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Abstract: Accurate soil organic carbon (SOC) maps are helpful for guiding forestry production
and management. Different ecological landscape areas within a large region may have different
soil–landscape relationships, so models specifically for these areas may capture these relationships
more accurately than the global model for the entire study area. The aim of this study was to
investigate the role of zonal modelling in predicting forest SOC and to produce highly accurate forest
SOC distribution maps. The prediction objects were SOC at five soil depths (0–20, 20–40, 40–60,
60–80, and 80–100 cm). First, the forest type map and soil texture class map were used to divide
the relative homogeneous regions in Shaoguan City, Guangdong Province, China. Second, seven
terrain variables derived from a 12.5-m digital elevation model (DEM) and five vegetation variables
generated from 10-m Sentinel-2 remote sensing images were used as predictors to develop regional
artificial neural network (ANN) models for each homogeneous region, as well as a global ANN
model for the entire study area (1000 sample points). Finally, 10-fold cross-validation was used to
assess the ANN prediction model performance, and independent validation was used to evaluate the
produced forest SOC prediction maps (194 additional samples). The cross-validation results showed
that the accuracies of the regional models were better than that of the global model. Independent
validation results also showed that the precision (R2) of 0- to 100-cm forest SOC maps generated by
forest type modelling had an improvement of 0.05–0.15, and that by soil texture class modelling had
an improvement of 0.07–0.13 compared to the map generated by the global model. In conclusion,
delineating relatively homogeneous regions via simple methods can improve prediction accuracy
when undertaking soil predictions over large areas, especially with complex forest landscapes. In
addition, SOC in the study area is generally more abundant in broadleaf forest and clay areas,
with overall levels decreasing with soil depth. Accurate SOC distribution information can provide
references for fertilization and planting. Plants with particularly high soil fertility requirements may
perhaps be planted in broadleaf forests or clay areas, and plants with particularly developed roots
may require furrow application of a small amount of SOC.

Keywords: forest soil organic carbon; digital soil mapping; regionalization; zoning modelling; model
comparison; ANN model

1. Introduction

Forest ecosystems store about 70%–80% of terrestrial carbon, which is an important
global carbon sink, as approximately half of all carbon is accumulated in mineral forest
soil [1]. Adequate organic carbon content can enhance the water retention capacity of forest
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soil and improve soil structure and permeability, which are conducive to improving plant
growth and protecting forest resources [2,3]. Therefore, the study of soil organic carbon
(SOC) content, distribution, and variation can lead to a better understanding of the carbon
cycle process of forest ecosystems and provide important references and support for forest
resource protection, ecosystem management, and global climate change research [4].

Efficient techniques should be used to precisely measure variations in forest SOC
within fields, which is important for field management. Based on Jenny’s [5] and Huggett’s [6]
theoretical foundations, various models have been established to predict the spatial distri-
bution of soil properties according to the relationships between target soil characteristics
and environmental covariates [7,8]. The artificial neural network (ANN) model is well
known for its efficient processing of a large amounts of data from different sources (with
different noise levels and accuracies) and good generalizability [9]. Chagas et al. [10] and
Taghizadeh-Mehrjardi et al. [11] showed that an ANN had the best performance when
predicting SOC compared to other data mining techniques. In forest soil modelling, ANN
models have become a popular tool in recent years.

Different geographical regions in a large range of areas may have different soil–
landscape relationships, but many forest soil mapping efforts adopt a single model to
achieve the prediction for the whole region [12]. It is difficult for only one model to
completely construct multiple distinctive soil-environment relationships at the same time.
Consequently, modelling specifically for these regions may more accurately capture these
relationships [13]. Song et al. [14] argued that global modelling that considers all regions
simultaneously may fail to simulate SOC at specific points, which may lead to unrea-
sonable spatial predictions. If a region contains two or more different patterns of spatial
variation, it seems wise to model these regions independently to maximize the use of the
method [15]. Thus, dividing relatively homogeneous geographical units seems to be a
promising prospect.

Similar soil-forming conditions develop similar soil properties [16]. Based on this
assumption, a complex forest area can be divided into several relatively homogeneous units
with less heterogeneity. Recently, the impact of regional segmentation on soil prediction
maps has been recognized [15]. For example, Mulder et al. [17] and Ross et al. [13] both
found that the spatial variation of an SOC map based on zoning modelling obtained higher
prediction accuracy. Sun et al. [18] identified that the accuracy of models varied significantly
between different geomorphic types. Peng et al. [19] divided a study region into upland and
wetland areas. Most existing studies segment areas by topographic features and land types
but ignore that basic soil data can provide valuable information for digital soil mapping
(DSM). According to McBratney et al. [20], basic soil information can be used in DSM. Soil
conservation capacity, nutrient cycle, pH, and biodiversity will be different under different
vegetation types [21]. Soil texture has an impact on soil permeability, water retention
capacity, and nutrient holding capacity [22]. The qualitative soil–landscape relationships of
these data (forest class vector maps and texture maps) can be used as prior knowledge of
soil variation, which may help to generate realistic soil maps conforming to soil formation
conditions [23]. This basic information is usually used as covariates of models [17] but
not as methods to segment regions. Therefore, this study was based on the information
provided by the basic soil data for zoning, building a separate model for each region. In
addition, almost all soil assessment studies that have applied zonal modelling approaches
have only explored the soil surface layer and have not considered deeper soils. However,
a large number of soil nutrients are also stored at deeper layers [23], and detailed and
accurate information about deeper soils is scarce.

