regression and non-linear regression models, namely PLSR +
general regression neural network (GRNN) and PLSR + BPNN, were used to predict the
plant leaf nitrogen to phosphorus ratio (N/P). Both mixed models showed higher accuracy
and stability as compared to PLSR, while also overcoming the overfitting problem of single
regression models [21].

The aforementioned models can be classified into conventional regression models
(PLSR, SVR), stacking learning models (RF), and neural network models (BPNN, GRNN).
When dealing with high-dimensional and nonlinear spectral data, single regression models
are no longer suitable due to their poor prediction performance and inability to effectively fit
nonlinear or high-dimensional data. Combining multiple models and utilizing the stacking
learning method can enable the mapping of data features from multiple perspectives,
breaking the singularity of data domain analysis, and integrating the results of multiple
learners to achieve more accurate predictions and higher robustness [22]. In this study, we
utilized the NIRS data from P. massoniana seedlings as the primary source of information
and integrated the stacking model to establish a quantitative analysis model for predicting
the moisture content of P. massoniana seedlings. We compare and analyze our method with
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the chemometric method of multiple corrections and address the issue of high-dimensional
NIRS data by selecting the optimal feature variables. By comparing the prediction results,
we choose a suitable system modeling method for predicting the moisture content of
P. massoniana seedlings. This provides a new method for moisture content detection in the
cultivation process of seedlings.

2. Materials and Methods
2.1. Experimental Materials

In this paper, all of the P. massoniana samples are obtained from Qingyuan Nursery,
Yizhou District, Hechi City, Guangxi Province, China, for a total of 100 plants. These
samples are all annual P. massoniana seedlings and the height of the seedlings ranges from
15 to 20 cm. Moreover, the selected samples are in good growth condition and are not
infected with insects or diseases.

2.1.1. Spectral Data Acquisition

The diffuse reflection method is commonly used for collecting the NIR spectra of
solid samples. In this method, NIR light enters the sample and undergoes several re-
flections, refractions, scatterings, and absorptions inside the sample. This process carries
rich information about the sample′s structure and tissue, and the resulting NIR signal is
finally captured by the NIR spectrometer, completing the NIR spectral acquisition of the
sample [23].

The spectral data of each P. massoniana sample were collected by a multi-purpose
analyzer Fourier transform (MPA) NIR spectrometer (Figure 1a) equipped with a PbS
detector in the wavelength range of 2500 to 800 nm (12,000 to 4000 cm−1), with reflection
mode and a spectral resolution of 4 cm−1. The number of spectra per P. massoniana sample
is 2203. The NIR optical fiber probe was aligned to the different parts of the P. massoniana
samples to obtain the spectral data (Figure 1b). To avoid experimental errors as much
as possible, the high, middle, and low areas of the P. massoniana seedling samples were
selected for two repeated scans. We then took the average value of the data results from
the six scans as the final value of the spectral data.
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Figure 1. Equipment and collection process: (a) Bruker-MPA NIR spectrometer; (b) the process of
spectral collection of P. massoniana seedlings; (c) HB43-S halogen moisture meter.

2.1.2. Moisture Content Determination

The moisture content of the leaves of P. massoniana was measured using the HB43-S
halogen moisture meter (Figure 1c). This device determined the moisture contained in a
sample by measuring the weight loss of the sample after heating and drying [24]. After
placing the P. massoniana leaf samples into the sampling chamber, the temperature inside
the instrument was increased to 125 ◦C, and the P. massoniana samples were heated by a
halogen lamp until the sample mass no longer decreased, and then the moisture content of
the samples was recorded.
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2.2. Preprocessing and Feature Selection
2.2.1. Spectral Preprocessing

The raw spectral data may contain interference noise and irrelevant information
generated under the influence of factors such as ambient temperature and humidity in
the process of acquisition. Therefore, before model training, preprocessing operations are
needed to be performed on the raw NIR spectral data to remove irrelevant noise that can
interfere with the prediction results and improve the accuracy of the prediction model.

To reduce the random errors of the samples and filter out some systematic errors, five
classical preprocessing methods are proposed in this experiment, including the moving
window spectral matrix smoothing algorithm (Nirmaf), L2-normalize, multiple scattering
correction (MSC), Savitzky–Golay smoothing (SG smoothing), and standard normal variate
(SNV).

