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Abstract

:

Accurate soil organic carbon (SOC) maps are helpful for guiding forestry production and management. Different ecological landscape areas within a large region may have different soil–landscape relationships, so models specifically for these areas may capture these relationships more accurately than the global model for the entire study area. The aim of this study was to investigate the role of zonal modelling in predicting forest SOC and to produce highly accurate forest SOC distribution maps. The prediction objects were SOC at five soil depths (0–20, 20–40, 40–60, 60–80, and 80–100 cm). First, the forest type map and soil texture class map were used to divide the relative homogeneous regions in Shaoguan City, Guangdong Province, China. Second, seven terrain variables derived from a 12.5-m digital elevation model (DEM) and five vegetation variables generated from 10-m Sentinel-2 remote sensing images were used as predictors to develop regional artificial neural network (ANN) models for each homogeneous region, as well as a global ANN model for the entire study area (1000 sample points). Finally, 10-fold cross-validation was used to assess the ANN prediction model performance, and independent validation was used to evaluate the produced forest SOC prediction maps (194 additional samples). The cross-validation results showed that the accuracies of the regional models were better than that of the global model. Independent validation results also showed that the precision (R2) of 0- to 100-cm forest SOC maps generated by forest type modelling had an improvement of 0.05–0.15, and that by soil texture class modelling had an improvement of 0.07–0.13 compared to the map generated by the global model. In conclusion, delineating relatively homogeneous regions via simple methods can improve prediction accuracy when undertaking soil predictions over large areas, especially with complex forest landscapes. In addition, SOC in the study area is generally more abundant in broadleaf forest and clay areas, with overall levels decreasing with soil depth. Accurate SOC distribution information can provide references for fertilization and planting. Plants with particularly high soil fertility requirements may perhaps be planted in broadleaf forests or clay areas, and plants with particularly developed roots may require furrow application of a small amount of SOC.
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1. Introduction


Forest ecosystems store about 70%–80% of terrestrial carbon, which is an important global carbon sink, as approximately half of all carbon is accumulated in mineral forest soil [1]. Adequate organic carbon content can enhance the water retention capacity of forest soil and improve soil structure and permeability, which are conducive to improving plant growth and protecting forest resources [2,3]. Therefore, the study of soil organic carbon (SOC) content, distribution, and variation can lead to a better understanding of the carbon cycle process of forest ecosystems and provide important references and support for forest resource protection, ecosystem management, and global climate change research [4].



Efficient techniques should be used to precisely measure variations in forest SOC within fields, which is important for field management. Based on Jenny’s [5] and Huggett’s [6] theoretical foundations, various models have been established to predict the spatial distribution of soil properties according to the relationships between target soil characteristics and environmental covariates [7,8]. The artificial neural network (ANN) model is well known for its efficient processing of a large amounts of data from different sources (with different noise levels and accuracies) and good generalizability [9]. Chagas et al. [10] and Taghizadeh-Mehrjardi et al. [11] showed that an ANN had the best performance when predicting SOC compared to other data mining techniques. In forest soil modelling, ANN models have become a popular tool in recent years.



Different geographical regions in a large range of areas may have different soil–landscape relationships, but many forest soil mapping efforts adopt a single model to achieve the prediction for the whole region [12]. It is difficult for only one model to completely construct multiple distinctive soil-environment relationships at the same time. Consequently, modelling specifically for these regions may more accurately capture these relationships [13]. Song et al. [14] argued that global modelling that considers all regions simultaneously may fail to simulate SOC at specific points, which may lead to unreasonable spatial predictions. If a region contains two or more different patterns of spatial variation, it seems wise to model these regions independently to maximize the use of the method [15]. Thus, dividing relatively homogeneous geographical units seems to be a promising prospect.



Similar soil-forming conditions develop similar soil properties [16]. Based on this assumption, a complex forest area can be divided into several relatively homogeneous units with less heterogeneity. Recently, the impact of regional segmentation on soil prediction maps has been recognized [15]. For example, Mulder et al. [17] and Ross et al. [13] both found that the spatial variation of an SOC map based on zoning modelling obtained higher prediction accuracy. Sun et al. [18] identified that the accuracy of models varied significantly between different geomorphic types. Peng et al. [19] divided a study region into upland and wetland areas. Most existing studies segment areas by topographic features and land types but ignore that basic soil data can provide valuable information for digital soil mapping (DSM). According to McBratney et al. [20], basic soil information can be used in DSM. Soil conservation capacity, nutrient cycle, pH, and biodiversity will be different under different vegetation types [21]. Soil texture has an impact on soil permeability, water retention capacity, and nutrient holding capacity [22]. The qualitative soil–landscape relationships of these data (forest class vector maps and texture maps) can be used as prior knowledge of soil variation, which may help to generate realistic soil maps conforming to soil formation conditions [23]. This basic information is usually used as covariates of models [17] but not as methods to segment regions. Therefore, this study was based on the information provided by the basic soil data for zoning, building a separate model for each region. In addition, almost all soil assessment studies that have applied zonal modelling approaches have only explored the soil surface layer and have not considered deeper soils. However, a large number of soil nutrients are also stored at deeper layers [23], and detailed and accurate information about deeper soils is scarce.