Moreover, simply mosaicking the region predictions can lead to boundary artifacts and
discontinuous patterns [24]. This phenomenon is due to the method of dividing homoge-
neous zones, which leads to abrupt changes in the boundaries of different landscapes [25].
The apparent division between landscapes leads to a discontinuous distribution of SOC
in space, which may result in some unreasonable predictions [26]. Therefore, it is more
appropriate to use an ensemble approach to produce the SOC distribution pattern maps at
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a locale. The utility of ensemble modelling has been demonstrated by McBratney et al. [27]
and Taghizadeh-Mehrjardi [11]. The usual research evaluates multiple models and then
selects the best performing model. However, each model has its own strengths and weak-
nesses in any particular case. Integrating multiple training models is an alternative that
helps to combine the knowledge and information obtained from different models, resulting
in greater accuracy of prediction and classification [28].

To maximize the accuracy of forest SOC reasoning and reduce the interference of
multiple factors, this study reconstructed the complex surface space under the guidance of
a geographical analysis. This study aimed to improve the predictive ability of ANN models
for SOC via zoning modelling. At the same time, the purpose was to provide high-precision
SOC distribution maps for forest management. The main objectives of this study were to:
(1) segment the study area into several relatively independent soil prediction regions based
on forest type maps and soil texture maps; (2) develop the global ANN model based on the
entire study area and regional ANN models based on each subregion for the 0- to 100-cm
forest SOC; and (3) compare these two modelling methods and use an ensemble approach
to produce the study area forest SOC map.

2. Materials and Methods
2.1. Study Area and Soil Data

Covering an area of 18,400 km2, Shaoguan City (23◦53′–25◦31′ N, 112◦53′–114◦45′ E)
is the second largest city in Guangdong Province, China (Figure 1). With 74.46% forest
coverage, Shaoguan is a key forest area in China and the base of the timber forests and
bamboo fields in Guangdong. The mean annual temperature is approximately 21 ◦C, the
average annual rainfall is about 1700 mm, the summers are hot and humid, and the winters
are warm and dry [29]. The topography mainly consists of mountains and hills, with higher
elevations in the north and lower elevations in the south. The stratigraphic development
is basically complete, but the various rock types are scattered. The rock types are mainly
glutenite, sandstone, metamorphic rock, granite, and limestone. The soil texture in the
study area mainly consists of clay, clay loam, loam, and sandy loam. Overall, the forest
type and soil texture class in Shaoguan are representative, which is an important reference
value for zoning modelling.

Figure 1. Location, digital elevation model and sample points of Shaoguan City, Guangdong Province.
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Soil profiles (n = 1194) were collected by the 2020 Forest Soil Survey Project of the
Guangdong Academy of Forestry Sciences (Figure 1). The sampling points were set by
combining a thematic distribution with a spatial random distribution to ensure that all
environmental gradient changes and major forest types were covered. A 1-m-deep soil pit
was dug at each sampling site. If the profile had no record before the 1-m depth, the soil
profile was excavated down to the parent material horizon. The soil was sampled at fixed
depth increments of 0–20, 20–40, 40–60, 60–80, and 80–100 cm. At each depth, no less than
500 g of soil was collected and taken back to the laboratory, where it was air dried, ground,
sieved (2 mm), and stored in glass bottles for chemical analysis. SOC was determined by
the potassium dichromate oxidation external heating method [30].

2.2. Environmental Variables
2.2.1. Model Covariates

The 12 covariates that mainly represent soil formation were derived from the 12.5-m
digital elevation model (DEM) and the 10-m Sentinel-2 satellite images (Table 1). The DEM
image used in this study was obtained from the NASA Earth Science Data website (https:
//nasadaacs.eos.nasa.gov/ (accessed on 15 June 2019)) and was resampled to 10-m raster
using ArcGIS v10.7.1 software of Environmental Systems Research Institute (Redlands, CA,
USA). Seven topographical variables—slope, aspect, topographical position index (TPI),
topographic wetness index (TWI), flow accumulation (FA), soil terrain factor (STF), and
stream power index (SPI)—were derived from the resampled DEM. Terrain affects the
movement of water, including the transportation and deposition of sediment, so the size of
these terrain variables represents the soil retention capacity [31–33].

