Biochemical Changes during Fruit and Seed Development in Nanjing Linden (Tilia miqueiana M.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit (Seed) Collection
2.2. Fruit Size
2.3. Fruit Moisture Content and Respiration Rate
2.4. Embryo Growth
2.5. Ultrastructural Observation of Endosperm Cells
2.6. Embryo Germination Test
2.7. Assessment of Sugar, Starch, Protein, and Fat Contents
2.8. Quantification of Endogenous Hormones
3. Results
3.1. Morphological Characteristic Changes in the Fruit and Embryo
3.1.1. Changes in Fruit Size, Moisture Content, Respiration Rate, and Embryo Length
3.1.2. Changes in Fruit Structure and Embryo Morphology
3.2. Changes in the Morphology of Substances Contained in Endosperm Cells
3.3. Changes in Contents of Sugar, Starch, Protein, and Fat in Endosperm
3.4. Changes in Levels of IAA, ZR, GA3, and ABA in Endosperm
4. Discussion
4.1. Biological Characteristics of Fruit Development
4.2. Changes in Cell Morphology in Endosperm
4.3. Changes in Endosperm Contents (Sugar, Starch, Protein, and Fat)
4.4. Changes in Endogenous Hormone Levels (IAA, ZR, GA3, and ABA)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grundy, A.; Fenner, M. Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed.; Centre for Agriculture and Bioscience International: Wallingford, UK, 2002. [Google Scholar]
- Feng, J.; Shen, Y.; Shi, F.; Li, C. Embryo development, seed germination, and the kind of dormancy of Ginkgo biloba L. Forests 2018, 9, 700. [Google Scholar] [CrossRef]
- Borisjuk, L.; Rolletschek, H.; Radchuk, R.; Weschke, W.; Wobus, U.; Weber, H. Seed development and differentiation: A role for metabolic regulation. Plant Biol. 2004, 6, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Norton, G.; Harris, J. Compositional changes in developing rape seed (Brassica napus L.). Planta 1975, 123, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Vigeolas, H.; van Dongen, J.T.; Waldeck, P.; Huhn, D.; Geigenberger, P. Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape. Plant Physiol. 2003, 133, 2048–2060. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ma, Z.; Zheng, T.; Sun, W.; Zhang, Y.; Jin, W.; Zhan, J.; Cai, Y.; Tang, Y.; Wu, Q. Insights into the correlation between physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.). BMC Genom. 2018, 19, 648. [Google Scholar] [CrossRef]
- Smit, M.E.; Weijers, D. The role of auxin signaling in early embryo pattern formation. Curr. Opin. Plant Biol. 2015, 28, 99–105. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M.; Halmer, P. The Encyclopedia of Seeds: Science, Technology and Uses; CABI: Wallingford, UK, 2006. [Google Scholar]
- Kucera, B.; Cohn, M.A.; Leubner-Metzger, G. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 2005, 15, 281–307. [Google Scholar] [CrossRef]
- Shibata, M.; Coelho, C.M.; de Garighan, J.A.; dos Santos, H.P.; Araldi, C.G.; Maraschin, M. Seed development of Araucaria angustifolia: Plant hormones and germinability in 2 years of seeds production. New For. 2021, 52, 759–775. [Google Scholar] [CrossRef]
- Matsuura, T.; Mori, I.C.; Himi, E.; Hirayama, T. Plant hormone profiling in developing seeds of common wheat (Triticum aestivum L.). Breed. Sci. 2019, 69, 601–610. [Google Scholar] [CrossRef]
- Ellis, R.; Pieta Filho, C. The development of seed quality in spring and winter cultivars of barley and wheat. Seed Sci. Res. 1992, 2, 9–15. [Google Scholar] [CrossRef]
- Gao, F.; Shen, Y.B. Sporogenesis and development of male and female gametophytes in Tilia miqueiana. J. For. Eng. 2010, 24, 22–25. [Google Scholar]
