Effects of Different Trace Elements on Ecophysiological Characteristics of Ligustrum obtusifolium Saplings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Measurement of Indicators
2.2.1. Determination of Chlorophyll Content
2.2.2. Determination of Growth and Biomass
2.2.3. Determination of Physiological and Biochemical Indicators
2.2.4. Determination of Trace Element Content
2.3. Parameter Calculation
2.4. Data Analysis
3. Results
3.1. Effects of Different Trace Elements on Leaf Chlorophyll Content of L. obtusifolium
3.2. Effects of Different Trace Elements on the Growth Indices of L. obtusifolium
3.3. Antioxidant Enzyme Response under Cd Stress
3.4. Antioxidant Enzyme Response under Cr Stress
3.5. Antioxidant Enzyme Response under Pb Stress
3.6. Antioxidant Enzyme Response under Zn Stress
3.7. Capacity of L. obtusifolium Plants to Accumulate and Transport Trace Elements
4. Discussion
4.1. Effects of Different Trace Elements on the Chlorophyll Content of L. obtusifolium
4.2. Effect of Different Trace Elements on the Growth of L. obtusifolium
4.3. Antioxidant Enzyme Response to Trace Element Stress in L. obtusifolium
4.4. Trace Element Accumulation and Transport Capacity of L. obtusifolium
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arif, M.; Qi, Y.; Dong, Z.; Wei, H. Rapid Retrieval of Cadmium and Lead Content from Urban Greenbelt Zones Using Hyperspectral Characteristic Bands. J. Clean. Prod. 2022, 374, 133922. [Google Scholar] [CrossRef]
- Southerland, V.A.; Brauer, M.; Mohegh, A.; Hammer, M.S.; Van Donkelaar, A.; Martin, R.V.; Apte, J.S.; Anenberg, S.C. Global Urban Temporal Trends in Fine Particulate Matter (Pm2·5) and Attributable Health Burdens: Estimates from Global Datasets. Lancet Planet. Heath 2022, 6, e139–e146. [Google Scholar] [CrossRef] [PubMed]
- Zlobina, V.L.; Medovar, Y.A.; Yushmanov, I.O. Assessing the Hazard of Environmental Pollution by Landfills of Industrial and Municipal Wastes. Water Resour. 2021, 48, 420–426. [Google Scholar] [CrossRef]
- Li, M.; Verburg, P.H.; Van Vliet, J. Global Trends and Local Variations in Land Take Per Person. Landsc. Urban Plann. 2022, 218, 104308. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, Y.; Sun, S.; Sang, W.; Axmacher, J.C. Does China’s Increasing Coupling of ‘Urban Population’and ‘Urban Area’growth Indicators Reflect a Growing Social and Economic Sustainability? J. Environ. Manage. 2022, 301, 113932. [Google Scholar] [CrossRef] [PubMed]
- Ciprari, E.; Ancillotto, L.; Mori, E.; Studer, V.; Chessa, C. Rescue Data as an Alternative for Assessing Trends and Phenological Changes in Two Invasive Parakeet Species. Urban Ecosyst. 2022, 25, 1199–1206. [Google Scholar] [CrossRef]
- Cui, X.; Geng, Y.; Sun, R.; Xie, M.; Feng, X.; Li, X.; Cui, Z. Distribution, Speciation and Ecological Risk Assessment of Heavy Metals in Jinan Iron & Steel Group Soils from China. J. Clean. Prod. 2021, 295, 126504. [Google Scholar] [CrossRef]