The Nirmaf preprocessing method uses a shifted average of individual sample data,
thus denoising the data. The L2-normalize preprocessing method scales and pans the data
so that they fall into a small, specific interval, which serves to remove the effect of data
magnitude and make the data metrics comparable with each other. The L2-parametric
normalization operation divides each dimension (x1, x2, . . . , xn) of the spectral data X by
the second parametric number ‖X‖2 of the vector X to obtain a new normalized vector, as
shown in Equation (1):

XL2 =

(
x1√

x1
2 + x22 + . . . + xn2

,
x2√

x1
2 + x22 + . . . + xn2

, . . . ,
xn√

x1
2 + x22 + . . . + xn2

)
(1)

MSC enhances the correlation between spectra and data [25]. SG smoothing has a
strong filtering effect on noise points [26]. Additionally, SNV eliminates surface scattering
and the effect of light range variation on diffuse reflectance spectra [27]. Considering
the diversity of NIR spectral preprocessing results, MSC, SG smoothing, and SNV are
also applied in this study. Spectral preprocessing operations are performed on MATLAB
R2021b.

2.2.2. Feature Selection

The spectral data of P. massoniana seedlings contains a large number of spectral data
features, including noise and a significant amount of unrelated information. Variable
selection can be used to remove noise and interference variables that are unrelated to
the target attribute from the spectral data. The proposed feature selection method not
only reduces the number of model variables but also decreases the model′s complexity,
thereby improving the predictive performance and robustness of the model. Based on
spectral preprocessing, we utilized five conventional methods, namely genetic algorithm
(GA), successive projections algorithm (SPA), UVE, CARS, and least angle regression
(LARS) [28–32], for variable selection of the spectral data. The goal was to select appropriate
spectral variables to be used in the quantitative analysis of P. massoniana seedling moisture
content. Spectral feature selection is performed on PyCharm 2022.2.

2.3. Model Selection and Optimization

The stacking integrated model is a multi-layer learning model, with the first layer
being the base learner layer consisting of different regression models and the second layer
being the final output meta-learner layer. The difference in the performance of the models
is evident in the spectral data. Nevertheless, the stacking integrated model can further
improve the model′s prediction accuracy by combining the algorithmic strengths of each
base learner and eliminating their respective prediction errors [33].

There are numerous ways to combine models in a stacking-integrated model. To
select the appropriate learners for the stacking model, the prediction performance and
correlation of every single model were compared and analyzed. Then, four candidate
learners (adaptive boosting (AdaBoost), ExtraTree, PLSR, and SVR) are selected. Finally, the
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optimal stacking model construction method for this study is selected by comparing differ-
ent combinations. The hardware and software used in this study were as follows: operating
system: Windows 10, CPU: Intel I7-11700F 2.50 GHz, GPU: Nvidia GeForce RTX 3080Ti
(12 GB), and environment configuration: PyCharm+Pytorch1.8+Python 3.7.4+Cuda 12.1.

3. Results and Discussion
3.1. Sample Moisture Content Data

The experimental sample dataset in this study was divided into a training set and a
test set using a division ratio of 8:2 through the sample set partitioning based on the joint
X-Y distance sampling (SPXY) algorithm. This was conducted to ensure that each data set
could characterize the sample distribution to the maximum extent, increase the variability
and representativeness among the samples, and further improve the stability of the model.
The results of leaf moisture content measurements of P. massoniana seedlings are shown in
Figure 2.
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Figure 2. Statistics of the moisture content of P. massoniana samples. MAX (%) = the maximum value
of moisture content in the training and test sets; MIN (%) = the minimum value of moisture content
in the training and test sets; AVG (%) = the average value of moisture content in the training and
test sets.

3.2. Raw Spectra and Spectral Preprocessing Results

The spectral data of P. massoniana measured by NIRS has certain noise and irrelevant
information, so the raw spectral data needs to be preprocessed to eliminate them. The raw
spectra and the NIR spectral curves after the five preprocessing methods of Nirmaf, L2-
normalize, MSC, SG smoothing, and SNV are shown in Figure 3, in which the horizontal axis
is the wavenumber (cm−1) and the vertical axis is the absorbance (%). There are obvious
absorbance peaks in the wavenumber 8000~4000 cm−1, indicating that the use of NIR
spectra to predict the moisture content of P. massoniana seedling samples is feasible [34,35].

As shown in Figure 3, the spectral curve becomes smoother after the preprocessing
operation. To ensure the stability of the regression model and the accuracy of the prediction
results, it is necessary to perform normalization on the preprocessed data and eliminate
magnitude differences with the maximum–minimum normalization method. This is to
avoid excessive differences in magnitude between data of different dimensions and improve
the accuracy of the model.