Moreover, simply mosaicking the region predictions can lead to boundary artifacts and discontinuous patterns [24]. This phenomenon is due to the method of dividing homogeneous zones, which leads to abrupt changes in the boundaries of different landscapes [25]. The apparent division between landscapes leads to a discontinuous distribution of SOC in space, which may result in some unreasonable predictions [26]. Therefore, it is more appropriate to use an ensemble approach to produce the SOC distribution pattern maps at a locale. The utility of ensemble modelling has been demonstrated by McBratney et al. [27] and Taghizadeh-Mehrjardi [11]. The usual research evaluates multiple models and then selects the best performing model. However, each model has its own strengths and weaknesses in any particular case. Integrating multiple training models is an alternative that helps to combine the knowledge and information obtained from different models, resulting in greater accuracy of prediction and classification [28].



To maximize the accuracy of forest SOC reasoning and reduce the interference of multiple factors, this study reconstructed the complex surface space under the guidance of a geographical analysis. This study aimed to improve the predictive ability of ANN models for SOC via zoning modelling. At the same time, the purpose was to provide high-precision SOC distribution maps for forest management. The main objectives of this study were to: (1) segment the study area into several relatively independent soil prediction regions based on forest type maps and soil texture maps; (2) develop the global ANN model based on the entire study area and regional ANN models based on each subregion for the 0- to 100-cm forest SOC; and (3) compare these two modelling methods and use an ensemble approach to produce the study area forest SOC map.




2. Materials and Methods


2.1. Study Area and Soil Data


Covering an area of 18,400 km2, Shaoguan City (23°53′–25°31′ N, 112°53′–114°45′ E) is the second largest city in Guangdong Province, China (Figure 1). With 74.46% forest coverage, Shaoguan is a key forest area in China and the base of the timber forests and bamboo fields in Guangdong. The mean annual temperature is approximately 21 °C, the average annual rainfall is about 1700 mm, the summers are hot and humid, and the winters are warm and dry [29]. The topography mainly consists of mountains and hills, with higher elevations in the north and lower elevations in the south. The stratigraphic development is basically complete, but the various rock types are scattered. The rock types are mainly glutenite, sandstone, metamorphic rock, granite, and limestone. The soil texture in the study area mainly consists of clay, clay loam, loam, and sandy loam. Overall, the forest type and soil texture class in Shaoguan are representative, which is an important reference value for zoning modelling.



Soil profiles (n = 1194) were collected by the 2020 Forest Soil Survey Project of the Guangdong Academy of Forestry Sciences (Figure 1). The sampling points were set by combining a thematic distribution with a spatial random distribution to ensure that all environmental gradient changes and major forest types were covered. A 1-m-deep soil pit was dug at each sampling site. If the profile had no record before the 1-m depth, the soil profile was excavated down to the parent material horizon. The soil was sampled at fixed depth increments of 0–20, 20–40, 40–60, 60–80, and 80–100 cm. At each depth, no less than 500 g of soil was collected and taken back to the laboratory, where it was air dried, ground, sieved (2 mm), and stored in glass bottles for chemical analysis. SOC was determined by the potassium dichromate oxidation external heating method [30].




2.2. Environmental Variables


2.2.1. Model Covariates


The 12 covariates that mainly represent soil formation were derived from the 12.5-m digital elevation model (DEM) and the 10-m Sentinel-2 satellite images (Table 1). The DEM image used in this study was obtained from the NASA Earth Science Data website (https://nasadaacs.eos.nasa.gov/ (accessed on 15 June 2019)) and was resampled to 10-m raster using ArcGIS v10.7.1 software of Environmental Systems Research Institute (Redlands, CA, USA). Seven topographical variables—slope, aspect, topographical position index (TPI), topographic wetness index (TWI), flow accumulation (FA), soil terrain factor (STF), and stream power index (SPI)—were derived from the resampled DEM. Terrain affects the movement of water, including the transportation and deposition of sediment, so the size of these terrain variables represents the soil retention capacity [31,32,33].



The clearest multispectral remote sensing image covering the study area came from eight Level-1C cloudless images from Sentinel-2 on the Copernicus data-sharing website of the European Space Agency (https://scihub.copernicus.eu/ (accessed on 20 September 2021)). Then, we used the SNAP v9.0.0 software of European Space Agency (Paris, France) Sen2cor plug-in provided by the European Space Agency to perform atmospheric correction on the original Level-1C image, thus obtaining L2A image data. Moreover, the images were resampled to 10-m resolution and converted into the ENVI format for export. In ENVI v5.6.3 software of Exelis Visual Information Solutions (Boulder, CO, USA), all bands except 2, 3, 4, and 8 were removed, and only these four bands were retained to generate images. This paper also used the mathematical function of ENVI v5.6.3 to extract five vegetation indices: normalized difference vegetation index (NDVI), differential vegetation index (DVI), ratio vegetation index (RVI), reformed difference vegetation index (RDVI), and enhanced vegetation index (EVI). These combinations (vegetation indices) are simple and effective indicators to detect vegetation growth status and vegetation coverage, and they can also eliminate some radiation errors [34,35].




