Soil and Residual Stand Disturbances after Harvesting in Close-to-Nature Managed Forests
Abstract
:1. Introduction
2. Material and Methods
2.1. Residual Stand Disturbance
2.2. Soil Disturbance
2.3. Statistical Analyses
3. Results
3.1. Disturbance of Residual Stands
3.2. Bulk Density
3.3. Penetration Resistance and Penetration Depth
4. Discussion
4.1. Disturbance of Residual Stands
4.2. Bulk Density
4.3. Penetration Resistance
5. Conclusions
- The intensity and character of wounds resemble those found in other management systems and operations; however, we attribute this to the relatively high intensity of harvesting due to the initial phase of the reconstruction. On the other hand, the size of the wound was smaller due to the denser network of technological trails and the cut-to-length logging method used.
- Soil disturbance in terms of BD proved to be the most severe in the ruts of the technological trails. However, the relative difference in BD between the control and ruts was considerably smaller than that observed when conventional technologies and machines were used. This was caused by the denser network of trails, as well as the use of smaller machinery for timber removal.
- Low-impact implementation of the close-to-nature management system requires the meticulous technological preparation of the workspace, the use of the cut-to-length logging method, and a dense network of technological trails to minimize the disturbance of soil and residual trees. Logging disturbances can endanger the productive capacity of the sites. Thus, a more extensive preparatory phase and organisation of the work are needed.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dionisio, L.F.S.; Schwartz, G.; Lopes, J.D.C.; Oliveira, F.D.A. Growth, Mortality, and Recruitment of Tree Species in an Amazonian Rainforest over 13 years of Reduced Impact Logging. For. Ecol. Manag. 2018, 430, 150–156. [Google Scholar] [CrossRef]
- Nyland, R.D. Even- to Uneven-Aged: The Challenges of Conversion. For. Ecol. Manag. 2003, 172, 291–300. [Google Scholar] [CrossRef]
- Larsen, J.B. Close-to-Nature Forest Management: The Danish Approach to Sustainable Forestry; IntechOpen: London, UK, 2012; ISBN 978-953-51-0621-0. [Google Scholar]
- Colak, A.H.; Rotherham, I.D.; Calikoglu, M. Combining ‘Naturalness Concepts’ with Close-to-Nature Silviculture. Forstwiss. Cent. 2003, 122, 421–431. [Google Scholar] [CrossRef]
- O’Hara, K.L. What Is Close-to-Nature Silviculture in a Changing World? Forestry 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Xing, H.; Zeng, J.; Xie, Y.; Cai, D.; Liu, X.; Zhang, X. Effects of Close-to-Nature Conversion on Pinus Massoniana Plantations at Different Stand Developmental Stages. Trop. Conserv. Sci. 2018, 11, 1–16. [Google Scholar] [CrossRef]
- Pro Silva. Association of European Foresters Practicing Management which follows Natural Processes. In ProSilva Principles; ProSilva Europe: Barr, France, 2012. [Google Scholar]
- Jacobsen, M.K. History and Principles of Close to Nature Forest Management: A Central European Perspective. Naconex-Tools Preserv. Woodl. Biodivers. 2001, 3, 56–58. [Google Scholar]
- Johann, E. Historical Development of Nature-Based Forestry in Central Europe. In Nature-Based Forestry in Central Europe. Alternatives to Industrial Forestry and Strict Preservation; University of Ljubljana, Department of Forestry and Renewable Forest Resources: Ljubljana, Slovenia, 2006; pp. 1–17. [Google Scholar]
- Pourmajidian, M.R.; Rahmani, A. The Influence of Single-Tree Selection Cutting on Silvicultural Properties of a Northern Hardwood Forest in Iran. Am-Euras. J. Agric. Environ. Sci. 2009, 5, 526–532. [Google Scholar]
- Tomčík, M.; Juleny, J.; Kovalčík, J.; Kulla, L. Close-to-nature forest management on the example of the of Smolnícka settlement and Veľký Folkmar village forests. In Prírode Blízke Hospodárenie na Príklade Lesov Smolníckej Osady a Veľkého Folkmara, 1st ed.; Nature Protection of the Slovak Republic: Banská Bystrica, Slovakia, 2016; ISBN 978-80-8184-045-6. [Google Scholar]
- Hartmann, M.; Niklaus, P.A.; Zimmermann, S.; Schmutz, S.; Kremer, J.; Abarenkov, K.; Lüscher, P.; Widmer, F.; Frey, B. Resistance and Resilience of the Forest Soil Microbiome to Logging-Associated Compaction. ISME J. 2014, 8, 226–244. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D.; Poltorak, B.J. Assessing the Ability of Hardwood and Softwood Brush Mats to Distribute Applied Loads. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2015, 36, 227–242. [Google Scholar]
- Naghdi, R.; Jalali, A.M.; Mohamadi, K.; Akbarimehr, M. Effects of Selection and Shelterwood Method on Quality and Quantity of Trees along Skid Trails in Beech (Fagus orientalis, Lipsky) Forests. J. For. Sci. 2011, 57, 459–465. [Google Scholar] [CrossRef]
- Miller, R.E.; McIver, J.D.; Howes, S.W.; Gaeuman, W.B. Assessment of Soil Disturbance in Forests of the Interior Columbia River Basin: A Critique; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2010; p. 154.