PLSR was used to establish a prediction model for the leaf moisture content of
P. massoniana seedlings. The coefficient of determination R2 and root mean square er-
ror RMSE were used as the evaluation metrics of the prediction model. Furthermore, the
number of potential factors of the optimal model was determined through manual tuning.
The number of potential factors in the model was chosen in the range of 1 to 20. The
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prediction results of the spectral data processed by each preprocessing algorithm in the
PLSR model are shown in Table 1.
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Table 1. Comparison of PLSR-based preprocessing methods.

Preprocessing
Methods

Number of
Potential Factors

Training Set Test Set

R2 RMSE R2 RMSE

Raw data 10 0.8377 1.0040 0.7318 1.3384
Nirmaf 11 0.8447 0.9822 0.7513 1.2887

L2-normalize 10 0.9315 0.6523 0.7216 1.3637
MSC 10 0.8848 0.8458 0.8057 1.1391

SG smoothing 10 0.8150 1.0718 0.8009 1.1531
SNV 10 0.8848 0.8457 0.8011 1.1525
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The coefficients of determination (R2) of the raw spectral data and data processed
by five preprocessing methods ranged from 0.7216 to 0.8057, and root mean square error
(RMSE) ranged from 1.1391 to 1.3637 for the test set in the PLSR regression model. Generally,
there is little difference in performance among PLSR models. The R2 of the training and
test sets of the MSC-PLSR are 0.8848 and 0.8057, respectively. The R2 value of the training
set is only 0.0467 lower than that of the L2-normalize-PLSR. Furthermore, the R2 value of
the test set improved by 0.0739 compared to the original spectrum, reaching 0.8057.

In contrast, other preprocessing methods, such as L2-normalize, reduce the original
spectral modeling performance. Although this preprocessing has a higher R2 in the training
set than the other methods, it lacks robustness and does not significantly improve the
model. Therefore, MSC is subsequently selected as the preprocessing method for the NIR
spectra of P. massoniana seedlings.

3.3. Composition and Optimization of Stacking Integrated Model

The optimization of the prediction effect of the stacking integrated model depends
on the selection of appropriate base learners and meta-learner, as well as the combination
of different learners. In this study, the prediction performance of each single model and
the Pearson correlation coefficient between each model were used to select the appropriate
combination of base learner and meta-learner.

3.3.1. Selection of Base Learners

The component learners initially selected in this paper are AdaBoost, ExtraTree, RF,
Ridge, PLSR, and SVR. Among them, AdaBoost and RF were improved with boosting
and bagging integrated methods, respectively. Both of these models have a reasonable
number of hyperparameters, and the practical application of these models does not require
adjusting too many parameters. ExtraTree has a small number of key hyperparameters
and reasonable heuristics for configuration parameters that can handle high-dimensional
data. Ridge regression has high stability and can effectively improve the problem of
model overfitting. PLSR is often used in spectral data, which can better handle data
with dimensions much larger than the number of samples. The SVR algorithm is easy to
implement and robust to outliers.

In integrated learning, the main challenge is how to synthesize multiple weak learners
into one strong learner. In the initial selection of the base learner, two aspects need to be
considered. Firstly, the learning strength of the base learner should be taken into account,
and models with significant differences can be chosen as base learners to combine the
advantages of different algorithms [36]. Secondly, the prediction performance of the base
learner directly affects the overall performance of the stacking integrated model [37], so
choosing base learners with better prediction performance can improve the integrated
model′s performance.

In testing the performance of a single model, the grid search method was used to
select the optimal hyperparameters. The experimental results are shown in Table 2.

PLSR, SVR, and Ridge were more effective in predicting the moisture content of
P. massoniana seedlings; Adaboost had the lowest test set R2 of 0.6425 with weak perfor-
mance; and the prediction accuracy of the remaining learners had little difference.

In this paper, the correlation between the prediction results of each model on the
test set was measured using the Pearson correlation coefficient to analyze the difference
between models. The correlation can be expressed using Equation (2):

ρxy =
∑n

i=1 (xi − µx)
(
yi − µy

)√
∑n

i=1(xi − µx)
2
√

∑n
i=1
(
yi − µy

)2
(2)

where µx and µy are the predicted mean values of model x and model y, respectively. n
denotes the number of test set samples. xi, yi denote the predicted values of the i-th sample
of models x and y.
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Table 2. Model optimal hyperparameters and prediction results.