2.2.2. Zoning Method


Two methods were used for region segmentation (Figure 2). First, the study area was segmented into broad-leaved forest, coniferous forest, and mixed coniferous and broad-leaved forests according to the forest type vector map provided by the National Forestry and Grassland Science Data Center of China (http://www.forestdata.cn/ (accessed on 6 March 2019)). Second, based on the 250-m T_USDA_TEX (0–30 cm) and S_USDA_TEX (30–100 cm) maps provided by the World Soil Database (https://www.fao.org/home/en/ (accessed on 15 February 2023)), the upper soil texture (0–40 cm) of the study area was segmented into clay and sandy loam, and the deep soil texture (40–100 cm) was classified as clay and clay loam.





2.3. Prediction Technique


2.3.1. ANN Model Structure and Training


ANNs can easily and accurately establish complex nonlinear relationships between independent and dependent variables, as well as manage incomplete, noisy, and ambiguous data without extensive data processing. An ANN consists of the input layer, hidden layer, and output layer, and the basic units of the network are nodes (also called neurons), equivalent to biological neurons. The nodes in the input layer disperse all the prediction variables to each node in the hidden layer. Then, the hidden layer nodes realize the nonlinear transformation of information through the activation function (Sigmoid). Finally, the output layer nodes accept the output results of the hidden layer and calculate the errors. The ANN updates the network by back-transferring the errors. The process of information traversing from the input layer to the output layer (forward propagation) and from the output layer to the input layer (back propagation) is a training loop.



Ten-fold cross-validation was implemented to train the model. The training set was used to calculate the gradient and update the network weight and deviation, and the validation set was used to stop the network operation in advance. The error of the training set decreased with increasing iterations, and the verification error also decreased gradually at the beginning of training. However, if the network started to overfit, the error on the verification set began to increase. Therefore, the early stop technique was used to avoid network overfitting by stopping training when the training error decreased, but the independent verification error increased.




2.3.2. Screening Model


Including all covariates in the model may increase the uncertainty of the model [36]. For this study, the covariates were entered into the model in combinations of 1 to 12 variables (   C  12  1     ,   C    12  2     ,   C    12  3     ,   C    12  4     ,   C    12  5     ,   C    12  6     ,   C    12  7     ,   C    12  8     ,   C    12  9     ,   C    12   10      ,   C    12   11        and   C    12   12    ). There were 4095 combinations of 12 variables, corresponding to 4095 ANN models. The optimal model was selected based on the accuracy indices after 10-fold cross-validation of the 4095 ANN models.





2.4. Mapping Method


To solve the problem of discontinuity in the prediction map due to the simple mosaic, this study referred to the methods used by Song et al. [14] and Brungard et al. [37] and utilized ensemble learning to produce the final predicted SOC maps of the entire area. The specific calculation is as follows:


   f  f i n a l      = k   1       f   f  +  k 2       f   t     + k   3       f   g   



(1)




where    f f    and    f t    are the zoning predictions maps by forest type and soil texture class, respectively;    f g    is the prediction map for the global model (entire study area); and k1, k2, and k3 are the coefficients of the three modelling methods. The values of    k 1   ,    k 2    and    k 3    were set by comparing the performances of the three models (Table 2). This research specified that one model significantly outperformed the others when the difference between the R2 values of the two models was >5%.




2.5. Accuracy Metrics


Two validation methods were used to evaluate the ANN model: 10-fold cross-validation of the global and regional models and independent validation of the forest SOC maps generated by the different methods based on the extra 194 samples. Three precision indices were used for the validation. Root mean square error (RMSE) is a measure of the model’s prediction error. R2 is a measure of the goodness of fit of the model. Relative overall accuracy (ROA) is a metric for the prediction accuracy of the model [38]. The specific formulas were as follows:


  R M S E =       ∑    i = 1   n       Y i     − X   i     2   n     



(2)






   R 2  =     ∑    i = 1   n       ( X   i  −  Y i  )  2      ∑    i = 1   n       ( X   i    −    Y i   ¯  )  2     



(3)






  R O A =     ∑   i = 1  n         1   if   abs       Y i    −  X i     X i         ×   100   <   T         0   else         n   ×   100   



(4)




where    Y I    is the predicted value,  I  is the measured value, n is number of samples,      I i   ¯    is the mean of the model predictions, and T is the accuracy threshold (e.g., 10 for 10% in this study), determined based on the target to fit the model.




2.6. Statistical Analysis


The ANN predictive method was implemented with Matlab v9.7 of MathWorks (Natick, MA, USA). R v4.1.1 of R Core Team (Vienna, Austria) was used for statistical analysis. In detail, the normality of the SOC data for the five soil layers was determined according to the Shapiro–Wilk test at ≥0.9, and if it was not satisfied, log transformation was performed. Differences in SOC among three forest types were tested by ANOVA with Duncan’s multiple comparison test. The difference in SOC between the two texture classes was tested using the t-test. Soil mapping was performed with ArcGIS software, version 10.7.





3. Results


3.1. Exploratory Data Analysis


A visual representation of the sample zoning shows that each homogeneous region had a different sample size (Figure 3a), but the sampling densities were similar (0.08–0.09 km2). The average level of forest SOC showed a general decreasing trend in variation from 0 to 100 cm (Figure 3b). There were significant differences in forest SOC between the soil layers except for those at 60–80 cm and 80–100 cm. SOC content varied from 0.09 to 93.13 g kg−1. For the zoning method according to forest type, the SOC of different forest types was significantly different except at depths of 60–80 cm and 80–100 cm (Table S1). For the zoning measure of soil texture type, the SOC of each soil texture class was significantly different. This finding implies that the pedogenetic characteristics of these homogeneous zones were significantly different.