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental Impact Assessment of Different Logging Methods in Pine Forests Thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Picchio, R.; Mercurio, R.; Venanzi, R.; Gratani, L.; Giallonardo, T.; Lo Monaco, A.; Frattaroli, A.R. Strip Clear-Cutting Application and Logging Typologies for Renaturalization of Pine Afforestation—A Case Study. Forests 2018, 9, 366. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Sirén, M.; Hyvönen, J.; Surakka, H. Tree Damage in Mechanized Uneven-Aged Selection Cuttings. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2015, 36, 33–42. [Google Scholar]
- Sist, P.; Sheil, D.; Kartawinata, K.; Priyadi, H. Reduced-Impact Logging in Indonesian Borneo: Some Results Confirming the Need for New Silvicultural Prescriptions. For. Ecol. Manag. 2003, 179, 415–427. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A.E.; Nikooy, M.; Picchio, R.; Venanzi, R.; Calienno, L. Damages to Soil and Tree Species by Cable-Skidding in Caspian Forests of Iran. For. Syst. 2017, 26, 11. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A.E.; Majnounian, B. Affective Factors on Residual Tree Damage during Selection Cutting and Cable-Skidder Logging in the Caspian Forests, Northern Iran. Ecol. Eng. 2015, 83, 505–512. [Google Scholar] [CrossRef]
- Nikooy, M.; Rashidi, R.; Kocheki, G. Residual Trees Injury Assessment after Selective Cutting in Broadleaf Forest in Shafaroud. Casp. J. Environ. Sci. 2010, 8, 173–179. [Google Scholar]
- Bodaghi, A.I.; Nikooy, M.; Naghdi, R.; Tavankar, F. Logging Damage to Residual Trees during Sustainable Harvesting of Uneven-Age Stands in the Hyrcanian Forests of Iran. NZJFS 2020, 50, 1–11. [Google Scholar] [CrossRef]
- USS Working Group. WRB World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; p. 200. [Google Scholar]
- Krejčí, O.; Baroň, I.; Bíl, M.; Hubatka, F.; Jurová, Z.; Kirchner, K. Slope Movements in the Flysch Carpathians of Eastern Czech Republic Triggered by Extreme Rainfalls in 1997: A Case Study. Phys. Chem. Earth Parts A/B/C 2002, 27, 1567–1576. [Google Scholar] [CrossRef]
- Allman, M.; Jankovský, M.; Messingerová, V.; Allmanová, Z.; Ferenčík, M. Soil Compaction of Various Central European Forest Soils Caused by Traffic of Forestry Machines with Various Chassis. For. Syst. 2015, 24, e038. [Google Scholar] [CrossRef]
- Dudáková Allmanová, Z.; Allman, M.; Merganič, J.; Merganičová, K. Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests 2020, 11, 1289. [Google Scholar] [CrossRef]
- Eijkelkamp Penetrologger User Manual. 2022. Available online: https://www.royaleijkelkamp.com/media/nrwjyah3/m-0615sae-penetrologger.pdf (accessed on 12 March 2023).