Model
Optimal

Hyperparameters
Training Set Test Set

R2 RMSE R2 RMSE

AdaBoost n_estimators = 50 0.9125 0.7369 0.6425 1.5452

ExtraTree min_samples_leaf = 7
max_depth = 5 0.7433 1.2626 0.7362 1.3272

RF n_estimators = 8
max_leaf_nodes = 14 0.9000 0.7881 0.7336 1.3340

Ridge alpha = 1.6
solver = sag 0.7939 1.1314 0.8054 1.1400

PLSR n_components = 10 0.8848 0.8458 0.8057 1.1391

SVR kernel = linear
C = 1.25 0.8107 1.0842 0.7884 1.1888

The Pearson correlation coefficients of each single model are shown in Figure 4.
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Different model algorithms extract features from different perspectives. Therefore,
when constructing stacking models, it is essential to select models with a substantial
difference to combine the advantages of various algorithms. As can be seen from Figure 4,
the correlation between Ridge and SVR is the highest at 0.9966. This is because both models
use L2 regularization terms and have similar hyperparameters, as well as the angles of the
observed data being more similar. However, SVR has better robustness, so SVR is chosen
as one of the candidate base learners. In contrast, AdaBoost and ExtraTree have large
differences compared with other models, and the prediction results are less relevant. When
constructing stacking models with large differences, the advantages between different
model algorithms can be combined. Therefore, AdaBoost and ExtraTree are chosen as
candidate-based learners. The prediction performance of the base learner directly affects
the prediction performance of the stacking model. The candidate base learner was selected
based on its prediction accuracy, and the PLSR with the highest accuracy was chosen as the
base learner for the stacking model.

This paper selects AdaBoost, ExtraTree, PLSR, and SVR as the candidate base learners
for the stacking model by combining the model prediction results and the correlation
between the models. The mandatory base learners are chosen as the best and worst
performers, PLSR and AdaBoost, respectively.
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3.3.2. Comparison of Different Model Combinations in Stacking

As the hyperparameter of PLSR did not match the data structure, it was not used
as the meta-learner in this paper. Instead, AdaBoost, ExtraTree, and SVR were used as
meta-learners for comparison experiments to select the best combination of learners.

As can be observed from Table 3, there is a significant difference in the prediction of
moisture content of P. massoniana seedlings for different combinations of stacking integrated
models. Comparing the combination ways of numbers 1, 2, and 3 and numbers 4, 5, and 6,
the stacking integrated model′s overall performance improved when AdaBoost was used
as the meta-learner. This is because AdaBoost considers the weight assignment of each
base learner, reducing the risk of overfitting and improving the model′s generalization
ability. The overall prediction performance of the stacking integrated model was compared
between the combinations of numbers 1 and 4, 2 and 5, and 3 and 6. It was found that
using SVR, AdaBoost, and PLSR as base learners resulted in better performance than using
ExtraTree, AdaBoost, and PLSR as base learners. Additionally, the inclusion of SVR was
found to be more beneficial for improving the generalization ability of the model. Based on
the above analysis, we can conclude that the combination of number 6 not only exhibits
better prediction performance than each individual model, but it also achieves the best
prediction performance among all the different combinations.

Table 3. Comparison of the combination method and performance of different learners.

Number Base Learners Meta-Learner
Training Set Test Set

R2 RMSE R2 RMSE

1 ExtraTree-AdaBoost-PLSR SVR 0.9413 0.6039 0.7417 1.3135
2 ExtraTree-AdaBoost-PLSR ExtraTree 0.7750 1.1819 0.7211 1.3647
3 ExtraTree-AdaBoost-PLSR AdaBoost 0.9709 0.4253 0.8305 1.0639
4 SVR-AdaBoost-PLSR SVR 0.9448 0.5856 0.7188 1.3705
5 SVR-AdaBoost-PLSR ExtraTree 0.7740 1.1846 0.7708 1.2372
6 SVR-AdaBoost-PLSR AdaBoost 0.9718 0.4187 0.8819 0.8879

Therefore, in this paper, we have chosen the combination of number 6, which includes
SVR, AdaBoost, and PLSR as the base learners and AdaBoost as the meta-learner of the
stacking integrated model. The stacking model framework and the complete training
process are shown in Figure 5.

3.4. Feature Selection and Stacking Prediction Performance Analysis

Due to the large number of spectral bands in the raw spectral data of the leaves, the
existence of interference information and redundant bands can result in a computationally
intensive and less accurate prediction model. Therefore, it is necessary to perform feature
band extraction on the raw spectral data to address this issue. The feature bands were
selected by five feature selection algorithms: GA, SPA, UVE, CARS, and LARS (Figure 6).