3.2. Descriptive Statistics of Prediction Accuracy


3.2.1. Accuracies of Global Models


This study first constructed the global ANN model (Table 3). Generally, adding more effective variables can gradually improve the accuracy of the model, but this improvement will not be sustained when the increased parameters exceed a certain number. When the seventh variable was added to the 0- to 20-cm ANN model, the RMSE value became larger, and the R2 and ROA became smaller. This outcome was not surprising because the accumulated error of the input variable itself would increase the uncertainty of the model to a certain extent, and this degree of uncertainty would lead to the deterioration of the model accuracy if it exceeded the improvement in the model accuracy. Consequently, the optimal model could be determined when increasing the number of variables in the model did not significantly improve the accuracy results.




3.2.2. Accuracies of Zone Modelling


The same screening method as above—screening the ANN model with as small as possible a value for RMSE and as large as possible values of R2 and ROA—was adopted to screen the optimal model. The optimal model accuracies of 0- to 100-cm SOC for different forest types in the study area showed RMSEs ranging from 13.99 to 50.51 g kg−1, R2 from 0.75 to 0.90, and ROAs from 65.44% to 82.41% (Table 4). The optimal model accuracy for 0- to 100-cm SOC of different soil texture classes indicated RMSEs ranging from 17.08 to 48.93 g kg−1, R2 from 0.71 to 0.82, and ROAs from 65.14% to 73.31% (Table 5). The model accuracies (RMSE, R2, and ROA) of the homogeneous regions were almost always greater than those of the global model (Table 3 vs. Table 4 and Table 5).



The 12 covariates all appeared in the optimal model, indicating that each of the selected terrain and vegetation variables were valid predictors. However, the optimal combinations of variables were different for different soil layers, and it may be that the drivers of dynamic local variation are different for different soil depths. Aspect and slope had the highest frequencies in the optimal combination of model variables, indicating that aspect and slope had greater influences on the spatial distribution of SOC.




3.2.3. Accuracies of the Covariate Models


To further demonstrate the necessity of zoning modelling, the categories for forest types and soil texture classes were entered into the global models as covariates (Table 6). The covariate combinations of some optimal models did not contain corresponding covariates. Furthermore, the accuracies of the models containing the corresponding covariates were not significantly improved compared to those of the original global models. For example, the ANN model containing the forest type covariate with the largest increase in R2 value was only 0.05 in the 0- to 20-cm soil layer.




3.2.4. Independent Verification


Both the regional and covariate models outperformed the global model in terms of accuracy after 10-fold cross-validation. However, we could not yet draw any conclusions because whether this outcome was the result of model overfitting due to the reduced sample size or the role of zoning was unknown. Therefore, further judgment was needed through independent validation (Figure 4). The covariate model seemed to have the highest RMSE and the lowest R2 and ROA, indicating that the results of the 10-fold cross-validation may be a case of overfitting. The independent validation accuracies of the regional models were higher rather than lower than those of the global models, indicating that the zonal approach improved the accuracy of the prediction maps, and this improvement overcame the overfitting due to the reduced sample size. Overall, the independent validation accuracy of both zoning methods deteriorated with soil depth. The R2 values for zoning by forest type were 0.61–0.78, representing an improvement of 0.05–0.15 compared to the global model, while the R2 values for zoning by soil texture class were 0.63–0.76, representing an improvement of 0.07–0.13 compared to the global model.





3.3. Digital Forest SOC Maps


In this study, different types of ANN models were used to predict and map SOC, some of which showed insignificant differences in performance. Ensemble learning is able to combine the advantages of each model and shows better performance than a single type of model. The ensemble coefficients of each soil layer are shown in Table S2. The independent validation accuracies (R2) of the five soil depth maps (Figure 5) produced by ensemble learning were 0.78, 0.74, 0.68, 0.65, and 0.66, respectively, which were slightly higher than the independent validation accuracies of the single model shown in Figure 4. The forest SOC prediction maps produced by the ensemble approach did not show significant discontinuities. The average forest SOC contents of the five soil layers in the study area were 21.17, 13.87, 12.43, 11.23, and 9.29 g kg−1, and the forest SOC content decreased with soil depth. The distribution pattern of SOC at 0–20 cm mainly showed a low content in the middle and high content in the surrounding area. The low value areas of 20–40 cm SOC were scattered throughout the study area, and the high value areas were mainly distributed in the eastern broadleaf forest localities. The low value areas of 40–60, 60–80, and 80–100 cm SOC were distributed throughout the study area, but the high value areas of 40–60 cm SOC were mainly distributed in the north, and the high value areas of 60–80 and 80–100 cm SOC were mainly distributed in the south. Overall, SOC was more abundant in broadleaf forests and clay areas. Referring to the classification standard of soil organic matter in the second soil survey of China, 1.724 was used as the conversion coefficient between SOC and organic matter [39]. In this study, the forest SOC in Shaoguan City was classified into six classes: very lacking (0–3.48 g kg−1), lacking (3.48–5.80 g kg−1), medium (5.80–11.60 g kg−1), rich (11.60–17.40 g kg−1), very rich (17.40–23.20 g kg−1), and extremely rich (>23.20 g kg−1) (Figure 6). The overall forest SOC of 0–40 cm was generally greater than the rich class, indicating that the vegetation with underdeveloped root systems of Shaoguan forest land was little constrained by SOC. Starting from the layer of 40–60 cm, SOC gradually transitioned to medium class with soil depth. The overall forest SOC at 80–100 cm was medium class.