Table 1. Covariates used for modelling SOC.

Type Covariate Abbr. Resolution

DEM-derived
terrain factors

Slope Slope 12.5 m
Aspect Aspect 12.5 m

Topographic position index TPI 12.5 m
Topographic wetness index TWI 12.5 m

Flow accumulation FA 12.5 m
Soil terrain factor STF 12.5 m

Stream power index SPI 12.5 m

Sentinel-2-derived
vegetation factors

Normalized difference vegetation index NDVI 10 m
Differential vegetation index DVI 10 m

Ratio vegetation index RVI 10 m
Reformed difference vegetation index RDVI 10 m

Enhanced vegetation index EVI 10 m

The clearest multispectral remote sensing image covering the study area came from
eight Level-1C cloudless images from Sentinel-2 on the Copernicus data-sharing website of
the European Space Agency (https://scihub.copernicus.eu/ (accessed on 20 September
2021)). Then, we used the SNAP v9.0.0 software of European Space Agency (Paris, France)
Sen2cor plug-in provided by the European Space Agency to perform atmospheric correction
on the original Level-1C image, thus obtaining L2A image data. Moreover, the images were
resampled to 10-m resolution and converted into the ENVI format for export. In ENVI
v5.6.3 software of Exelis Visual Information Solutions (Boulder, CO, USA), all bands except
2, 3, 4, and 8 were removed, and only these four bands were retained to generate images.
This paper also used the mathematical function of ENVI v5.6.3 to extract five vegetation
indices: normalized difference vegetation index (NDVI), differential vegetation index (DVI),
ratio vegetation index (RVI), reformed difference vegetation index (RDVI), and enhanced
vegetation index (EVI). These combinations (vegetation indices) are simple and effective
indicators to detect vegetation growth status and vegetation coverage, and they can also
eliminate some radiation errors [34,35].

https://nasadaacs.eos.nasa.gov/
https://nasadaacs.eos.nasa.gov/
https://scihub.copernicus.eu/
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2.2.2. Zoning Method

Two methods were used for region segmentation (Figure 2). First, the study area was
segmented into broad-leaved forest, coniferous forest, and mixed coniferous and broad-
leaved forests according to the forest type vector map provided by the National Forestry
and Grassland Science Data Center of China (http://www.forestdata.cn/ (accessed on 6
March 2019)). Second, based on the 250-m T_USDA_TEX (0–30 cm) and S_USDA_TEX
(30–100 cm) maps provided by the World Soil Database (https://www.fao.org/home/en/
(accessed on 15 February 2023)), the upper soil texture (0–40 cm) of the study area was
segmented into clay and sandy loam, and the deep soil texture (40–100 cm) was classified
as clay and clay loam.

Figure 2. Maps of forest types and soil texture classes of Shaoguan City, Guangdong Province.

2.3. Prediction Technique
2.3.1. ANN Model Structure and Training

ANNs can easily and accurately establish complex nonlinear relationships between
independent and dependent variables, as well as manage incomplete, noisy, and ambiguous
data without extensive data processing. An ANN consists of the input layer, hidden layer,
and output layer, and the basic units of the network are nodes (also called neurons),
equivalent to biological neurons. The nodes in the input layer disperse all the prediction
variables to each node in the hidden layer. Then, the hidden layer nodes realize the
nonlinear transformation of information through the activation function (Sigmoid). Finally,
the output layer nodes accept the output results of the hidden layer and calculate the errors.
The ANN updates the network by back-transferring the errors. The process of information
traversing from the input layer to the output layer (forward propagation) and from the
output layer to the input layer (back propagation) is a training loop.

Ten-fold cross-validation was implemented to train the model. The training set was
used to calculate the gradient and update the network weight and deviation, and the
validation set was used to stop the network operation in advance. The error of the training
set decreased with increasing iterations, and the verification error also decreased gradually
at the beginning of training. However, if the network started to overfit, the error on
the verification set began to increase. Therefore, the early stop technique was used to
avoid network overfitting by stopping training when the training error decreased, but the
independent verification error increased.