- Shi, F.H.; Zhu, C.C.; Shen, Y.B.; Shi, J.S. Germination and dormancy of Tilia miqueiana seeds. J. Fujian Coll. For. 2008, 2008, 48–51. [Google Scholar]
- Tong, L.L.; Tang, G.G.; Xu, X.G. A Community Structure Analysis on Tilia miqueliana Maxim. Forest in Nanjing Mt.Niushou. J. Nanjing For. Univ. 2006, 30, 42–46. [Google Scholar]
- International Seed Testing Association. International Rules for Seed Testing; International Seed Testing Association: Zurich, Switzerland, 1983. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- De Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Zhao, J.; Li, G.; Yi, G.-X.; Wang, B.-M.; Deng, A.-X.; Nan, T.-G.; Li, Z.-H.; Li, Q.X. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal. Chim. Acta 2006, 571, 79–85. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Du, M.; Eneji, A.E.; Wang, B.; Duan, L.; Li, Z.; Tian, X. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J. Exp. Bot. 2012, 63, 5887–5901. [Google Scholar] [CrossRef]
- Ohto, M.-A.; Stone, S.L.; Harada, J.J.; Bradford, K.; Nonogaki, H. Genetic control of seed development and seed mass. In Seed Development, Dormancy, and Germination; Blackwell Publishing: Oxford, UK, 2008; pp. 1–24. [Google Scholar]
- Yang, L.; Li, Y.H.; Shen, H.L. Factors Influencing Seed Germination of Sorbus pohuashanensis Hedl. Adv. Mater. Res. 2011, 393–395, 758–761. [Google Scholar] [CrossRef]
- Rock, C.D.; Quatrano, R.S. The role of hormones during seed development. Plant Horm. Physiol. Biochem. Mol. Biol. 1995, 671–697. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, W.; Pang, Y. Advances in the regulation mechanism of plant seed size. Plant. Physiol. J. 2016, 998–1010. [Google Scholar]
- Chunhui, M.; Jun, C.; Jianguo, H.; Jianxin, C.; Zhongliang, Y.; Yumin, D. Study on the dynamic changes of physiology and biochemistry during the seed development of tall fescue in Xinjiang. Acta Prataculturae Sin. 2002, 11, 76–80. [Google Scholar]
- Lu, X.Q.; Pan, Y.; Lu, Y.; Wang, L. Study on the rule of nutrient accumulation during the development of endosperm in Ginkgo biloba L. J. Anhui Agric. Sci. 2009, 37, 2475–2476. [Google Scholar]
- Zhang, M.; Huang, R.; Sun, D.; Luo, H. Changes in content of nutritional components and vigor of seed during fruit development of bitter gourd. Guangxi Zhiwu/Guihaia 2009, 29, 250–253. [Google Scholar]
- Wang, S.; Shen, Y.; Bao, H. Morphological, physiological and biochemical changes in Magnolia zenii Cheng seed during development. Physiol. Plant. 2021, 172, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Cheng, Z.; Li, P.; Miao, A. Prediction of sweet corn seed germination based on hyperspectral image technology and multivariate data regression. Sensors 2020, 20, 4744. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Baki, A.A. Biochemical aspects of seed vigor. HortScience 1980, 15, 765–771. [Google Scholar] [CrossRef]
- Figueiredo, D.D.; Köhler, C. Auxin: A molecular trigger of seed development. Genes Dev. 2018, 32, 479–490. [Google Scholar] [CrossRef]
- Liao, C.-Y.; Smet, W.; Brunoud, G.; Yoshida, S.; Vernoux, T.; Weijers, D. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 2015, 12, 207–210. [Google Scholar] [CrossRef]
- Chen, J.; Lausser, A.; Dresselhaus, T. Hormonal responses during early embryogenesis in maize. Biochem. Soc. Trans. 2014, 42, 325–331. [Google Scholar] [CrossRef]