4. Discussion


4.1. Performance of Zoning Modelling


This study focused on comparing global models, zonal models (two types) and covariate models (two types). Independent validation results showed that zonal modelling obtained the best predictive performance compared to both the global model and covariate models (forest type and soil texture were used as covariates). Compared with the global model, the accuracies (R2) of predicting 0- to 100-cm SOC by forest type was improved by 0.05–0.15, and that by soil texture classes was improved by 0.07–0.13. This outcome was due to the large variation in soil-forming characteristics in the study area; global modelling can only simulate the main characteristics of these complex correlations, which are not sufficient to simulate soil variations in different soil zones [14]. The prediction by zoning approach can suppress some of the interference of the complex soil–environment relationship.



The results of the multiple comparisons (see Table S1) also showed significant differences in SOC among different forest types and different soil texture classes in the study area, suggesting that SOC should be assessed separately for each area. In Belgium, Lettens et al. [40] divided their study area into 289 landscape units and predicted the SOC in each landscape unit. In France, Mulder et al. [17] segmented their study area into 10 soil landscape types and modelled regressions between SOC and environmental variables for each landscape. They found that categorical predictions at each soil landscape unit could better explain SOC heterogeneity. Uniform predictions of fields do not consider spatial variability, which is often not the most effective mapping strategy [41]. The accuracy of zoning modelling in this study was better than the accuracy of entering the zoning methods into the model as covariates. This finding further illustrates that it is necessary to explicitly model by each region rather than rely on covariates to capture the variability between regions. This conclusion is consistent with [37], who found that the accuracy of the global model did not change significantly when the zonal strategies were input as covariates.



It is worth noting that, after segmenting the area, the sample of each homogeneous area will be reduced relative to the global model, which can easily lead to overfitting. Lai et al. [42] and Sun et al. [18] also recognized that the sample size affects the accuracy of the model. Therefore, the 10-fold cross-validation method is not rigorous enough to judge whether the zoning method can improve the prediction; it needs to be further analyzed by combining those results with the independent validation results. If the improvement in model accuracy was entirely due to overfitting, then the regional model would possess poor generalizability, and the independent validation of the regional model would be lower than that of the global model [43]. Conversely, the higher independent validation proves that zonal modelling can indeed help the model to better simulate the SOC variation pattern. In fact, this improvement should be larger than the number obtained from the study because this improvement is the result of offsetting the negative effects of overfitting due to the reduced sample size. Thus, the actual R2 maximum predicted increase obtained by the zoning method in this study was larger than 0.15. Many studies of zonal models have focused on topsoil (0–30 cm). The maximum improvement in precision (R2) of our zonal model was smaller (0.07) than that of Wang et al. [24], probably because our validation sample points were 31 times more numerous than theirs. In addition, the present study obtained slightly higher zoning accuracy than other studies [14,18,44]. However, mapping accuracy varies with different landscape types, modelling methods, and sample sizes. Therefore, the findings in the literature regarding methods that perform better in a given domain cannot be generalized [18].



In addition, this study showed that there were differences in the predictive ability of the regional model at each SOC depth. The predicted ability of zoning by forest type and soil texture class decreased with soil depth. This finding may account for the inconsistent effectiveness of stands, texture, and soil-forming rocks at different soil depths. Ziche et al. [21] also concluded that vegetation has a greater impact on the upper soil layer and that the impact of vegetation on the soil is mainly influenced by its apoplast and roots, while deeper soils have less vegetation apoplast and roots. Jobbágy and Jackson [45] found that the effect of soil texture on SOC increased with increasing soil depth. The reason that this study did not yield better improvements in deeper soils may be that the differences in the effects of the two textures on SOC were not sufficiently pronounced, with no pronounced differences between the two soil textures (clay and clay loam) in the study area at 40–100 cm according to the US soil texture classification criteria [46], and more pronounced differences between the two soil textures (clay and sandy loam) at 0–40 cm. Therefore, more significant differences between homogeneous zones result in better zonal modelling results.




4.2. Predicted Distribution of Forest SOC Content


In supervised learning algorithms for machine learning, the goal is to train a stable model that performs well in all aspects. In practice, this goal is often not possible, and instead multiple models with better performance in some aspects are obtained [28]. However, an over-performing model may have overfitting problems, while multiple preferred models combined into one model are not prone to overfitting problems. Different but related competing models can be combined into one result that is at least as good as any individual result [47]. Ensemble learning may lead to better and more stable predictions. Case studies of soil mapping have typically used the best results based on model comparisons [44,48,49]. In contrast, we used ensemble learning to integrate predictions from a single ANN model. Our SOC maps were better than those from other regional SOC prediction studies [50,51,52,53,54].