- Jourgholami, M. Operational Impacts to Residual Stands Following Ground-Based Skidding in Hyrcanian Forest, Northern Iran. J. For. Res. 2012, 23, 333–337. [Google Scholar] [CrossRef]
- Nikooy, M.; Tavankar, F.; Naghdi, R.; Ghorbani, A.; Jourgholami, M.; Picchio, R. Soil Impacts and Residual Stand Damage from Thinning Operations. Int. J. For. Eng. 2020, 31, 126–137. [Google Scholar] [CrossRef]
- Grzywiński, W.; Turowski, R.; Naskrent, B.; Jelonek, T.; Tomczak, A. The Effect of Season of the Year on the Frequency and Degree of Damage during Commercial Thinning in Black Alder Stands in Poland. Forests 2019, 10, 668. [Google Scholar] [CrossRef]
- Vasiliauskas, R. Damage to Trees Due to Forestry Operations and Its Pathological Significance in Temperate Forests: A Literature Review. For. Int. J. For. Res. 2001, 74, 319–336. [Google Scholar] [CrossRef]
- Han, H.-S.; Kellogg, L.D. A Comparison of Sampling Methods for Measuring Residual Stand Damage from Commercial Thinning. J. For. Eng. 2000, 11, 63–71. [Google Scholar]
- Allmanová, Z. Soil Compaction and Changes of Carbon Dioxide Concentration in Soils Caused by Forestry Machine Traffic. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2013. [Google Scholar]
- Kozlowski, T.T. Soil Compaction and Growth of Woody Plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed Analysis of Residual Stand Damage Due to Winching on Steep Terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef]
- Kormanek, M.; Dvořák, J. Use of Impact Penetrometer to Determine Changes in Soil Compactness After Entracon Sioux EH30 Timber Harvesting. Croat. J. For. Eng. 2022, 43, 325–337. [Google Scholar] [CrossRef]
- Gerasimov, Y.; Katarov, V. Effect of Bogie Track and Slash Reinforcement on Sinkage and Soil Compaction in Soft Terrains. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2010, 31, 35–45. [Google Scholar]
Stand | 51a | 10 | 9b | 59 |
---|---|---|---|---|
Elevation a.s.l. (m) | 460–530 | 380–440 | 380–430 | 410–460 |
Area (ha) | 11.37 | 15.49 | 13.35 | 7.85 |
Age (years) | 45 | 60 | 70 | 60 |
Slope (%) | 30 | 30 | 30 | 30 |
Forwarding distance (m) | 200 | 200 | 150 | 600 |
Density (-) | 0.9 | 0.9 | 0.9 | 0.9 |
Species composition (%) (a) | Fs 85; Pa 10; Ld 5 | Fs 85; Qp 5; Ld 5; Pa 5 | Fs 55; Qp 15; Cb 10; Fe 5; Ld 5; Pa 5; Pm 5 | Fs 85; Ld 12; Pa 3 |
Mean stem volume (m3) | 0.17 | 0.70 | 0.83 | 1.09 |
Mean height (m) | 17 | 25 | 26 | 29 |
DBH (cm) | 18 | 29 | 30 | 34 |
Intervention | Select. thinning | Select. thinning | Select. thinning | Select. thinning |
Harvesting volume (m3) | 216.96 | 375.9 | 367.43 | 377.09 |
Harvesting area (ha) | 2.0 | 2.70 | 3.0 | 7.85 |
Soil type (WRB 2015) | Cambisol | Cambisol | Cambisol | Cambisol |
Harvesting month | II.–IV. | VII.–IX. | V.–IX. | IV.–V. |
Logging methods | Cut-to-length | Cut-to-length | Cut-to-length | Cut-to-length |
Felling technology | Chainsaw | Chainsaw | Chainsaw | Chainsaw |