2.3.2. Screening Model

Including all covariates in the model may increase the uncertainty of the model [36].
For this study, the covariates were entered into the model in combinations of 1 to 12 variables
(C1

12, C2
12, C3

12, C4
12, C5

12, C6
12, C7

12, C8
12, C9

12, C10
12, C11

12 and C12
12). There were 4095 combinations

of 12 variables, corresponding to 4095 ANN models. The optimal model was selected based
on the accuracy indices after 10-fold cross-validation of the 4095 ANN models.

http://www.forestdata.cn/
https://www.fao.org/home/en/
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2.4. Mapping Method

To solve the problem of discontinuity in the prediction map due to the simple mosaic,
this study referred to the methods used by Song et al. [14] and Brungard et al. [37] and
utilized ensemble learning to produce the final predicted SOC maps of the entire area. The
specific calculation is as follows:

f f inal= k1 f f + k2 f t+k3 f g (1)

where f f and ft are the zoning predictions maps by forest type and soil texture class,
respectively; fg is the prediction map for the global model (entire study area); and k1, k2,
and k3 are the coefficients of the three modelling methods. The values of k1, k2 and k3 were
set by comparing the performances of the three models (Table 2). This research specified
that one model significantly outperformed the others when the difference between the
R2 values of the two models was >5%.

Table 2. The candidate values of k1, k2 and k3 with ensemble learning.

K1 K2 K3 Condition

1 0 0 ff outperformed both ft and fg
0 1 0 ft outperformed both ff and fg
0 0 1 fg outperformed both ff and ft

1/2 1/2 0 ff was similar to ft, and both ff and ft outperformed fg
1/2 0 1/2 ff was similar to fg, and both ff and fg outperformed ft

0 1/2 1/2 ft was similar to fg, and both ft and fg outperformed ff
1/3 1/3 1/3 all three models were similar to each other

2.5. Accuracy Metrics

Two validation methods were used to evaluate the ANN model: 10-fold cross-validation
of the global and regional models and independent validation of the forest SOC maps
generated by the different methods based on the extra 194 samples. Three precision indices
were used for the validation. Root mean square error (RMSE) is a measure of the model’s
prediction error. R2 is a measure of the goodness of fit of the model. Relative overall
accuracy (ROA) is a metric for the prediction accuracy of the model [38]. The specific
formulas were as follows:

RMSE =

√
∑n

i=1(Yi−Xi)
2

n
(2)

R2 =
∑n

i=1 (X i −Yi)
2

∑n
i=1 (X i −Yi

)2 (3)

ROA =

∑n
i=1

{
1 if abs

(
Yi −Xi

Xi

)
× 100 < T

0 else

}
n

× 100 (4)

where YI is the predicted value, I is the measured value, n is number of samples, Ii is the
mean of the model predictions, and T is the accuracy threshold (e.g., 10 for 10% in this
study), determined based on the target to fit the model.

2.6. Statistical Analysis

The ANN predictive method was implemented with Matlab v9.7 of MathWorks
(Natick, MA, USA). R v4.1.1 of R Core Team (Vienna, Austria) was used for statistical
analysis. In detail, the normality of the SOC data for the five soil layers was determined
according to the Shapiro–Wilk test at ≥0.9, and if it was not satisfied, log transformation
was performed. Differences in SOC among three forest types were tested by ANOVA with
Duncan’s multiple comparison test. The difference in SOC between the two texture classes
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was tested using the t-test. Soil mapping was performed with ArcGIS software, version
10.7.

3. Results
3.1. Exploratory Data Analysis

A visual representation of the sample zoning shows that each homogeneous region had
a different sample size (Figure 3a), but the sampling densities were similar (0.08–0.09 km2).
The average level of forest SOC showed a general decreasing trend in variation from 0 to
100 cm (Figure 3b). There were significant differences in forest SOC between the soil layers
except for those at 60–80 cm and 80–100 cm. SOC content varied from 0.09 to 93.13 g kg−1.
For the zoning method according to forest type, the SOC of different forest types was
significantly different except at depths of 60–80 cm and 80–100 cm (Table S1). For the
zoning measure of soil texture type, the SOC of each soil texture class was significantly
different. This finding implies that the pedogenetic characteristics of these homogeneous
zones were significantly different.

Figure 3. Statistical analysis of samples: (a) 1194 forest samples from 10 administrative districts of
Shaoguan were classified according to forest type and soil texture class; (b) content of forest SOC in
different soil layers; different lower-case letters denote significant differences (p < 0.05) after Duncan’s
multiple comparison test.

3.2. Descriptive Statistics of Prediction Accuracy
3.2.1. Accuracies of Global Models

This study first constructed the global ANN model (Table 3). Generally, adding more
effective variables can gradually improve the accuracy of the model, but this improvement
will not be sustained when the increased parameters exceed a certain number. When
the seventh variable was added to the 0- to 20-cm ANN model, the RMSE value became
larger, and the R2 and ROA became smaller. This outcome was not surprising because the
accumulated error of the input variable itself would increase the uncertainty of the model
to a certain extent, and this degree of uncertainty would lead to the deterioration of the
model accuracy if it exceeded the improvement in the model accuracy. Consequently, the
optimal model could be determined when increasing the number of variables in the model
did not significantly improve the accuracy results.
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Table 3. Optimal variable combinations and 10-fold cross-validation accuracies of the global ANN
model.