- Ma, Y.; Egodawatta, P.; McGree, J.; Liu, A.; Goonetilleke, A. Human Health Risk Assessment of Heavy Metals in Urban Stormwater. Sci. Total Environ. 2016, 557, 764–772. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution Characteristics, Risk Assessment, and Source Apportionment of Heavy Metals in Road Dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, Z.; Huang, K.; Wang, X.; Cheng, L.; Zeng, L.; Zhou, Y.; Jing, T. Multiple Exposure Pathways and Health Risk Assessment of Heavy Metal (Loid) S for Children Living in Fourth-Tier Cities in Hubei Province. Environ. Int. 2019, 129, 517–524. [Google Scholar] [CrossRef]
- Chen, X.; Guo, M.; Feng, J.; Liang, S.; Han, D.; Cheng, J. Characterization and Risk Assessment of Heavy Metals in Road Dust from a Developing City with Good Air Quality and from Shanghai, China. Environ. Sci. Pollut. Res. 2019, 26, 11387–11398. [Google Scholar] [CrossRef]
- Hong, N.; Guan, Y.; Yang, B.; Zhong, J.; Zhu, P.; Ok, Y.S.; Hou, D.; Tsang, D.C.W.; Guan, Y.; Liu, A. Quantitative Source Tracking of Heavy Metals Contained in Urban Road Deposited Sediments. J. Hazard. Mater. 2020, 393, 122362. [Google Scholar] [CrossRef]
- Mirzaei Aminiyan, M.; Baalousha, M.; Mousavi, R.; Mirzaei Aminiyan, F.; Hosseini, H.; Heydariyan, A. The Ecological Risk, Source Identification, and Pollution Assessment of Heavy Metals in Road Dust: A Case Study in Rafsanjan, Se Iran. Environ. Sci. Pollut. Res. 2018, 25, 13382–13395. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source Analysis and Source-Oriented Risk Assessment of Heavy Metal Pollution in Agricultural Soils of Different Cultivated Land Qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Mamak, M.; Kicińska, A. Environmental Indicators for Evaluation of Chromium Content in Soils on the Example of an Inoperative Tanning Plant. Hum. Ecol. Risk Assess. 2019, 25, 2056–2072. [Google Scholar] [CrossRef]
- Zhang, S.; Ni, X.; Arif, M.; Zheng, J.; Stubbs, A.; Li, C. Nacl Improved Cd Tolerance of the Euhalophyte Suaeda Glauca but Not the Recretohalophyte Limonium Aureum. Plant Soil 2020, 449, 303–318. [Google Scholar] [CrossRef]
- Arif, M.; Jiajia, L.; Tahir, M.; Jie, Z.; Li, C. Environmental Literacy Scenarios Lead to Land Degradation and Changes in Riparian Zones: Implications for Policy in China. Land Degrad. Dev. 2023, 34, 156–172. [Google Scholar] [CrossRef]
- Goudarzi, G.; Alavi, N.; Geravandi, S.; Idani, E.; Behrooz, H.R.A.; Babaei, A.A.; Alamdari, F.A.; Dobaradaran, S.; Farhadi, M.; Mohammadi, M.J. Health Risk Assessment on Human Exposed to Heavy Metals in the Ambient Air Pm 10 in Ahvaz, Southwest Iran. Int. J. Biometeorol. 2018, 62, 1075–1083. [Google Scholar] [CrossRef]
- Lisiak-Zielińska, M.; Borowiak, K.; Budka, A.; Kanclerz, J.; Janicka, E.; Kaczor, A.; Żyromski, A.; Biniak-Pieróg, M.; Podawca, K.; Mleczek, M. How Polluted Are Cities in Central Europe?-Heavy Metal Contamination in Taraxacum Officinale and Soils Collected from Different Land Use Areas of Three Representative Cities. Chemosphere 2021, 266, 129113. [Google Scholar] [CrossRef]
- Jabbo, J.N.; Isa, N.M.; Aris, A.Z.; Ramli, M.F.; Abubakar, M.B. Geochemometric Approach to Groundwater Quality and Health Risk Assessment of Heavy Metals of Yankari Game Reserve and Its Environs, Northeast Nigeria. J. Clean. Prod. 2022, 330, 129916. [Google Scholar] [CrossRef]
- Nechita, C.; Iordache, A.M.; Lemr, K.; Levanič, T.; Pluhacek, T. Evidence of Declining Trees Resilience under Long Term Heavy Metal Stress Combined with Climate Change Heating. J. Clean. Prod. 2021, 317, 128428. [Google Scholar] [CrossRef]