The combined use of vegetation and topographic variables effectively tapped into the spatial variability of the soil. The spatial content of SOC in the study area gradually decreased with soil depth. Song et al. [14] and Zhang et al. [55] also found lower SOC content in deeper soil. Decomposing matter is generally concentrated in surface forest soils, and the high temperatures and precipitation encourage bacterial activity. These conditions increase the decomposition of organic matter, leading to the enrichment of forest soil SOC in the upper soil [21]. In terms of horizontal structure, the areas with higher SOC content were generally broadleaf forest areas with flatter terrain. This result arose from the combination of topography and tree species characteristics. Higher concentrations of complex secondary compounds, such as lignin and tannins, slow the decomposition rate so that decomposition occurs faster in broadleaf forests and slower in coniferous forests [56]. The higher degree of slope leads to higher rates of erosion, which increases with increasing rainfall. Hence, high slopes have a greater SOC loss because of the less developed soil profile and relatively thin soil layer [57,58]. In addition, aspect is also important for the spatial variation in the SOC. Sunny slopes generally have lower SOC content than shady slopes. Hydrological and solar conditions vary with aspect, leading to differences in vegetation composition and distribution patterns, in turn affecting SOC decomposition rates [59]. Clay particles can effectively increase SOC accumulation by hindering SOM decomposition, slowing the SOC renewal rate, and reducing SOC leaching through adsorption and aggregation [60,61]. Therefore, higher SOC content is usually found in the clay zone.



In short, due to the different spatial distributions of forest SOC content, both fertilization patterns and planting patterns should consider the local SOC content. In broadleaf forests and clay areas, it may be more appropriate to grow plants with higher soil fertility requirements due to higher SOC content. Fertilization patterns should also be different for plants with inconsistent root systems [62,63]. Plants with root systems mainly in the 0- to 40-cm soil layer do not need to be considered for SOC application, plants with root systems in the 40- to 80-cm range may need to be considered for a small amount of SOC furrow application in localized areas, and plants with root systems mainly below 80 cm need to be considered for a small amount of SOC furrow application in the entire study area. Therefore, it is important to know the three-dimensional variation in forest SOC to improve the fertilization efficiency and forest productivity.




4.3. Limitations


Although this study achieved better forest SOC content predictions based on the segmented region approach and ensemble learning, there are still some limitations. First, there may have been sampling and experimental errors in the data collection and laboratory analysis. Second, the method of segmenting homogeneous areas is based on vegetation type maps and soil texture maps, and the resolution of these qualitative maps was coarser than the target resolution (10 m), so the homogeneous areas segmented by this method may not be homogeneous enough. Therefore, it would be better to include quantitative environmental information in the segmentation process in the future. Third, some uncertainties in the prediction covariates were inevitably involved in the prediction process. For example, errors arose from the extraction of topographic variables from digital elevation models and vegetation variables from remotely sensed images. These uncertainties were indirectly propagated to the SOC content prediction maps. Finally, only the ANN model with the three-layer structure was used to explore the effect of partition modelling in this study. Deep-learning neural networks with multiple hidden layers and improved training algorithms or other soil models could also be considered in future soil mapping work.





5. Conclusions


In this study, two zonal modelling approaches and ensemble learning were used to predict the three-dimensional spatial distribution of depth-specific SOC over a large forest area. The forest type map and soil texture class map were utilized to divide the modelling area, resulting in several relatively homogeneous regions being modelled separately. This paper also compared the regional models with the global model (entire study area) and the covariate model (forest type and soil texture class as covariates), and the independent validation showed that the regional model had the best accuracy, while the covariate model had the worst generalization performance. The utility of regional modelling by forest type and soil texture class decreased with soil depth. The R2 for the regional model by forest type ranged from 0.61 to 0.78, which was an improvement of 0.05–0.15 compared to the global model, while the R2 values for the regional model by soil texture class varied from 0.63 to 0.76, which was an improvement of 0.07–0.13 compared to the global model. This outcome demonstrates that segmenting areas based on easily accessible soil information, such as forest type and soil texture, can efficiently improve the predictive power of the forest soil prediction model. In conclusion, the present study found zonal modelling to be promising for forest soil mapping and recommends further investigation of zonal modelling to extrapolate to larger areas.
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Figure 1. Location, digital elevation model and sample points of Shaoguan City, Guangdong Province. 
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Figure 2. Maps of forest types and soil texture classes of Shaoguan City, Guangdong Province. 
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Figure 3. Statistical analysis of samples: (a) 1194 forest samples from 10 administrative districts of Shaoguan were classified according to forest type and soil texture class; (b) content of forest SOC in different soil layers; different lower-case letters denote significant differences (p < 0.05) after Duncan’s multiple comparison test. 
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Figure 4. Independent validation accuracies of each prediction method. Different colours denote different soil layers. 
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Figure 5. Forest SOC prediction maps for each soil layer produced by the ensemble approach. 
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Figure 6. Forest SOC prediction class maps for each soil layer. 
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Table 1. Covariates used for modelling SOC.
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Type

	
Covariate

	
Abbr.