Removal machine (b) | MK 18 | KAPSEN 18 | Landini Vision 100 | MK 18 |
Extraction machine (c) | Fortera + AGA LV 10 | LKT + VKS | LKT + VKS | Fortera + AGA LV 10 |
Cost of Felling + Removal technology (EUR/m3) | 19.50 | 17.50 | 17.50 | 19.50 |
Cost of extraction (EUR/m3) | 7.50 | 8.33 | 8.33 | 7.50 |
Cost∑ EUR/m3 | 27 | 25.83 | 25.83 | 27 |
Number of sample plots | 7 | 7 | 7 | 9 |
MK 18 | Kapsen 18 | Landini Vision 100 | Fortera 140 HSX | AGA LV10 * | LKT 81T | VKS | |
---|---|---|---|---|---|---|---|
Machine type | Tmw (a) | Tmw (a) | Ft (b) | Ft (b) | Ftwc (c) | S (d) | Ftwc (c) |
Cylinders/displacement (cm3) | 2/624 | 2/570 | 4/4400 | 4/4200 | - | 4/4562 | - |
Performance (kW) | 13.42 | 13.43 | 69.0 | 101.4 | - | 74.5 | - |
Fuel type | petrol | petrol | diesel | diesel | - | diesel | - |
Mass (kg) | 900 | 1100 | 3329 | 4760 | 4600 | 7065 | 3600 |
Number of axles | - | - | 2 | 2 | 2 | 2 | 2 |
Tyre type | - | - | Mitas | Mitas/GTK | Alliance | Mitas | Pneumant |
Front tyres | - | - | 440/65 R24 | 480/65 R24 | 500/45–22.5 | 16.9–30 | 16–20 |
Rear tyres | - | - | 540/65 R34 | 600/65 R38 | 500/45–22.5 | 16.9–30 | 16–20 |
Tyre width (cm) | 40 | 40 | - | - | - | - | - |
Winch (kN) | 1 × 13 | 1 × 16 | 2 × 55 | - | - | 2 × 80 | - |
Operator age (years) | 48 | 21 | 45 | 47 | - | 45 | - |
Operator experience (years) | 2 | 2 | 20 | 22 | - | 20 | - |
Stand | 51a | 10 | 9b | 59 |
---|---|---|---|---|
Number of trees per hectare | 1211 | 639 | 640 | 822 |
Intensity of harvesting (%) | 18.98 | 23.90 | 23.08 | 26.75 |
Intensity of injuries to trees (%) | 13.10 | 20.21 | 15.28 | 23.36 |
Total number of injured trees | 35 | 27 | 20 | 49 |
Number of trees with 1 wound (n/%) | 20/57.14 | 18/69.23 | 18/90 | 30/60 |
Number of trees with 2 wounds (n/%) | 8/22.86 | 7/26.92 | 1/5 | 18/36 |
Number of trees with 3+ wounds (n/%) | 7/20 | 1/3.85 | 1/5 | 2/4 |
Mean size of the wound (cm2) | 38.99 | 89.04 | 233.05 | 96.37 |
Total surface area of wounds (cm2) | 2346 | 4053 | 1631 | 6758 |
Surface area of wounds per hectare (cm2/ha) | 8379 | 14,475 | 5826 | 18,772 |
Surface of wounds (cm2) in size categories (n/%) | ||||
˂10 | 11/18.65 | 0 | 2/8.33 | 3/4.29 |
11–50 | 34/57.63 | 17/47.22 | 9/37.5 | 36/51.43 |
51–100 | 7/11.86 | 6/16.67 | 8/33.34 | 12/17.14 |
101–200 | 7/11.86 | 7/19.44 | 3/12.5 | 10/14.29 |
201–300 | 0 | 2/5.56 | 0 | 4/5.71 |
300> | 0 | 4/11.11 | 2/8.33 | 5/7.14 |
χ2 ↕ surface area (cm2) | p < 0.01 | p < 0.01 | p < 0.01 | p < 0.01 |
Distance of the injured tree from the edge of the trail (n/%) | ||||
0–2 m | 14/40 | 15/57.68 | 9/42.86 | 16/32 |
2.1–4 m | 3/8.57 | 4/15.39 | 2/9.51 | 6/12 |
4.1–6 m | 10/28.57 | 5/19.23 | 4/19.05 | 7/14 |
6.1–8 m | 5/14.29 | 1/3.85 | 3/14.29 | 9/18 |
8.1–10 m | 3/8.57 | 1/3.85 | 3/14.29 | 12/24 |
χ2 ↕ distance (m) | p < 0.01 | p < 0.01 | p = 0.03 | p = 0.09 |
Location of wound on the stems (n/%) | ||||
Root damage | 9/15.25 | 19/52.78 | 7/29.16 | 7/10 |
Buttress | 34/57.63 | 9/25 | 10/41.67 | 47/67.14 |
