Genetic Species Identification Using ycf1b, rbcL, and trnH-psbA in the Genus Pinus as a Complementary Method for Anatomical Wood Species Identification
Abstract
:1. Introduction
2. Research Methods and Data Sources
2.1. Sequences of rbcL, ycf1b, and trnH-psbA in the Genus Pinus
2.2. Gene Alignment and Phylogenetic Analysis
3. Results and Discussion
3.1. Species Identification of P. echinata, P. elliottii, P. ponderosa, P. radiata, P. rigida, P. taeda, and P. virginiana in Group 1 of Table 1 through Phylogenetic Analysis
3.2. Species Identification of P. densiflora, P. sylvestris, and P. thunbergii in Group 2 of Table 1 through Phylogenetic Analysis
3.3. Species Identification of P. koraiensis and P. strobus in Group 3 of Table 1 through Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wheeler, E.A.; Baas, P. Wood identification—A review. IAWA J. 1998, 19, 241–264. [Google Scholar] [CrossRef]
- Lee, H.M.; Jeon, W.S.; Lee, J.W. Analysis of anatomical characteristics for wood species identification of commercial plywood in Korea. J. Korean Wood Sci. Technol. 2021, 49, 574–590. [Google Scholar] [CrossRef]
- Lee, H.M.; Bae, J.S. Major species and anatomical characteristics of the wood used for national use specified in Yeonggeon-Uigwes of the late Joseon dynasty period. J. Korean Wood Sci. Technol. 2021, 49, 462–470. [Google Scholar] [CrossRef]
- Fathurahman, T.; Gunawan, P.; Prakasa, E.; Sugiyama, J. Wood classification of Japanese Fagaceae using partial sample area and convolutional neural networks. J. Korean Wood Sci. Technol. 2021, 49, 491–503. [Google Scholar] [CrossRef]
- Jeon, W.-S.; Lee, H.-M.; Park, J.-H. Comparison of anatomical characteristics for wood damaged by Oak Wilt and sound wood from Quercus mongolica. J. Korean Wood Sci. Technol. 2020, 48, 807–819. [Google Scholar] [CrossRef]
- Marbun, S.D.; Wahyudi, I.; Suryana, J.; Nawawi, D.S. Anatomical structures and fiber quality of four lesser-used wood species grown in Indonesia. J. Korean Wood Sci. Technol. 2019, 47, 617–632. [Google Scholar] [CrossRef]
- Lidder, P.; Sonnino, A. Biotechnologies for the management of genetic resources for food and agriculture. Adv. Genet. 2012, 78, 1–167. [Google Scholar]
- Ganal, M.W.; Altmann, T.; Röder, M.S. SNP identification in crop plants. Curr. Opin. Plant Biol. 2009, 12, 211–217. [Google Scholar] [CrossRef]
- Jiang, J.; Gill, B.S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 2006, 49, 1057–1068. [Google Scholar] [CrossRef]
- Hizume, M.; Shibata, F.; Matsusaki, Y.; Garajova, Z. Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor. Appl. Genet. 2002, 105, 491–497. [Google Scholar] [CrossRef]
- Jiang, J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Res. 2019, 27, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Semagn, K.; Bjørnstad, Å.; Ndjiondjop, M. An overview of molecular marker methods for plants. Afr. J. Biotechnol. 2006, 5, 2540–2568. [Google Scholar]
- Richardson, D.M. Ecology and Biogeography of Pinus; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ham, Y.; Yang, J.; Choi, W.-S.; Ahn, B.-J.; Park, M.-J. Antibacterial activity of essential oils from Pinaceae leaves against fish pathogens. J. Korean Wood Sci. Technol. 2020, 48, 527–547. [Google Scholar] [CrossRef]
- Min, H.-J.; Kim, E.-J.; Shinn, S.-W.; Bae, Y.-S. Antidiabetic activities of Korean red pine (Pinus densiflora) inner bark extracts. J. Korean Wood Sci. Technol. 2019, 47, 498–508. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.-S.; Kim, J.-W.; Lee, S.-S.; Park, M.-J. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. J. Korean Wood Sci. Technol. 2019, 47, 674–691. [Google Scholar] [CrossRef]