	
Resolution






	
DEM-derived terrain factors

	
Slope

	
Slope

	
12.5 m




	
Aspect

	
Aspect

	
12.5 m




	
Topographic position index

	
TPI

	
12.5 m




	
Topographic wetness index

	
TWI

	
12.5 m




	
Flow accumulation

	
FA

	
12.5 m




	
Soil terrain factor

	
STF

	
12.5 m




	
Stream power index

	
SPI

	
12.5 m




	
Sentinel-2-derived vegetation factors

	
Normalized difference vegetation index

	
NDVI

	
10 m




	
Differential vegetation index

	
DVI

	
10 m




	
Ratio vegetation index

	
RVI

	
10 m




	
Reformed difference vegetation index

	
RDVI

	
10 m




	
Enhanced vegetation index

	
EVI

	
10 m
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Table 2. The candidate values of k1,    k 2    and    k 3    with ensemble learning.






Table 2. The candidate values of k1,    k 2    and    k 3    with ensemble learning.





	K1
	K2
	K3
	Condition





	1
	0
	0
	ff outperformed both ft and fg



	0
	1
	0
	ft outperformed both ff and fg



	0
	0
	1
	fg outperformed both ff and ft



	1/2
	1/2
	0
	ff was similar to ft, and both ff and ft outperformed fg



	1/2
	0
	1/2
	ff was similar to fg, and both ff and fg outperformed ft



	0
	1/2
	1/2
	ft was similar to fg, and both ft and fg outperformed ff



	1/3
	1/3
	1/3
	all three models were similar to each other
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Table 3. Optimal variable combinations and 10-fold cross-validation accuracies of the global ANN model.
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Layer (cm)

	
Number a

	
RMSE (g kg−1)

	
R2

	
ROA (%)

	
Optimal Variable Combinations






	
0–20

	
    C  12  1    

	
131.81

	
0.22

	
18.34

	
Slope




	
    C  12  2    

	
111.89

	
0.30

	
22.98

	
Slope, NDVI




	
    C  12  3    

	
106.26

	
0.47

	
36.25

	
Slope, NDVI, SPI




	
    C  12  4    

	
88.41

	
0.50

	
39.08

	
Slope, NDVI, SPI, STF




	
    C  12  5    

	
75.36

	
0.59

	
45.36

	
Slope, NDVI, SPI, STF, Aspect




	
    C  12  6    

	
61.05

	
0.65

	
56.52

	
Slope, NDVI, SPI, STF, Aspect, EVI




	
    C  12  7    

	
66.56

	
0.60

	
51.36

	
Slope, NDVI, SPI, STF, Aspect, EVI, TWI




	
20–40

	
    C  12  7    

	
36.26

	
0.68

	
61.16

	
Aspect, Slope, STF, SPI, FA, DVI, NDVI




	
40–60

	
    C  12   10     

	
41.86

	
0.66

	
54.81

	
Slope, TWI, TPI, STF, SPI, FA, DVI, RDVI, NDVI, RVI




	
60–80

	
    C  12  8    

	
40.78

	
0.64

	
56.13

	
Aspect, Slope, STF, SPI, FA, EVI, DVI, NDVI




	
80–100

	
    C  12  9    

	
38.00

	
0.65

	
57.87

	
Aspect, Slope, TWI, TPI, STF, SPI, EVI, RDVI, RVI








Note: a The best combined variables were selected among all of combinations with the same number of variables based on the RMSE, R2, and ROA of the model. For example, the number of combinations with four variables is    C  12  6    = 924. The abbreviations for the variables are defined in Table 1.
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Table 4. Optimal variable combinations and 10-fold cross-validation accuracies of each zone divided by forest types.
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Forest Types

	
Layer (cm)

	
Number a

	
RMSE (g kg−1)

	
R2

	
ROA (%)