- Arif, M.; Changxiao, L. Impacts of Environmental Literacy on Ecological Networks in the Three Gorges Reservoir, China. Ecol. Indic. 2022, 145, 109571. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving Factors of Ecosystem Services and Their Spatiotemporal Change Assessment Based on Land Use Types in the Loess Plateau. J. Environ. Manage. 2022, 311, 114835. [Google Scholar] [CrossRef]
- Wu, D.; Yu, X.; Lai, M.; Feng, J.; Dong, X.; Peng, W.; Su, S.; Zhang, X.; Wan, L.; Jacobs, D.F.; et al. Diversified Effects of Co-Planting Landscape Plants on Heavy Metals Pollution Remediation in Urban Soil Amended with Sewage Sludge. J. Hazard. Mater. 2021, 403, 123855. [Google Scholar] [CrossRef]
- Gunarathne, V.; Ashiq, A.; Ramanayaka, S.; Wijekoon, P.; Vithanage, M. Biochar from Municipal Solid Waste for Resource Recovery and Pollution Remediation. Environ. Chem. Lett. 2019, 17, 1225–1235. [Google Scholar] [CrossRef]
- Xie, S.W.; Guo, X.S.; Yang, F.; Huang, Q.; Chen, M.J.; Wei, X.; Liu, C.S. Accumulation Characteristics, Geochemical Fractions Distribution and Ecological Risk of Heavy Metals in Soils of Urban Parks in Guangzhou, China. Ecol. Environ. Sci. 2022, 31, 2206–2215. [Google Scholar] [CrossRef]
- Liu, X.; Arif, M.; Wan, Z.; Zhu, Z. Dynamic Evaluation of Coupling and Coordinating Development of Environments and Economic Development in Key State-Owned Forests in Heilongjiang Province, China. Forests 2022, 13, 2069. [Google Scholar] [CrossRef]
- Xie, W.J.; Wang, S.X. Research on the Coupling Coordination between Economic Development and Ecological Environment—A Case Study of Ecological Civilization Construction of Qinghai Province. Plateau Sci. Res. 2020, 4, 36–45. [Google Scholar] [CrossRef]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, Ecological-Health Risks Assessment, and Source Apportionment of Heavy Metals in Paddy Soils: A Case Study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Yang, Y.; Ni, X.; Arif, M.; Charles, W.; Li, C. Trace Elements in Soils of a Typical Industrial District in Ningxia, Northwest China: Pollution, Source, and Risk Evaluation. Sustainability 2020, 12, 1868. [Google Scholar] [CrossRef]
- Zhu, L.A.; Yin, A.H.; Lin, L.W.; Liu, Y.; Zhang, H.H. Accumulation Characteristics, Influencing Factors and Evaluation of Heavy Metals in Surface Soil in Urban Forest Park of Foshan. Ecol. Environ. 2021, 30, 849–856. [Google Scholar] [CrossRef]
- Yang, G.-L.; Zheng, M.-M.; Tan, A.-J.; Liu, Y.-T.; Feng, D.; Lv, S.-M. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. Biology 2021, 10, 544. [Google Scholar] [CrossRef]
- Kumar, R.; Ivy, N.; Bhattacharya, S.; Dey, A.; Sharma, P. Coupled Effects of Microplastics and Heavy Metals on Plants: Uptake, Bioaccumulation, and Environmental Health Perspectives. Sci. Total Environ. 2022, 836, 155619. [Google Scholar] [CrossRef]
- Hossain, M.B.; Masum, Z.; Rahman, M.S.; Yu, J.; Noman, M.A.; Jolly, Y.N.; Begum, B.A.; Paray, B.A.; Arai, T. Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest. Biology 2022, 11, 1144. [Google Scholar] [CrossRef]