Layer (cm) Number a RMSE (g kg−1) R2 ROA (%) Optimal Variable Combinations

0–20

C1
12 131.81 0.22 18.34 Slope

C2
12 111.89 0.30 22.98 Slope, NDVI

C3
12 106.26 0.47 36.25 Slope, NDVI, SPI

C4
12 88.41 0.50 39.08 Slope, NDVI, SPI, STF

C5
12 75.36 0.59 45.36 Slope, NDVI, SPI, STF, Aspect

C6
12 61.05 0.65 56.52 Slope, NDVI, SPI, STF, Aspect, EVI

C7
12 66.56 0.60 51.36 Slope, NDVI, SPI, STF, Aspect, EVI, TWI

20–40 C7
12 36.26 0.68 61.16 Aspect, Slope, STF, SPI, FA, DVI, NDVI

40–60 C10
12 41.86 0.66 54.81 Slope, TWI, TPI, STF, SPI, FA, DVI, RDVI, NDVI, RVI

60–80 C8
12 40.78 0.64 56.13 Aspect, Slope, STF, SPI, FA, EVI, DVI, NDVI

80–100 C9
12 38.00 0.65 57.87 Aspect, Slope, TWI, TPI, STF, SPI, EVI, RDVI, RVI

Note: a The best combined variables were selected among all of combinations with the same number of variables
based on the RMSE, R2, and ROA of the model. For example, the number of combinations with four variables is
C6

12 = 924. The abbreviations for the variables are defined in Table 1.

3.2.2. Accuracies of Zone Modelling

The same screening method as above—screening the ANN model with as small as
possible a value for RMSE and as large as possible values of R2 and ROA—was adopted to
screen the optimal model. The optimal model accuracies of 0- to 100-cm SOC for different
forest types in the study area showed RMSEs ranging from 13.99 to 50.51 g kg−1, R2 from
0.75 to 0.90, and ROAs from 65.44% to 82.41% (Table 4). The optimal model accuracy for
0- to 100-cm SOC of different soil texture classes indicated RMSEs ranging from 17.08 to
48.93 g kg−1, R2 from 0.71 to 0.82, and ROAs from 65.14% to 73.31% (Table 5). The model
accuracies (RMSE, R2, and ROA) of the homogeneous regions were almost always greater
than those of the global model (Table 3 vs. Tables 4 and 5).

Table 4. Optimal variable combinations and 10-fold cross-validation accuracies of each zone divided
by forest types.

Forest Types Layer (cm) Number a RMSE (g kg−1) R2 ROA (%) Optimal Variable Combinations

Broad-leaved

0–20 C9
12 50.51 0.81 71.61 Aspect, Slope, TWI, TPI, STF, SPI, DVI, RDVI,

RVI
20–40 C10

12 15.24 0.86 74.35 Aspect, Slope, TPI, STF, SPI, FA, EVI, RDVI,
NDVI, RVI

40–60 C9
12 23.51 0.80 70.51 Aspect, Slope, TPI, STF, SPI, FA, EVI, RDVI,

RVI
60–80 C9

12 23.46 0.76 65.66 Aspect, Slope, TWI, TPI, SPI, EVI, DVI, NDVI,
RVI

80–100 C5
12 22.74 0.78 68.91 Aspect, Slope, TPI, RDVI, RVI

Coniferous

0–20 C10
12 37.8 0.83 75.75 Aspect, Slope, TWI, TPI, STF, SPI, DVI, RDVI,

NDVI, RVI
20–40 C10

12 15.92 0.80 71.08 Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI,
NDVI, RVI

40–60 C7
12 24.99 0.76 66.55 Aspect, TWI, TPI, STF, SPI, DVI, RDVI

60–80 C7
12 21.26 0.76 65.44 Aspect, STF, SPI, EVI, DVI, RDVI, NDVI

80–100 C9
12 23.83 0.75 67.14 Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI,

RVI

Mixed forest

0–20 C6
12 30.50 0.87 77.15 Slope, STF, EVI, DVI, NDVI, RVI

20–40 C8
12 13.99 0.90 82.41 Aspect, Slope, TPI, STF, SPI, EVI, RDVI, NDVI

40–60 C8
12 20.66 0.84 72.01 Aspect, TWI, TPI, STF, SPI, FA, EVI, RDVI

60–80 C8
12 29.15 0.80 69.12 Aspect, Slope, TPI, SPI, EVI, DVI, RDVI,

NDVI
80–100 C7

12 16.07 0.84 76.34 Slope, TPI, SPI, FA, DVI, RDVI, RVI

Note: a same as Table 3. The abbreviations for the variables are defined in Table 1.
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Table 5. Optimal variable combinations and 10-fold cross-validation accuracies of each zone divided
by texture classes.