- Chourey, P.S.; Li, Q.-B.; Kumar, D. Sugar–hormone cross-talk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Mol. Plant 2010, 3, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zaitoon, Y.M.; Bennett, K.; Normanly, J.; Nonhebel, H.M. A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol. Plant. 2012, 146, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Letham, D.; Palni, L. The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. 1983, 34, 163–197. [Google Scholar] [CrossRef]
- Lulsdorf, M.M.; Yuan, H.Y.; Slater, S.M.; Vandenberg, A.; Han, X.; Zaharia, L.I.; Abrams, S.R. Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Plant Growth Regul. 2013, 71, 191–198. [Google Scholar] [CrossRef]
- Emery, R. The forms and sources of cytokinins in developing Lupinus albus seeds and fruits. Plant Physiol. 2000, 123, 1–12. [Google Scholar] [CrossRef]
- Seo, M.; Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002, 7, 41–48. [Google Scholar] [CrossRef]
- Nonogaki, H. ABA responses during seed development and germination. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 92, pp. 171–217. [Google Scholar]
- Silveira, V.; Balbuena, T.S.; Santa-Catarina, C.; Floh, E.I.; Guerra, M.P.; Handro, W. Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul. 2004, 44, 147–156. [Google Scholar] [CrossRef]
- Bosco, R.; Caser, M.; Ghione, G.G.; Mansuino, A.; Giovannini, A.; Scariot, V. Dynamics of abscisic acid and indole-3-acetic acid during the early-middle stage of seed development in Rosa hybrida. Plant Growth Regul. 2015, 75, 265–270. [Google Scholar] [CrossRef]
- Liang, Y.; Shen, H.L. Content dynamics of endogenous hormones in different seed developmental stages of Korean Pine. Sci. Silvae Sin. 2016, 52, 105–111. [Google Scholar]
- Shi, T.T.; Chen, W.T. Changes of endogenous hormone content during the growth and development of Ginkgo biloba seeds. Seed Sci. Technol. 2007, 2007, 39–42. (In Chinese) [Google Scholar]
- Zou, Y.J.; Wang, Y.X. Research progress in the regulation of endogenous hormones on apple fruit growth and development. Shaanxi Agric. Sci. 2002, 10, 13–15. [Google Scholar]
- Fan, W.G.; An, H.M.; Liu, G.Q.; He, S.T.; Liu, J.P. Changes of endogenous hormones contents in fruit, seeds and their effects on the fruit development of Rosa roxburghii. Sci. Agric. Sin. 2004, 37, 728–733. [Google Scholar]
- Yan, X.; Tian, M.; Liu, F.; Wang, C.; Zhang, Y. Hormonal and morphological changes during seed development of Cypripedium japonicum. Protoplasma 2017, 254, 2315–2322. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, W. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [PubMed]
- Pullman, G.S.; Bucalo, K. Pine somatic embryogenesis: Analyses of seed tissue and medium to improve protocol development. New For. 2014, 45, 353–377. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Peng, C.; Yu, X.; Shen, Y. Biochemical Changes during Fruit and Seed Development in Nanjing Linden (Tilia miqueiana M.). Forests 2023, 14, 969. https://doi.org/10.3390/f14050969
Wu Y, Peng C, Yu X, Shen Y. Biochemical Changes during Fruit and Seed Development in Nanjing Linden (Tilia miqueiana M.). Forests. 2023; 14(5):969. https://doi.org/10.3390/f14050969
Chicago/Turabian StyleWu, Yu, Chenyin Peng, Xiangyu Yu, and Yongbao Shen. 2023. "Biochemical Changes during Fruit and Seed Development in Nanjing Linden (Tilia miqueiana M.)" Forests 14, no. 5: 969. https://doi.org/10.3390/f14050969
APA StyleWu, Y., Peng, C., Yu, X., & Shen, Y. (2023). Biochemical Changes during Fruit and Seed Development in Nanjing Linden (Tilia miqueiana M.). Forests, 14(5), 969. https://doi.org/10.3390/f14050969