- Zhou, P.-F.; Zhang, S.-W.; Luo, M.; Wei, H.-B.; Song, Q.; Fang, B.; Zhuang, H.-J.; Chen, H.-Y. Characteristics of Plant Diversity and Heavy Metal Enrichment and Migration under Different Ecological Restoration Modes in Abandoned Mining Areas. Environ. Sci. 2022, 43, 985–994. [Google Scholar] [CrossRef]
- Liu, M.S. Effect of Different Concentration of Lead on Photosynthesis of Ligustrum Lucidum. Master’s Thesis, Central South University of Forestry & Technology, Changsha, China, 2021. [Google Scholar]
- Rucandio, M.I.; Petit-Domínguez, M.D.; Fidalgo-Hijano, C.; García-Giménez, R. Biomonitoring of Chemical Elements in an Urban Environment Using Arboreal and Bush Plant Species. Environ. Sci. Pollut. Res. 2011, 18, 51–63. [Google Scholar] [CrossRef]
- Kim, K.D.; Lee, E.J. Potential Tree Species for Use in the Restoration of Unsanitary Landfills. Environ. Manage. 2005, 36, 1–14. [Google Scholar] [CrossRef]
- Yu, Z.; Feng, X.Y.; Ji, L.R.; Ren, X.H.; Zhang, S.W. Study on Cold Tolerance of 12 Foreign Tree Species in Wuwei. For. Sci. Technol. 2012, 37, 6–8. [Google Scholar] [CrossRef]
- Shi, T.C.; Wang, Z.Q.; Cao, Y.Y.; Yang, J.F.; Ma, G.L.; Yang, B.G. Evalution on Heavy Metal Levels and Potential Ecological Risks in Agricultural Soils. J. Ningxia Univ. 2021, 42, 180–183. [Google Scholar] [CrossRef]
- Chai, C.R.; Mu, L.Q.; Liang, M.; Wang, R.S. Physiological Responses of Six Northern Greening Shrubs to Water Stress. J. Northeast For. Univ. 2012, 40, 12–15. [Google Scholar] [CrossRef]
- Elavarthi, S.; Martin, B. Spectrophotometric Assays for Antioxidant Enzymes in Plants. In Plant Stress Tolerance: Methods and Protocols; Sunkar, R., Ed.; Humana Press: Totowa, NJ, USA, 2010; pp. 273–280. [Google Scholar]
- Liu, Z.; He, X.; Chen, W. Effects of Cadmium Stress on the Growth and Physiological Characteristics of Lonicera Japonica. Chin. J. Appl. Ecol. 2009, 20, 40–44. [Google Scholar]
- Meng, F.; Gao, Y.; Feng, Q. Discovery and Mechanism Study of a Novel Chromium-Accumulating Plant, Lonicera Japonica Thunb. Environ. Sci. Pollut. Res. 2019, 26, 13812–13817. [Google Scholar] [CrossRef] [PubMed]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of Lead and Copper on Photosynthetic Apparatus in Citrus (Citrus aurantium L.) Plants. The Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef]
- Glińska, S.; Gapińska, M.; Michlewska, S.; Skiba, E.; Kubicki, J. Analysis of Triticum Aestivum Seedling Response to the Excess of Zinc. Protoplasma 2016, 253, 367–377. [Google Scholar] [CrossRef]
- Ito, H.; Saito, H.; Fukui, M.; Tanaka, A.; Arakawa, K. Poplar Leaf Abscission through Induced Chlorophyll Breakdown by Mg-Dechelatase. Plant Sci. 2022, 324, 111444. [Google Scholar] [CrossRef]
- Gajic, G.; Mitrovic, M.; Pavlovic, P.; Stevanovic, B.; Djurdjevic, L.; Kostic, O. An assessment of the tolerance of ligustrum ovalifolium hassk. to traffic-generated Pb using physiological and biochemical markers. Ecotoxicol. Environ. Saf. 2009, 72, 1090–1101. [Google Scholar] [CrossRef]
- Huang, Y.; Zu, L.; Zhang, M.; Yang, T.; Zhou, M.; Shi, C.; Shi, F.; Zhang, W. Tolerance and Distribution of Cadmium in an Ornamental Species Althaea Rosea Cavan. Int. J. Phytorem. 2020, 22, 713–724. [Google Scholar] [CrossRef]
- Liao, J.; Li, N.; Yang, Y.; Yang, J.; Tian, Y.; Luo, Z.; Jiang, M. Tolerance and Heavy Metal Accumulation Characteristics of Sasa Argenteostriata (Regel) Eg Camus under Zinc Single Stress and Combined Lead–Zinc Stress. Toxics 2022, 10, 450. [Google Scholar] [CrossRef]