- Park, Y.B.; Kim, C.-S.; Jung, B.-H. Long-term prospect of MDF production and supply plan of domestic softwood log in Korea. J. Korean Soc. For. Sci. 2008, 97, 45–52. [Google Scholar]
- Choung, Y.; Lee, J.; Cho, S.; Noh, J. Review on the succession process of Pinus densiflora forests in South Korea: Progressive and disturbance-driven succession. J. Ecol. Environ. 2020, 44, 16. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Horikawa, Y.; Lee, W.-H.; Sugiyama, J. Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. J. Wood Sci. 2016, 62, 156–167. [Google Scholar] [CrossRef]
- Eom, Y.-G. Wood Anatomy of Korean Species; Mediawood Ltd.: Seongnam, Republic of Korea, 2015; pp. 1–606. [Google Scholar]
- Schweingruber, F.H. Annual growth rings and growth zones in woody plants in southern Australia. IAWA J. 1992, 13, 359–379. [Google Scholar] [CrossRef]
- Patel, R.N. Anatomy of stem and root wood of Pinus radiata D. Don. N. Z. J. For. Sci. 1971, 1, 37–49. [Google Scholar]
- Jeong, G.Y.; Zink-Sharp, A.; Hindman, D.P. Tensile properties of earlywood and latewood from loblolly pine (Pinus taeda) using digital image correlation. Wood Fiber Sci. 2009, 41, 51–63. [Google Scholar]
- LaPasha, C.; Wheeler, E. Resin canals in Pinus taeda: Longitudinal canal lengths and interconnections between longitudinal and radial canals. IAWA J. 1990, 11, 227–238. [Google Scholar] [CrossRef]
- Wirtz, F.P. Anatomical Studies of Pinus ponderosa Laws: Infested by Elytroderma deformans (Weir) Darker; Oregon State University: Corvallis, OR, USA, 1967. [Google Scholar]
- Esteban, L.G.; de Palacios, P.; García-Iruela, A.; García-Fernández, F.; García-Esteban, L.; de Vega, D.G. Comparative wood anatomy in Pinaceae with reference to its systematic position. Forests 2021, 12, 1706. [Google Scholar] [CrossRef]
- Jackson, L. Notes on morphology of shortleaf pine. Castanea 1970, 35, 313–318. [Google Scholar]
- Kim, M.-J.; Seo, J.-W.; Kim, B.-R. Anatomical characteristics of Korean red pines according to provinces. J. Korean Wood Sci. Technol. 2018, 46, 100–106. [Google Scholar] [CrossRef]
- Clegg, M.T.; Zurawski, G. Chloroplast DNA and the study of plant phylogeny: Present status and future prospects. In Molecular Systematics of Plants; Soltis, P.S., Soltis, D.E., Doyle, J.J., Eds.; Springer: Boston, MA, USA, 1992; pp. 1–13. [Google Scholar]
- Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef]
- Ismail, M.; Ahmad, A.; Nadeem, M.; Javed, M.A.; Khan, S.H.; Khawaish, I.; Sthanadar, A.A.; Qari, S.H.; Alghanem, S.M.; Khan, K.A. Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi J. Biol. Sci. 2020, 27, 3735–3742. [Google Scholar] [CrossRef]
- Chase, M.W.; Cowan, R.S.; Hollingsworth, P.M.; Van Den Berg, C.; Madriñán, S.; Petersen, G.; Seberg, O.; Jørgsensen, T.; Cameron, K.M.; Carine, M. A proposal for a standardised protocol to barcode all land plants. Taxon 2007, 56, 295–299. [Google Scholar] [CrossRef]
- Olsson, S.; Grivet, D.; Cid-Vian, J. Species-diagnostic markers in the genus Pinus: Evaluation of the chloroplast regions matK and ycf1. For. Syst. 2018, 27, e016. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T.-J. Method of DNA extraction from Pinus rigida wood pretreated with sandpaper. J. Korean Wood Sci. Technol. 2018, 46, 402–414. [Google Scholar] [CrossRef]