	
Optimal Variable Combinations






	
Broad-leaved

	
0–20

	
    C  12  9    

	
50.51

	
0.81

	
71.61

	
Aspect, Slope, TWI, TPI, STF, SPI, DVI, RDVI, RVI




	
20–40

	
    C  12   10     

	
15.24

	
0.86

	
74.35

	
Aspect, Slope, TPI, STF, SPI, FA, EVI, RDVI, NDVI, RVI




	
40–60

	
    C  12  9    

	
23.51

	
0.80

	
70.51

	
Aspect, Slope, TPI, STF, SPI, FA, EVI, RDVI, RVI




	
60–80

	
    C  12  9    

	
23.46

	
0.76

	
65.66

	
Aspect, Slope, TWI, TPI, SPI, EVI, DVI, NDVI, RVI




	
80–100

	
    C  12  5    

	
22.74

	
0.78

	
68.91

	
Aspect, Slope, TPI, RDVI, RVI




	
Coniferous

	
0–20

	
    C  12   10     

	
37.8

	
0.83

	
75.75

	
Aspect, Slope, TWI, TPI, STF, SPI, DVI, RDVI, NDVI, RVI




	
20–40

	
    C  12   10     

	
15.92

	
0.80

	
71.08

	
Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI, NDVI, RVI




	
40–60

	
    C  12  7    

	
24.99

	
0.76

	
66.55

	
Aspect, TWI, TPI, STF, SPI, DVI, RDVI




	
60–80

	
    C  12  7    

	
21.26

	
0.76

	
65.44

	
Aspect, STF, SPI, EVI, DVI, RDVI, NDVI




	
80–100

	
    C  12  9    

	
23.83

	
0.75

	
67.14

	
Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI, RVI




	
Mixed forest

	
0–20

	
    C  12  6    

	
30.50

	
0.87

	
77.15

	
Slope, STF, EVI, DVI, NDVI, RVI




	
20–40

	
    C  12  8    

	
13.99

	
0.90

	
82.41

	
Aspect, Slope, TPI, STF, SPI, EVI, RDVI, NDVI




	
40–60

	
    C  12  8    

	
20.66

	
0.84

	
72.01

	
Aspect, TWI, TPI, STF, SPI, FA, EVI, RDVI




	
60–80

	
    C  12  8    

	
29.15

	
0.80

	
69.12

	
Aspect, Slope, TPI, SPI, EVI, DVI, RDVI, NDVI




	
80–100

	
    C  12  7    

	
16.07

	
0.84

	
76.34

	
Slope, TPI, SPI, FA, DVI, RDVI, RVI








Note: a same as Table 3. The abbreviations for the variables are defined in Table 1.
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Table 5. Optimal variable combinations and 10-fold cross-validation accuracies of each zone divided by texture classes.
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Texture Classes

	
Layer (cm)

	
Number a

	
RMSE (g kg−1)

	
R2

	
ROA (%)

	
Optimal Variable Combinations






	
Upper texture

	

	

	

	

	

	




	
Clay

	
0–20

	
    C  12   10     

	
41.59

	
0.82

	
73.31

	
Slope, TPI, STF, SPI, FA, EVI, DVI, RDVI, NDVI, RVI




	
20–40

	
    C  12  7    

	
20.22

	
0.78

	
67.07

	
Aspect, TWI, TPI, SPI, EVI, DVI, RVI




	
Sandy loam

	
0–20

	
    C  12  7    

	
48.93

	
0.80

	
70.24

	
Aspect, Slope, TWI, STF, EVI, RDVI, RVI




	
20–40

	
    C  12   10     

	
24.95

	
0.74

	
66.28

	
Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI, DVI, RVI




	
Deep texture

	

	

	

	

	

	




	
Clay

	
40–60

	
    C  12  8    

	
20.72

	
0.81

	
72.55

	
Aspect, Slope, TPI, STF, SPI, FA, NDVI, RVI




	
60–80

	
    C  12   10     

	
19.95

	
0.78

	
70.89

	
Aspect, Slope, TWI, TPI, STF, SPI, EVI, DVI, RDVI, RVI




	
80–100

	
    C  12  7    

	
17.08

	
0.80

	
71.95

	
Aspect, Slope, TWI, TPI, STF, DVI, NDVI




	
Clay loam

	
40–60

	
    C  12  8    

	
24.30

	
0.77

	
67.44

	
Aspect, Slope, TWI, TPI, SPI, EVI, NDVI, RVI




	
60–80

	
    C  12   10     

	
25.94

	
0.71

	
65.14

	
Aspect, TWI, TPI, STF, FA, EVI, DVI, RDVI, NDVI, RVI




	
80–100

	
    C  12  7    

	
23.41

	
0.74

	
69.83

	
Aspect, TPI, STF, SPI, FA, EVI, RDVI








Note: a same as Table 3. The abbreviations for the variables are defined in Table 1.













[image: Table] 





Table 6. Optimal variable combinations and 10-fold cross-validation accuracies of covariate models.
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Partition Type

	
Layer (cm)

	
Number a

	
RMSE

(g kg−1)

	
R2

	
ROA (%)

	
Optimal Variable Combinations






	
Forest type

	
0–20

	
    C  13  9    

	
55.63

	
0.70

	
58.39

	
Slope, TPI, STF, SPI, EVI, DVI, RDVI, NDVI, Forest




	
20–40

	
    C  13   10     

	
32.26

	
0.71

	
64.81

	
Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI, DVI, Forest




	
40–60

	
    C  13   10     

	
38.75

	
0.70

	
57.96

	
Aspect, Slope, TPI, STF, SPI, FA, EVI, DVI, NDVI, Forest




	
60–80

	
    C  13  8    

	
37.20

	
0.67

	
57.38

	
Aspect, Slope, TPI, SPI, FA, EVI, NDVI, Forest




	
80–100

	
    C  13  9    

	
38.00

	
0.68

	
60.87

	
Aspect, Slope, TWI, TPI, STF, SPI, EVI, RDVI, RVI




	
Texture class

	
0–20

	
    C  13  9    

	
57.36

	
0.68

	
57.26

	
Slope, TWI, TPI, STF, FA, EVI, DVI, RVI, Texture




	
20–40

	
    C  13   11     

	
34.26

	
0.69

	
62.29

	
Aspect, TWI, TPI, STF, SPI, FA, EVI, DVI, RDVI, NDVI, Texture




	
40–60

	
    C  13   10     

	
39.86

	
0.70

	
57.74

	
Aspect, Slope, TWI, TPI, SPI, EVI, DVI, RDVI, NDVI, Texture




	
60–80

	
    C  12  8    

	
40.78

	
0.64

	
56.13

	
Aspect, Slope, STF, SPI, FA, EVI, DVI, NDVI




	
80–100

	
    C  13  9    

	
34.84

	
0.68

	
59.83

	
Slope, TWI, TPI, SPI, FA, DVI, RDVI, NDVI, Texture








Note: a same as Table 3. The abbreviations for the variables are defined in Table 1.
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