- Shahbazi, M.; Tohidfar, M.; Aliniaeifard, S.; Yazdanpanah, F.; Bosacchi, M. Transgenic Tobacco Co-Expressing Flavodoxin and Betaine Aldehyde Dehydrogenase Confers Cadmium Tolerance through Boosting Antioxidant Capacity. Protoplasma 2021, 259, 965–979. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Q.; Liu, P.; Zhang, Y. Effects of Polyethylene and Heavy Metal Cadmium on the Growth and Development of Brassica Chinensis Var. Chinensis. Water Air Soil Pollut. 2022, 233, 426. [Google Scholar] [CrossRef]
- Krzesłowska, M. The Cell Wall in Plant Cell Response to Trace Metals: Polysaccharide Remodeling and Its Role in Defense Strategy. Acta Physiol. Plant. 2011, 33, 35–51. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, F.; He, Z.; Chen, X.; Mwamba, T.M. Photosynthesis performance and antioxidative enzymes response of Melia azedarach and Ligustrum lucidum plants under Pb–Zn mine tailing conditions. Front. Plant Sci. 2020, 11, 571157. [Google Scholar] [CrossRef]
- Jiajia, L.; Arif, M.; Dongdong, D.; Xin, H.; Qianwen, G.; Fan, Y.; Changxiao, L. The diversity of plant communities in different habitats can lead to distinct methanotrophic communities. Rhizosphere 2023, 26, 100690. [Google Scholar] [CrossRef]
- Yuancai, Q.; Muhammad, A.; Dong, Z.; Ting, W.; Qin, Y.; Bo, P.; Peng, W.; Wei, H. The effect of hydrological regimes on the concentrations of nonstructural carbohydrates and organic acids in the roots of Salix matsudana in the Three Gorges Reservoir, China. Ecol. Indic. 2022, 142, 109176. [Google Scholar] [CrossRef]
- Qianwen, G.; Arif, M.; Zhongxun, Y.; Jie, Z.; Xinrui, H.; Dongdong, D.; Fan, Y.; Changxiao, L. Plant species composition and diversity along successional gradients in arid and semi-arid regions of China. For. Ecol. Manag. 2022, 524, 120542. [Google Scholar] [CrossRef]
- Arif, M.; Jiajia, L.; Dongdong, D.; Xinrui, H.; Qianwen, G.; Fan, Y.; Songlin, Z.; Changxiao, L. Effect of topographical features on hydrologically connected riparian landscapes across different land-use patterns in colossal dams and reservoirs. Sci. Total Environ. 2022, 851, 158131. [Google Scholar] [CrossRef]
- Jiajia, L.; Lijuan, L.; Muhammad, A.; Dongdong, D.; Xin, H.; Changxiao, L. Newly formed riparian microhabitats simplify bacterial community structure and diversity. J. Soils Sediments 2023, 23, 1927–1943. [Google Scholar] [CrossRef]
pH | Organic Matter/ (g/kg) | Total N/ (g/kg) | Total P/ (g/kg) | Total K/ (g/kg) | Alkali-N/ (mg/kg) | Olsen-P/ (mg/kg) | Avail-K/ (mg/kg) |
---|---|---|---|---|---|---|---|
8.7 ± 0.10 | 9.42 ± 0.84 | 0.56 ± 0.05 | 0.91 ± 0.06 | 20.65 ± 1.84 | 76.6 ± 3.22 | 9.73 ± 0.35 | 167.8 ± 8.03 |
Treatment Levels | Element Category (mg/kg) | |||
---|---|---|---|---|
Cd | Cr | Pb | Zn | |
CK | 0 | 0 | 0 | 0 |
T1 | 2 | 300 | 400 | 300 |
T2 | 5 | 500 | 800 | 500 |
T3 | 10 | 700 | 1200 | 1000 |
Elements | Treatment Levels | Net Increase of Height/(cm) | Dry Weight in Root/(g/Plant) | Dry Weight in Shoot/(g/Plant) | Total Biomass/(g/Plant) |
---|---|---|---|---|---|
Cd | CK | 29.79 ± 2.24a | 9.11 ± 0.88a | 12.47 ± 1.01a | 21.59 ± 1.90a |