- Newmaster, S.; Fazekas, A.; Steeves, R.; Janovec, J. Testing candidate plant barcode regions in the Myristicaceae. Mol. Ecol. Resour. 2008, 8, 480–490. [Google Scholar] [CrossRef]
- Dong, W.; Liu, J.; Yu, J.; Wang, L.; Zhou, S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 2012, 7, e35071. [Google Scholar] [CrossRef]
- Celiński, K.; Kijak, H.; Wojnicka-Półtorak, A.; Buczkowska-Chmielewska, K.; Sokołowska, J.; Chudzińska, E. Effectiveness of the DNA barcoding approach for closely related conifers discrimination: A case study of the Pinus mugo complex. Comptes Rendus Biol. 2017, 340, 339–348. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple Sequence Alignment Using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002, 2–3. [Google Scholar] [CrossRef]
- Hall, T.; Biosciences, I.; Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Schroeder, H.; Höltken, A.; Fladung, M. Chloroplast SNP-marker as powerful tool for differentiation of Populus species in reliable poplar breeding and barcoding approaches. BMC Proc. 2011, 5, P56. [Google Scholar] [CrossRef]
- Schroeder, H.; Hoeltken, A.; Fladung, M. Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers–essential for comprehensible and reliable poplar breeding. Plant Biol. 2012, 14, 374–381. [Google Scholar] [CrossRef]
- Kshirsagar, P.; Umdale, S.; Chavan, J.; Gaikwad, N. Molecular authentication of medicinal plant, Swertia chirayita and its adulterant species. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 101–107. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Liu, Z.; Luo, K.; Chen, S.; Chen, K. Identification of medical plants of 24 Ardisia species from China using the matK genetic marker. Pharmacogn. Mag. 2013, 9, 331. [Google Scholar]
- Song, J.; Yao, H.; Li, Y.; Li, X.; Lin, Y.; Liu, C.; Han, J.; Xie, C.; Chen, S. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J. Ethnopharmacol. 2009, 124, 434–439. [Google Scholar] [CrossRef]
- De Mattia, F.; Bruni, I.; Galimberti, A.; Cattaneo, F.; Casiraghi, M.; Labra, M. A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res. Int. 2011, 44, 693–702. [Google Scholar] [CrossRef]
- Kang, Y.; Deng, Z.; Zang, R.; Long, W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci. Rep. 2017, 7, 12564. [Google Scholar] [CrossRef]
- Cabelin, V.L.D.; Alejandro, G.J.D. Efficiency of matK, rbcL, trnH-psbA, and trnL-F (cpDNA) to molecularly authenticate Philippine ethnomedicinal Apocynaceae through DNA barcoding. Pharmacogn. Mag. 2016, 12, S384. [Google Scholar] [CrossRef]
- Bruni, I.; De Mattia, F.; Galimberti, A.; Galasso, G.; Banfi, E.; Casiraghi, M.; Labra, M. Identification of poisonous plants by DNA barcoding approach. Int. J. Leg. Med. 2010, 124, 595–603. [Google Scholar] [CrossRef]
- Georgolopoulos, G.; Parducci, L.; Drouzas, A.D. A short phylogenetically informative cpDNA fragment for the identification of Pinus species. Biochem. Syst. Ecol. 2016, 66, 166–172. [Google Scholar] [CrossRef]
- Horikawa, Y.; Mizuno-Tazuru, S.; Sugiyama, J. Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons. J. Wood Sci. 2015, 61, 251–261. [Google Scholar] [CrossRef]
- Dong, W.; Cheng, T.; Li, C.; Xu, C.; Long, P.; Chen, C.; Zhou, S. Discriminating plants using the DNA barcode rbcLb: An appraisal based on a large data set. Mol. Ecol. Resour. 2014, 14, 336–343. [Google Scholar] [CrossRef]
