Site Index Estimation Using Airborne Laser Scanner Data in Eucalyptus dunnii Maide Stands in Uruguay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Data
2.3. ALS Data Acquisition and Processing
2.4. ALS Estimation Models
2.5. Model Assessment and Validation
2.6. Canopy Height and Site Index Rasters
2.7. Segmentation Method
3. Results
3.1. Linear Model with Which to Estimate Height
3.2. k-NN Random Forest Model with Which to Estimate Height
3.3. Site Index and Height Raster
3.4. Segmentation OTB
4. Discussion
4.1. Height Estimation Models and Generation
4.2. Site Index Estimation
4.3. Stand Segmentation
4.4. Forest Management Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MGAP. Análisis Sectorial y Cadenas Productivas; Ministerio de Ganadería, Agricultura y Pesca: Montevideo, Uruguay, 2019. [Google Scholar]
- FAO. Evaluación de Recursos Forestales Mundiales; Naciones Unidas: Roma, Italy, 2020. [Google Scholar]
- MGAP. Análisis Sectorial y Cadenas Productivas; Ministerio de Ganadería, Agricultura y Pesca: Montevideo, Uruguay, 2018. [Google Scholar]
- Prodan, M.; Peters, R.; Cox, F.; Real, P. Mensura Forestal; Serie Investigación y Educación en Desarrollo Sostenible; Instituto Interaméricano de Cooperación para la Agricultura: San José, Costa Rica, 1997. [Google Scholar]
- Noordermeer, L.; Gobakken, T.; Næsset, E.; Bollandsås, O. Predicting and mapping site index in operational forest inventories using bitemporal airborne laser scanner data. For. Ecol. Manag. 2020, 457, 117768. [Google Scholar] [CrossRef]
- Packalén, P.; Mehtätalo, L.; Maltamo, M. ALS-based estimation of plot volume and site index in a eucalyptus plantation with a nonlinear mixed-effect model that accounts for the clone effect. Ann. For. Sci. 2011, 68, 1085–1092. [Google Scholar] [CrossRef]
- Methol, R. Eucalyptus: Sistema de Apoyo a la Gestión de Plantaciones de Eucalyptus Orientadas a la Producción de Celulosa en Uruguay; Instituto Nacional de Investigación Agropecuaria: Montevideo, Uruguay, 2008. [Google Scholar]
- Cruz, I.; Valdez, R.; Ángeles, G.; Héctor, Y.; De Los Santos, M. Modelación espacial de área basal y volumen de madera en bosques manejados de Pinuspatula y P. teocote en el ejido Atopixco, Hidalgo. Madera Bosques 2010, 16, 75–97. [Google Scholar] [CrossRef]
- Bergen, K.; Dronova, I. Observing succession on aspen-dominated landscapes using a remote sensing-ecosystem approach. Land. Eco. 2007, 22, 1395–1410. [Google Scholar] [CrossRef]
- Sanchez, N.; Boschetti, L.; Hudak, A. Semi-Automated Delineation of Stands in an Even-Age Dominated Forest: A LiDAR-GEOBIA Two-Stage Evaluation Strategy. Remote Sens. Environ. 2018, 10, 1622. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Kangas, A.; Astrup, R.; Breidenbach, J.; Fridman, J.; Gobakken, T.; Korhonen, K.T.; Olsson, H. Remote sensing and forest inventories in Nordic countries–roadmap for the future. Scand. J. For. Res. 2018, 33, 397–412. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; Hermosilla, T. Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Beland, M.; Parker, G.; Sparrow, B.; Harding, D.; Chasmer, L.; Phinn, S.; Strahler, A. On promoting the use of lidar systems in forest ecosystem research. Forest Ecol. Manag. 2019, 450, 117484. [Google Scholar] [CrossRef]
- Lin, C. Improved derivation of forest stand canopy height structure using harmonized metrics of full-waveform data. Remote Sens. Environ. 2019, 235, 111436. [Google Scholar] [CrossRef]
- Moe, T.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef]
- Hirigoyen, A.; Varo, M.; Rachid, C.; Franco, J.; Navarro-Cerrillo, R. Stand Characterization of Eucalyptus spp. Plantations in Uruguay Using Airborne Lidar Scanner Technology. Remote Sens. 2020, 12, 3947. [Google Scholar] [CrossRef]