Overall, SPA outputs more scattered feature bands and has the best dimensionality
reduction effect, selecting 23 feature bands and reducing the number of bands by 98.96%;
CARS has the second-best dimensionality reduction effect, with 46 feature bands, and a
small number of overlapping bands can be seen when comparing CARS and SPA. UVE
and LARS retain more features in the feature band selection process, mainly concentrated
on 5500–4000 cm−1 and 12,500–8000 cm−1, and the band reduction is 74.17% and 77.30%,
respectively. GA has the worst dimensionality reduction effect, the features are uniformly
scattered and dense, the discrimination of the strong interference information present in the
spectral data is low, and the band reduction is 55.97%. The vibration generated by the O-H
chemical bonds in plant water molecules is mainly in the 4600–4000 cm−1 interval [38], and
the wavenumbers in this interval have a certain response relationship with plant moisture
content. All five methods retained part of the wavelengths in this interval, which can be
further analyzed.
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Figure 6. Spectral feature band selection effect. <Preprocessing> − <Feature Selection> = Spectral
data after preprocessing and feature selection methods.

The PLSR, SVR, AdaBoost, and stacking integrated models for the moisture content of
P. massoniana leaves were developed by using full-spectrum data and feature band spectral
data, respectively. To ensure the best prediction results for each model, it is necessary to
set the hyperparameters of each model. The model tuning process is conducted using the
most widely used K-fold cross-validation, with K = 5. The final model hyperparameters
are determined using a grid search method in combination with cross-validation. The
prediction results of each model are shown in Table 4.
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Table 4. Comparison of model results with different characteristic bands.

PLSR SVR AdaBoost Stacking

Feature
Selection

Number of
Wavenumbers

Training Set Test Set Training Set Test Set Training Set Test Set Training Set Test Set

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

MSC 2203 0.8848 0.8458 0.8057 1.1391 0.8107 1.0842 0.7884 1.1888 0.9125 0.7369 0.6425 1.5452 0.9718 0.4187 0.8819 0.8879
MSC-GA 970 0.8927 0.8163 0.8344 1.0518 0.7592 1.2228 0.7840 1.2011 0.9214 0.6988 0.7582 1.2709 0.9682 0.4443 0.8970 0.8293
MSC-SPA 23 0.8319 1.0216 0.8138 1.1151 0.5864 1.6025 0.6539 1.5204 0.9137 0.7322 0.6219 1.5890 0.9598 0.4999 0.8234 1.0862
MSC-UVE 569 0.9029 0.7764 0.7933 1.1749 0.7519 1.2413 0.7872 1.1921 0.8985 0.7941 0.6436 1.5428 0.9681 0.4448 0.8837 0.8814

MSC-CARS 46 0.9663 0.4575 0.9265 0.7008 0.5607 1.6516 0.5969 1.6408 0.8867 0.8389 0.7131 1.3843 0.9821 0.3349 0.9430 0.6168
MSC-LARS 500 0.9402 0.6091 0.7124 1.3860 0.7171 1.3254 0.7710 1.2367 0.9039 0.7725 0.6460 1.5375 0.9783 0.3673 0.8169 1.1059

Note: <Preprocessing> − <Feature Selection> = Spectral data after preprocessing and feature selection methods.
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Upon longitudinal comparison of Table 4, it is evident that the model prediction
accuracy of the feature bands selected by both the SPA and LARS algorithms significantly
decreases compared to the full bands on the different models. The R2 of the test set for the
feature bands selected by SPA decreases on average by 6.47% compared to the full spectral
data on each model, while the R2 of the bands selected by LARS decreases on average
by 5.16% compared to the full spectral data on each model. This indicates that these two
methods failed to effectively extract the useful feature bands, resulting in lower prediction
accuracy for each model. The prediction effect of the feature bands selected by the UVE
algorithm on each model is closer to that of the full band, indicating that the use of noise to
eliminate invalid variables in the spectral data is beneficial and retains a large amount of
valid spectral information. GA and CARS perform better in extracting valid spectral data,
leading to an improvement in model prediction accuracy to different degrees compared to
the full band. Among them, the CARS algorithm shows the most significant improvement,
with the highest R2 improvement of 14.99% and RMSE reduction of 38.48% on PLSR and
the highest R2 of 0.9430 and RMSE of 0.6168 in the stacking model. Based on the results, it
is evident that the method of adaptively weighting the spectral bands for the selection of
feature bands in P. massoniana leaf spectral data is the most effective approach.