T1 | 19.00 ± 1.81b | 6.76 ± 0.45b | 9.14 ± 0.68b | 15.90 ± 1.14b | |
T2 | 12.17 ± 1.13c | 5.31 ± 0.43c | 8.01 ± 0.74c | 13.32 ± 1.18bc | |
T3 | 2.12 ± 0.17d | 5.08 ± 0.42c | 7.30 ± 0.59c | 12.38 ± 1.02c | |
Cr | CK | 29.79 ± 2.24a | 9.11 ± 0.88a | 12.47 ± 1.01a | 21.59 ± 1.90a |
T1 | 24.02 ± 2.24a | 8.61 ± 0.44a | 11.49 ± 0.87a | 20.11 ± 1.47a | |
T2 | 13.05 ± 0.87b | 5.63 ± 0.22b | 10.71 ± 0.65b | 16.34 ± 0.76b | |
T3 | 2.17 ± 0.16c | 4.99 ± 0.37c | 9.32 ± 0.19c | 11.31 ± 0.75c | |
Pb | CK | 29.79 ± 2.24a | 9.11 ± 0.88a | 12.47 ± 1.01a | 21.59 ± 1.90a |
T1 | 18.47 ± 1.71b | 8.12 ± 0.76b | 11.84 ± 0.94b | 19.97 ± 1.71b | |
T2 | 14.98 ± 1.25c | 7.29 ± 0.67c | 11.08 ± 0.91c | 18.37 ± 1.58c | |
T3 | 8.49 ± 0.73d | 6.07 ± 0.53d | 9.40 ± 0.77d | 15.46 ± 1.29d | |
Zn | CK | 29.79 ± 2.24a | 9.11 ± 0.88a | 12.47 ± 1.01a | 21.59 ± 1.90a |
T1 | 18.04 ± 1.77b | 8.61 ± 0.67b | 11.62 ± 0.93b | 20.23 ± 1.85b | |
T2 | 15.53 ± 1.33c | 6.31 ± 0.54c | 9.55 ± 0.77c | 15.86 ± 1.43c | |
T3 | 8.17 ± 0.78d | 5.12 ± 0.43d | 7.76 ± 0.64d | 12.78 ± 1.02d |
Elements | Treatment Levels | Trace Element Contents of Root/(mg/kg) | Trace Element Contents of Stem/(mg/kg) | Trace Element Contents of Leaf /(mg/kg) | Translocation Factor |
---|---|---|---|---|---|
Cd | CK | 0.12 ± 0.01d | 0.04 ± 0.002d | 0.04 ± 0.002d | 0.67 ± 0.06a |
T1 | 4.69 ± 0.35c | 0.39 ± 0.02c | 0.07 ± 0.004c | 0.09 ± 0.005b | |
T2 | 7.60 ± 0.68a | 0.55 ± 0.03a | 0.25 ± 0.02a | 0.11 ± 0.01b | |
T3 | 5.34 ± 0.43b | 0.48 ± 0.02b | 0.09 ± 0.005b | 0.11 ± 0.01b | |
Cr | CK | 52.11 ± 5.11d | 22.20 ± 1.85d | 24.98 ± 2.03d | 0.92 ± 0.06b |
T1 | 83.20 ± 7.56c | 37.57 ± 2.68c | 49.92 ± 4.02c | 1.05 ± 0.10a | |
T2 | 125.04 ± 11.60b | 42.76 ± 4.18b | 54.53 ± 5.21b | 0.78 ± 0.06c | |
T3 | 167.67 ± 12.86a | 54.00 ± 5.04a | 73.14 ± 6.87a | 0.76 ± 0.06d | |
Pb | CK | 3.01 ± 0.21d | 0.81 ± 0.07d | 0.01 ± 0.001d | 0.27 ± 0.02a |
T1 | 32.85 ± 2.57c | 5.81 ± 0.52c | 1.95 ± 0.12c | 0.23 ± 0.01b | |
T2 | 167.27 ± 15.52b | 8.92 ± 0.81b | 2.07 ± 0.18b | 0.06 ± 0.01c | |
T3 | 284.81 ± 26.81a | 11.89 ± 1.04a | 2.42 ± 0.22a | 0.05 ± 0.01d | |
Zn | CK | 46.57 ± 4.27d | 18.56 ± 1.15d | 10.82 ± 0.99d | 0.63 ± 0.04b |
T1 | 69.41 ± 5.89c | 23.26 ± 2.10c | 20.57 ± 1.72c | 0.63 ± 0.04b | |
T2 | 93.27 ± 8.86b | 35.79 ± 3.21b | 29.60 ± 2.71b | 0.70 ± 0.05a | |
T3 | 133.23 ± 12.81a | 44.05 ± 3.15a | 40.74 ± 3.67a | 0.63 ± 0.04b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Arif, M.; Cui, Z.; Li, C. Effects of Different Trace Elements on Ecophysiological Characteristics of Ligustrum obtusifolium Saplings. Forests 2023, 14, 972. https://doi.org/10.3390/f14050972
Cao W, Arif M, Cui Z, Li C. Effects of Different Trace Elements on Ecophysiological Characteristics of Ligustrum obtusifolium Saplings. Forests. 2023; 14(5):972. https://doi.org/10.3390/f14050972
Chicago/Turabian StyleCao, Wenqiu, Muhammad Arif, Zhen Cui, and Changxiao Li. 2023. "Effects of Different Trace Elements on Ecophysiological Characteristics of Ligustrum obtusifolium Saplings" Forests 14, no. 5: 972. https://doi.org/10.3390/f14050972
APA StyleCao, W., Arif, M., Cui, Z., & Li, C. (2023). Effects of Different Trace Elements on Ecophysiological Characteristics of Ligustrum obtusifolium Saplings. Forests, 14(5), 972. https://doi.org/10.3390/f14050972