- Garcia, J.; Gonzalez, E.; Riquelme, J.; Miranda, D.; Dieguez, U.; Navarro Cerrillo, R. Evolutionary feature selection to estimate forest stand variables using LiDAR. Int. J. Appl. Earth ObsGeoinf. 2014, 26, 119–131. [Google Scholar]
- Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet, V.; Hervieu, A. Forest stand segmentation using airborne lidar data and very high-resolution multispectral imagery. Int. Arch. Photogramm. Remote Sens. 2016, 41, 207–214. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Gallego, H.; Abril, A.; Martí, M.; Fernández, S.; Tejera, R. Delineación de rodales para la ordenación forestal a partir de información LIDAR. In Proceedings of the 6° Congreso Forestal Español, Montes: Servicios y Desarrollo Rural, Vitoria, Spain, 10–14 June 2013; pp. 1–13. [Google Scholar]
- Pukkala, T. Delineating Forest stands from grid data. For. Ecosyst. 2020, 7, 14. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X. Site quality assessment of a Pinus radiata plantation in Victoria, Australia, using LiDAR technology. South. For. 2012, 74, 217–227. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Kauffman, J.; Fagan, M.; Coulston, J.; Thomas, V.; Wynne, R.; Quirino, V. Creating landscape-scale site index maps for the southeastern US is possible with airborne LiDAR and Landsat imagery. J. For. 2019, 10, 234. [Google Scholar] [CrossRef]
- Socha, J.; Hawryło, P.; Stereńczak, K.; Miścicki, S.; Tymińska, L.; Młocek, W.; Gruba, P. Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102–129. [Google Scholar] [CrossRef]
- Castaño, J.P.; Giménez, A.; Ceroni, M.; Furest, J.; Aunchayna, R.; Bidegain, M. Caracterización Agroclimática del Uruguay 1980–2009; Serie Técnica INIA 193; Instituto de Investigaciones Agropecuarias: Montevideo, Uruguay, 2011. [Google Scholar]
- FAO. Atlas de Suelos de América Latina y el Caribe; Naciones Unidas: Roma, Italy, 2015. [Google Scholar]
- LAStools, “Efficient LiDAR Processing Software” (Version 141017, Academic). Available online: http://rapidlasso.com/LAStools (accessed on 1 August 2021).
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Crookston, N.; Finley, A. YaImpute: An R Package for kNN Imputation. Stat. Softw. 2008, 23, 1–16. [Google Scholar]
- Quinn, G.; Keough, M. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R. News 2002, 2, 18–22. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Weisberg, S. Applied Linear Regression; University of Minnesota Press: Minneapolis, MN, USA, 2005. [Google Scholar]
- Knapp, N.; Fischer, R.; Huth, A. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sens. Environ. 2017, 205, 199–209. [Google Scholar] [CrossRef]
- Andersen, H.; McGaughey, R.; Reutebuch, S. Estimating Forest Canopy Fuel Parameters Using LIDAR Data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.; Gräler, B. Random Forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef]
- Qgis, D.T. QGIS Geographic Information System; Open-Source Geospatial Foundation: Chicago, IL, USA, 2009. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Varo-Martínez, M.Á.; Navarro-Cerrillo, R.M. Stand delineation of Pinus sylvestris, L. plantations suffering decline processes based on biophysical tree crown variables: A necessary tool for adaptive silviculture. Remote Sens. 2021, 13, 436. [Google Scholar] [CrossRef]
- Wu, Z.; Heikkinen, V.; Hauta, M.; Parkkinen, J.; Tokola, T. Forest Stand Delineation Using a Hybrid Segmentation Approach Based on Airborne Laser Scanning Data. In Proceedings of the Image Analysis: 18th Scandinavian Conference, SCIA 2013, Espoo, Finland, 17–20 June 2013; Proceedings 18; Springer: Berlin/Heidelberg, Germany, 2013; pp. 95–106. [Google Scholar]
- Yang, L.; Mansaray, L.R.; Huang, J.; Wang, L. Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery. Remote Sens. Environ. 2019, 11, 514. [Google Scholar] [CrossRef]