Texture Classes Layer (cm) Number a RMSE (g kg−1) R2 ROA (%) Optimal Variable Combinations

Upper texture

Clay
0–20 C10

12 41.59 0.82 73.31 Slope, TPI, STF, SPI, FA, EVI, DVI,
RDVI, NDVI, RVI

20–40 C7
12 20.22 0.78 67.07 Aspect, TWI, TPI, SPI, EVI, DVI, RVI

Sandy loam
0–20 C7

12 48.93 0.80 70.24 Aspect, Slope, TWI, STF, EVI, RDVI,
RVI

20–40 C10
12 24.95 0.74 66.28 Aspect, Slope, TWI, TPI, STF, SPI, FA,

EVI, DVI, RVI

Deep texture

Clay

40–60 C8
12 20.72 0.81 72.55 Aspect, Slope, TPI, STF, SPI, FA,

NDVI, RVI
60–80 C10

12 19.95 0.78 70.89 Aspect, Slope, TWI, TPI, STF, SPI,
EVI, DVI, RDVI, RVI

80–100 C7
12 17.08 0.80 71.95 Aspect, Slope, TWI, TPI, STF, DVI,

NDVI

Clay loam

40–60 C8
12 24.30 0.77 67.44 Aspect, Slope, TWI, TPI, SPI, EVI,

NDVI, RVI
60–80 C10

12 25.94 0.71 65.14 Aspect, TWI, TPI, STF, FA, EVI, DVI,
RDVI, NDVI, RVI

80–100 C7
12 23.41 0.74 69.83 Aspect, TPI, STF, SPI, FA, EVI, RDVI

Note: a same as Table 3. The abbreviations for the variables are defined in Table 1.

The 12 covariates all appeared in the optimal model, indicating that each of the selected
terrain and vegetation variables were valid predictors. However, the optimal combinations
of variables were different for different soil layers, and it may be that the drivers of dynamic
local variation are different for different soil depths. Aspect and slope had the highest
frequencies in the optimal combination of model variables, indicating that aspect and slope
had greater influences on the spatial distribution of SOC.

3.2.3. Accuracies of the Covariate Models

To further demonstrate the necessity of zoning modelling, the categories for forest
types and soil texture classes were entered into the global models as covariates (Table 6). The
covariate combinations of some optimal models did not contain corresponding covariates.
Furthermore, the accuracies of the models containing the corresponding covariates were
not significantly improved compared to those of the original global models. For example,
the ANN model containing the forest type covariate with the largest increase in R2 value
was only 0.05 in the 0- to 20-cm soil layer.

Table 6. Optimal variable combinations and 10-fold cross-validation accuracies of covariate models.

Partition
Type Layer (cm) Number a RMSE

(g kg−1) R2 ROA (%) Optimal Variable Combinations

Forest type

0–20 C9
13 55.63 0.70 58.39 Slope, TPI, STF, SPI, EVI, DVI, RDVI, NDVI,

Forest
20–40 C10

13 32.26 0.71 64.81 Aspect, Slope, TWI, TPI, STF, SPI, FA, EVI, DVI,
Forest

40–60 C10
13 38.75 0.70 57.96 Aspect, Slope, TPI, STF, SPI, FA, EVI, DVI, NDVI,

Forest
60–80 C8

13 37.20 0.67 57.38 Aspect, Slope, TPI, SPI, FA, EVI, NDVI, Forest
80–100 C9

13 38.00 0.68 60.87 Aspect, Slope, TWI, TPI, STF, SPI, EVI, RDVI, RVI

Texture class

0–20 C9
13 57.36 0.68 57.26 Slope, TWI, TPI, STF, FA, EVI, DVI, RVI, Texture

20–40 C11
13 34.26 0.69 62.29 Aspect, TWI, TPI, STF, SPI, FA, EVI, DVI, RDVI,

NDVI, Texture
40–60 C10

13 39.86 0.70 57.74 Aspect, Slope, TWI, TPI, SPI, EVI, DVI, RDVI,
NDVI, Texture

60–80 C8
12 40.78 0.64 56.13 Aspect, Slope, STF, SPI, FA, EVI, DVI, NDVI

80–100 C9
13 34.84 0.68 59.83 Slope, TWI, TPI, SPI, FA, DVI, RDVI, NDVI,

Texture

Note: a same as Table 3. The abbreviations for the variables are defined in Table 1.
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3.2.4. Independent Verification