Stem damage (0.3–1 m) | 16/27.12 | 8/22.22 | 5/20.84 | 15/21.43 |
Stem damage (above 1 m) | 0 | 0 | 2/8.33 | 1/1.43 |
χ2 ↕ location | p < 0.01 | p < 0.01 | p = 0.13 | p < 0.01 |
S (a) | R (b) | C (c) | ||||
---|---|---|---|---|---|---|
Ø BD (d) ± SD (e) | ∆ (f) S ↔ R (%) | Ø BD ± SD | ∆ R ↔ C (%) | Ø BD ± SD | ∆ S ↔ C (%) | |
51a | 1.04 ± 0.16 | +12.5 | 1.17 ± 0.23 | +3.42 | 1.21 ± 0.19 | +23.06 |
10 | 1.13 ± 0.16 | +15.04 | 1.30 ± 0.15 | −3.08 | 1.26 ± 0.18 | +3.51 |
9b | 1.09 ± 0.12 | +24.77 | 1.36 ± 0.16 | −7.35 | 1.26 ± 0.15 | +6.15 |
59 | 1.21 ± 0.13 | +15.70 | 1.40 ± 0.14 | −8.57 | 1.28 ± 0.15 | +18.63 |
S (a) | R (b) | C (c) | ||||
---|---|---|---|---|---|---|
Ø MC (d) ± SD (e) | ∆ (f) S ↔ R (%) | Ø MC ± SD | ∆ R ↔ C (%) | Ø MC ± SD | ∆ S ↔ C (%) | |
51a | 20.08 ± 4.44 | + 52.89 | 30.7 ± 14.96 | –19.51 | 24.71 ± 14.91 | +23.06 |
10 | 13.98 ± 1.95 | + 15.59 | 16.16 ± 3.08 | –10.46 | 14.47 ± 2.31 | +3.51 |
9b | 18.87 ± 3.46 | + 17.49 | 22.17 ± 4.96 | –9.65 | 20.03 ± 4.84 | +6.15 |
59 | 15.19 ± 2.38 | + 35.81 | 20.63 ± 8.17 | –12.65 | 18.02 ± 6.10 | +18.63 |
S (a) | R (b) | C (c) | ||||
---|---|---|---|---|---|---|
Ø PR (d) ± SD (e) | ∆ (f) S ↔ R | Ø PR ± SD | ∆ R ↔ C | Ø PR ± SD | ∆ S ↔ C | |
51a | 4.19 ± 1.85 | −7.64 | 3.87 ± 1.90 | +13.18 | 4.38 ± 1.59 | +4.54 |
10 | 3.93 ± 1.81 | +11.20 | 4.37 ± 1.82 | −3.43 | 4.22 ± 1.67 | +7.38 |
9b | 4.03 ± 1.63 | +11.41 | 4.49 ± 1.27 | −6.01 | 4.22 ± 1.29 | +4.72 |
59 | 3.94 ± 1.90 | −12.44 | 3.45 ± 1.44 | +2.61 | 3.54 ± 1.51 | −10.15 |
S (a) | R (b) | C (c) | ||||
---|---|---|---|---|---|---|
Ø PD (d) ± SD (e) | ∆ (f) S ↔ R (%) | Ø PD ± SD | ∆ R ↔ C (%) | Ø PD ± SD | ∆ S ↔ C (%) | |
51a | 14.13 ± 9.31 | −6.16 | 13.26 ± 10.91 | −3.62 | 12.78 ± 9.03 | −9.55 |
10 | 15.24 ± 11.19 | −18.05 | 12.49 ± 10.57 | +59.65 | 19.94 ± 15.70 | +30.84 |
9b | 26.55 ± 19.18 | −1.21 | 26.23 ± 20.88 | −13.34 | 22.73 ± 16.48 | −14.39 |
59 | 13.18 ± 9.55 | +44.39 | 19.03 ± 17.47 | +46.61 | 27.90 ± 22.90 | +111.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allman, M.; Dudáková, Z.; Jankovský, M.; Juško, V.; Merganič, J. Soil and Residual Stand Disturbances after Harvesting in Close-to-Nature Managed Forests. Forests 2023, 14, 910. https://doi.org/10.3390/f14050910
Allman M, Dudáková Z, Jankovský M, Juško V, Merganič J. Soil and Residual Stand Disturbances after Harvesting in Close-to-Nature Managed Forests. Forests. 2023; 14(5):910. https://doi.org/10.3390/f14050910
Chicago/Turabian StyleAllman, Michal, Zuzana Dudáková, Martin Jankovský, Vladimír Juško, and Ján Merganič. 2023. "Soil and Residual Stand Disturbances after Harvesting in Close-to-Nature Managed Forests" Forests 14, no. 5: 910. https://doi.org/10.3390/f14050910
APA StyleAllman, M., Dudáková, Z., Jankovský, M., Juško, V., & Merganič, J. (2023). Soil and Residual Stand Disturbances after Harvesting in Close-to-Nature Managed Forests. Forests, 14(5), 910. https://doi.org/10.3390/f14050910