The comparison in Table 4 shows that the prediction accuracy of the Adaboost model
in the training set is generally higher than that in the test set for each dataset, indicating that
the model is more sensitive to data imbalance, resulting in decreased prediction accuracy.
In contrast, the prediction accuracy of the SVR on both the training and test sets has a
smaller fluctuation range, is robust to outliers, and has excellent generalization ability.
However, the overall model′s performance is low. It is possible that the low performance of
the model is due to the excessive number of features. PLSR performed the best in the single
model, especially in the MSC-CARS dataset, where R2 reached 0.9265, and the MSC-CARS-
Stacking model still had a 0.0165 improvement in R2 in the same dataset. The stacking
integrated learning model demonstrated improvement relative to the single model on each
spectral dataset. The MSC-CARS-stacking model had the best overall improvement, with
an average increase of 26.49% in R2 and an average reduction of 50.34% in RMSE for the test
set compared to the single learner. The worst performance improvement was observed in
the MSC-GA-stacking integrated model, with an average test set R2 improvement of 13.23%
and an average RMSE reduction of 29.40%. This also confirms the effectiveness of the CARS
method for spectral information extraction and the deficiency of the GA feature screening
method. The CARS method selects the least number of feature bands in the interval of
4600–4000 cm−1. It is seen that CARS selects the bands related to O-H chemical bonds
well and filters the invalid information greatly. The number of overlapping feature waves
between GA and CARS is 25, which is the highest among the overlapping wave statistics
between CARS and SPA or UVE. However, GA has a large number of feature variables,
which is 970, and the number of overlapping waves with CARS is only 2.5%. This suggests
that GA contains a significant amount of invalid information. GA increases the complexity
of spectral feature search, and its mutation and crossover information composition is not
sufficient to traverse the solution space of large spectral data with complex information.

For the full-spectrum data and the spectral data of the characteristic bands selected
by the five algorithms (GA, SPA, UVE, CARS, and LARS), the prediction accuracy of
the stacking integrated model consisting of SVR, AdaBoost, and PLSR proposed in this
paper is improved to different degrees compared with each single model. This is because
the stacking integrated model first trains several weak learners in parallel to combine
the advantages of multiple models, and then combines the different weak learners by
training a meta-learner to output a final prediction result. This effectively overcomes the
shortcomings of a single model in the training process, leading to improved prediction
accuracy. The prediction results of the full-spectrum data and the spectral data of the
feature bands selected by the five algorithms of GA (970), SPA (23), UVE (569), CARS (46),
and LARS (500) in the stacking integrated model are shown in Figure 7.
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4. Conclusions

This study aims to develop a predictive model for the leaf moisture content of
P. massoniana seedlings using near-infrared spectroscopy and multiple chemometric meth-
ods. Five preprocessing methods, including Nirmaf, L2-normalize, MSC, SG, and SNV,
were employed to process the spectral data. A stacking learning framework was then
introduced, and six models, namely AdaBoost, ExtraTree, RF, SVR, PLSR, and Ridge, were
analyzed based on their predictive results. PLSR and AdaBoost were chosen as the candi-
date base learners for the stacking learning model, and the remaining four models were
allocated to the base learners and meta-learners. The optimal combination of learners was
determined by searching for all possible combinations. Furthermore, the SPA, CARS, UVE,
GA, and LARS algorithms were utilized to select the wavelength variables, and the MSC
full spectrum and MSC characteristic wavelength spectrum were used to establish a quanti-
tative analysis model for the P. massoniana seedling moisture content based on the selected
stacking learning model. The results show that the SVR-AdaBoost-PLSR+AdaBoost stack-
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ing learning model in full-spectrum near-infrared spectroscopy can accurately quantify
the moisture content of P. massoniana seedlings. As there are many spectral variables, the
commonly used multivariate calibration methods in chemometrics are no longer applicable.
The SVR-AdaBoost-PLSR+AdaBoost model still shows stable predictive performance in
feature variable selection, indicating that the stacking learning model has good applicabil-
ity and predictive performance in near-infrared spectroscopy quantitative analysis. As a
result, this model holds significant potential for further research in the field of spectroscopy
analysis. The modeling methods and procedures used in this study are also applicable to
other forest seedlings. This provides a reference for the precise cultivation technology of
P. massoniana seedlings and an effective and accurate modeling method for quantitatively
analyzing seedling moisture content.
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