Both the regional and covariate models outperformed the global model in terms of
accuracy after 10-fold cross-validation. However, we could not yet draw any conclusions
because whether this outcome was the result of model overfitting due to the reduced
sample size or the role of zoning was unknown. Therefore, further judgment was needed
through independent validation (Figure 4). The covariate model seemed to have the highest
RMSE and the lowest R2 and ROA, indicating that the results of the 10-fold cross-validation
may be a case of overfitting. The independent validation accuracies of the regional models
were higher rather than lower than those of the global models, indicating that the zonal
approach improved the accuracy of the prediction maps, and this improvement overcame
the overfitting due to the reduced sample size. Overall, the independent validation accuracy
of both zoning methods deteriorated with soil depth. The R2 values for zoning by forest
type were 0.61–0.78, representing an improvement of 0.05–0.15 compared to the global
model, while the R2 values for zoning by soil texture class were 0.63–0.76, representing an
improvement of 0.07–0.13 compared to the global model.

Figure 4. Independent validation accuracies of each prediction method. Different colours denote
different soil layers.

3.3. Digital Forest SOC Maps

In this study, different types of ANN models were used to predict and map SOC, some
of which showed insignificant differences in performance. Ensemble learning is able to
combine the advantages of each model and shows better performance than a single type of
model. The ensemble coefficients of each soil layer are shown in Table S2. The independent
validation accuracies (R2) of the five soil depth maps (Figure 5) produced by ensemble
learning were 0.78, 0.74, 0.68, 0.65, and 0.66, respectively, which were slightly higher
than the independent validation accuracies of the single model shown in Figure 4. The
forest SOC prediction maps produced by the ensemble approach did not show significant
discontinuities. The average forest SOC contents of the five soil layers in the study area
were 21.17, 13.87, 12.43, 11.23, and 9.29 g kg−1, and the forest SOC content decreased with
soil depth. The distribution pattern of SOC at 0–20 cm mainly showed a low content in
the middle and high content in the surrounding area. The low value areas of 20–40 cm
SOC were scattered throughout the study area, and the high value areas were mainly
distributed in the eastern broadleaf forest localities. The low value areas of 40–60, 60–80,
and 80–100 cm SOC were distributed throughout the study area, but the high value areas of
40–60 cm SOC were mainly distributed in the north, and the high value areas of 60–80 and
80–100 cm SOC were mainly distributed in the south. Overall, SOC was more abundant
in broadleaf forests and clay areas. Referring to the classification standard of soil organic
matter in the second soil survey of China, 1.724 was used as the conversion coefficient



Forests 2023, 14, 1197 11 of 17

between SOC and organic matter [39]. In this study, the forest SOC in Shaoguan City was
classified into six classes: very lacking (0–3.48 g kg−1), lacking (3.48–5.80 g kg−1), medium
(5.80–11.60 g kg−1), rich (11.60–17.40 g kg−1), very rich (17.40–23.20 g kg−1), and extremely
rich (>23.20 g kg−1) (Figure 6). The overall forest SOC of 0–40 cm was generally greater
than the rich class, indicating that the vegetation with underdeveloped root systems of
Shaoguan forest land was little constrained by SOC. Starting from the layer of 40–60 cm,
SOC gradually transitioned to medium class with soil depth. The overall forest SOC at
80–100 cm was medium class.

Figure 5. Forest SOC prediction maps for each soil layer produced by the ensemble approach.
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Figure 6. Forest SOC prediction class maps for each soil layer.

4. Discussion
4.1. Performance of Zoning Modelling

This study focused on comparing global models, zonal models (two types) and co-
variate models (two types). Independent validation results showed that zonal modelling
obtained the best predictive performance compared to both the global model and covariate
models (forest type and soil texture were used as covariates). Compared with the global
model, the accuracies (R2) of predicting 0- to 100-cm SOC by forest type was improved
by 0.05–0.15, and that by soil texture classes was improved by 0.07–0.13. This outcome
was due to the large variation in soil-forming characteristics in the study area; global
modelling can only simulate the main characteristics of these complex correlations, which
are not sufficient to simulate soil variations in different soil zones [14]. The prediction by
zoning approach can suppress some of the interference of the complex soil–environment
relationship.
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The results of the multiple comparisons (see Table S1) also showed significant differ-
ences in SOC among different forest types and different soil texture classes in the study
area, suggesting that SOC should be assessed separately for each area. In Belgium, Lettens
et al. [40] divided their study area into 289 landscape units and predicted the SOC in
each landscape unit. In France, Mulder et al. [17] segmented their study area into 10 soil
landscape types and modelled regressions between SOC and environmental variables for
each landscape. They found that categorical predictions at each soil landscape unit could
better explain SOC heterogeneity. Uniform predictions of fields do not consider spatial
variability, which is often not the most effective mapping strategy [41]. The accuracy of
zoning modelling in this study was better than the accuracy of entering the zoning methods
into the model as covariates. This finding further illustrates that it is necessary to explicitly
model by each region rather than rely on covariates to capture the variability between
regions. This conclusion is consistent with [37], who found that the accuracy of the global
model did not change significantly when the zonal strategies were input as covariates.