- Downie, S.R.; Katz-Downie, D.S.; Wolfe, K.H.; Calie, P.J.; Palmer, J.D. Structure and evolution of the largest chloroplast gene (ORF2280): Internal plasticity and multiple gene loss during angiosperm evolution. Curr. Genet. 1994, 25, 367–378. [Google Scholar] [CrossRef]
Group | Gene | Species Name | NCBI Accession Number |
---|---|---|---|
Group 1 | rbcL | P. echinata | AY724754, AY947435, JN854204, MZ424449, NC_065458 |
P. elliottii | AY724755, JN854202, NC_042788 | ||
P. ponderosa | AY497234, DQ353721, FJ899555, JN854171, JN854172, NC_067715 | ||
P. radiata | AY497250, JN854165, X58134 | ||
P. rigida | AY724757, JN854163, JQ512587, JQ512589, MZ424450, NC_065459, | ||
P. taeda | AF119177, AY724758, FJ899561, JQ512592, KC427273, KY964286 | ||
P. virginiana | AY947430, JN854155, JQ512596 | ||
ycf1b | P. echinata | KC157080, KC157180, JN854204, MZ424449, NC_065458 | |
P. elliottii | JN854202, KC157104, NC_042788 | ||
P. ponderosa | FJ899555, JN854171, JN854172, KC157087, KC157140, KC157195, KP089392, KP128671 | ||
P. radiata | JN854165, KC157129, | ||
P. rigida | JN854163, KC157079, KC157177, KP128673, KP205539, MZ424450, NC_065459, NC_067715, OL547484 | ||
P. taeda | FJ899561, KC157082, KC427273, KY964286 | ||
P. virginiana | JN854155, KC157196 | ||
trnH-psbA | P. radiata | FR832544, JN854165, KC157276, KC157332, KC157399, | |
P. taeda | FJ899561, KC157213, KC427273, KY964286, MF945991, MK895630 | ||
Group 2 | rbcL | P. densiflora | JN854210, MF990371, MT786135, MZ677091, NC_042394, NC_062639, NC_062640 |
P. sylvestris | JN854158, KR476379, MT787466, MT796488 | ||
P. thunbergii | D17510, JQ512594, MH612862, MW599991 | ||
ycf1b | P. densiflora | JN854210, KP089385, MF990371, MT786135, MZ677091, NC_042394, NC_062639, NC_062640 | |
P. sylvestris | JN854158, KP089414, KR476379, MT787466, MT796488 | ||
P. thunbergii | D17510, FJ899562, KP089381, MH612862, MW599991 | ||
Group 3 | rbcL | P. koraiensis | AB019797, AY228468, EF440596, JQ512578, JQ512579, NC_004677 |
P. strobus | AB019798, AF479880, AY497219, FJ899560, JQ512590, KP099650, NC_026302 | ||
ycf1b | P. koraiensis | AY228468, KP089410, KP128638, KP128639, NC_004677 | |
P. strobus | FJ899560, KP089389, KP099650, KP128655, KP128656, NC_026302 |
Group | Gene Name | Compared Sequence Size (Bases) | Number of Non-Identical Sites (Percentage of Non-Identical Bases) |
---|---|---|---|
1 | rbcL | 1325 | 32 (2.4%) |
ycf1b | 1057 | 83 (7.9%) | |
2 | rbcL | 1427 | 18 (1.3%) |
ycf1b | 1184 | 27 (2.3%) | |
3 | rbcL | 1302 | 7 (0.5%) |
ycf1b | 1256 | 22 (1.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, T.-J. Genetic Species Identification Using ycf1b, rbcL, and trnH-psbA in the Genus Pinus as a Complementary Method for Anatomical Wood Species Identification. Forests 2023, 14, 1095. https://doi.org/10.3390/f14061095
Kim M, Kim T-J. Genetic Species Identification Using ycf1b, rbcL, and trnH-psbA in the Genus Pinus as a Complementary Method for Anatomical Wood Species Identification. Forests. 2023; 14(6):1095. https://doi.org/10.3390/f14061095
Chicago/Turabian StyleKim, Minjun, and Tae-Jong Kim. 2023. "Genetic Species Identification Using ycf1b, rbcL, and trnH-psbA in the Genus Pinus as a Complementary Method for Anatomical Wood Species Identification" Forests 14, no. 6: 1095. https://doi.org/10.3390/f14061095
APA StyleKim, M., & Kim, T. -J. (2023). Genetic Species Identification Using ycf1b, rbcL, and trnH-psbA in the Genus Pinus as a Complementary Method for Anatomical Wood Species Identification. Forests, 14(6), 1095. https://doi.org/10.3390/f14061095