- Mora, B.; Wulder, M.A.; White, J.C.; Hobart, G. Modeling stand height, volume, and biomass from very high spatial resolution satellite imagery and samples of airborne LiDAR. Remote Sens. 2013, 5, 2308–2326. [Google Scholar] [CrossRef]
- Leite, R.; Amaral, C.; Pires, R.; Silva, C.; Soares, C.; Macedo, R.; Leite, H. Estimating stem volume in eucalyptus plantations using airborne LiDAR: A comparison of area-and individual tree-based approaches. Remote Sens. Environ. 2020, 12, 1513. [Google Scholar] [CrossRef]
- Shao, G.; Gallion, J.; Saunders, M.; Frankenberger, J.; Fei, S. Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity. Remote Sens. Environ. 2018, 204, 872–882. [Google Scholar] [CrossRef]
- Silva, C.; Klauberg, C.; Hudak, A.; Vierling, L.; Liesenberg, V.; Bernett, L.; Schoeninger, E. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation. Ann. Acad. Bras. Cienc. 2018, 90, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Díaz Bravo, S.; Espinosa, M.; Valenzuela, L.; Cancino, J.; Lasserre, J.P. Efecto del raleo en el crecimiento y algunas propiedades de la madera de Eucalyptusnitens en una plantación de 15 años. Maderas Cienc. Tecnol. 2012, 14, 373–388. [Google Scholar]
- Duarte, L.; Silva, P.; Teodoro, A. Development of a QGIS plugin to obtain parameters and elements of plantation trees and vineyards with aerial photographs. Int. J. Geoinf. 2018, 7, 109. [Google Scholar] [CrossRef]
Variable | Stdev | Min | Max | Mean | |
---|---|---|---|---|---|
Eucalyptus dunnii (n = 43) | Age | 1.71 | 5.00 | 10.00 | 7.44 |
DH | 2.43 | 16.20 | 25.30 | 20.33 | |
dbh | 2.39 | 12.65 | 22.99 | 17.29 | |
G | 5.44 | 14.11 | 36.84 | 149.19 | |
V | 37.87 | 80.49 | 235.94 | 149.19 | |
N | 231 | 445 | 1401 | 992 |
Models | R2 | RMSE | MAPE | Bias | RMSE cv | MAPE cv | BIAS cv | RMSE/ RMSEcv | |
---|---|---|---|---|---|---|---|---|---|
Linear models | |||||||||
DH (m) | 5.96 + 0.659 *p99 Model 1 | 0.84 | 0.94 | 0.04 | 0.002 | 1.00 | 0.83 | <0.001 | 0.94 |
5.442 + 0.721 *p95 Model 2 | 0.85 | 0.90 | 0.04 | −0.02 | 1.16 | 0.97 | 0.01 | 0.77 | |
4.444 + 0.794 *p90 Model 3 | 0.85 | 0.99 | 0.41 | 0.001 | 2.04 | 1.22 | 0.01 | 0.49 | |
Random Forest | |||||||||
DH (m) | Model 4 | 0.85 | 1.27 | 7.20 | −0.173 | 2.12 | 0.60 |
Seg. | Parameters | Nº Seg. | Area (ha) | ||
---|---|---|---|---|---|
SR | RR | MRS | |||
a | 20 | 8 | 16 | 529 | 10.81 |
b | 20 | 3 | 16 | 582 | 11.77 |
c | 16 | 3 | 16 | 635 | 10.96 |
d | 30 | 1 | 64 | 585 | 11.6 |
e | 20 | 1 | 16 | 1558 | 4.39 |
f | 35 | 1 | 64 | 584 | 11.63 |
g | 4 | 3 | 16 | 413 | 16.63 |
h | 20 | 1 | 64 | 630 | 10.79 |
i | 20 | 1 | 95 | 499 | 13.55 |
j | 35 | 1 | 95 | 458 | 14.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo-Martín, I.; Hirigoyen-Domínguez, A.; Arthus-Bacovich, R.; Varo-Martínez, M.Á.; Navarro-Cerrillo, R. Site Index Estimation Using Airborne Laser Scanner Data in Eucalyptus dunnii Maide Stands in Uruguay. Forests 2023, 14, 933. https://doi.org/10.3390/f14050933
Rizzo-Martín I, Hirigoyen-Domínguez A, Arthus-Bacovich R, Varo-Martínez MÁ, Navarro-Cerrillo R. Site Index Estimation Using Airborne Laser Scanner Data in Eucalyptus dunnii Maide Stands in Uruguay. Forests. 2023; 14(5):933. https://doi.org/10.3390/f14050933
Chicago/Turabian StyleRizzo-Martín, Iván, Andrés Hirigoyen-Domínguez, Rodrigo Arthus-Bacovich, Mª Ángeles Varo-Martínez, and Rafael Navarro-Cerrillo. 2023. "Site Index Estimation Using Airborne Laser Scanner Data in Eucalyptus dunnii Maide Stands in Uruguay" Forests 14, no. 5: 933. https://doi.org/10.3390/f14050933
APA StyleRizzo-Martín, I., Hirigoyen-Domínguez, A., Arthus-Bacovich, R., Varo-Martínez, M. Á., & Navarro-Cerrillo, R. (2023). Site Index Estimation Using Airborne Laser Scanner Data in Eucalyptus dunnii Maide Stands in Uruguay. Forests, 14(5), 933. https://doi.org/10.3390/f14050933