It is worth noting that, after segmenting the area, the sample of each homogeneous
area will be reduced relative to the global model, which can easily lead to overfitting. Lai
et al. [42] and Sun et al. [18] also recognized that the sample size affects the accuracy of
the model. Therefore, the 10-fold cross-validation method is not rigorous enough to judge
whether the zoning method can improve the prediction; it needs to be further analyzed by
combining those results with the independent validation results. If the improvement in
model accuracy was entirely due to overfitting, then the regional model would possess poor
generalizability, and the independent validation of the regional model would be lower than
that of the global model [43]. Conversely, the higher independent validation proves that
zonal modelling can indeed help the model to better simulate the SOC variation pattern. In
fact, this improvement should be larger than the number obtained from the study because
this improvement is the result of offsetting the negative effects of overfitting due to the
reduced sample size. Thus, the actual R2 maximum predicted increase obtained by the
zoning method in this study was larger than 0.15. Many studies of zonal models have
focused on topsoil (0–30 cm). The maximum improvement in precision (R2) of our zonal
model was smaller (0.07) than that of Wang et al. [24], probably because our validation
sample points were 31 times more numerous than theirs. In addition, the present study
obtained slightly higher zoning accuracy than other studies [14,18,44]. However, mapping
accuracy varies with different landscape types, modelling methods, and sample sizes.
Therefore, the findings in the literature regarding methods that perform better in a given
domain cannot be generalized [18].

In addition, this study showed that there were differences in the predictive ability of
the regional model at each SOC depth. The predicted ability of zoning by forest type and
soil texture class decreased with soil depth. This finding may account for the inconsistent
effectiveness of stands, texture, and soil-forming rocks at different soil depths. Ziche
et al. [21] also concluded that vegetation has a greater impact on the upper soil layer and
that the impact of vegetation on the soil is mainly influenced by its apoplast and roots, while
deeper soils have less vegetation apoplast and roots. Jobbágy and Jackson [45] found that
the effect of soil texture on SOC increased with increasing soil depth. The reason that this
study did not yield better improvements in deeper soils may be that the differences in the
effects of the two textures on SOC were not sufficiently pronounced, with no pronounced
differences between the two soil textures (clay and clay loam) in the study area at 40–100 cm
according to the US soil texture classification criteria [46], and more pronounced differences
between the two soil textures (clay and sandy loam) at 0–40 cm. Therefore, more significant
differences between homogeneous zones result in better zonal modelling results.

4.2. Predicted Distribution of Forest SOC Content

In supervised learning algorithms for machine learning, the goal is to train a stable
model that performs well in all aspects. In practice, this goal is often not possible, and in-
stead multiple models with better performance in some aspects are obtained [28]. However,
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an over-performing model may have overfitting problems, while multiple preferred mod-
els combined into one model are not prone to overfitting problems. Different but related
competing models can be combined into one result that is at least as good as any individual
result [47]. Ensemble learning may lead to better and more stable predictions. Case studies
of soil mapping have typically used the best results based on model comparisons [44,48,49].
In contrast, we used ensemble learning to integrate predictions from a single ANN model.
Our SOC maps were better than those from other regional SOC prediction studies [50–54].

The combined use of vegetation and topographic variables effectively tapped into
the spatial variability of the soil. The spatial content of SOC in the study area gradually
decreased with soil depth. Song et al. [14] and Zhang et al. [55] also found lower SOC
content in deeper soil. Decomposing matter is generally concentrated in surface forest soils,
and the high temperatures and precipitation encourage bacterial activity. These conditions
increase the decomposition of organic matter, leading to the enrichment of forest soil SOC in
the upper soil [21]. In terms of horizontal structure, the areas with higher SOC content were
generally broadleaf forest areas with flatter terrain. This result arose from the combination
of topography and tree species characteristics. Higher concentrations of complex secondary
compounds, such as lignin and tannins, slow the decomposition rate so that decomposition
occurs faster in broadleaf forests and slower in coniferous forests [56]. The higher degree
of slope leads to higher rates of erosion, which increases with increasing rainfall. Hence,
high slopes have a greater SOC loss because of the less developed soil profile and relatively
thin soil layer [57,58]. In addition, aspect is also important for the spatial variation in the
SOC. Sunny slopes generally have lower SOC content than shady slopes. Hydrological
and solar conditions vary with aspect, leading to differences in vegetation composition
and distribution patterns, in turn affecting SOC decomposition rates [59]. Clay particles
can effectively increase SOC accumulation by hindering SOM decomposition, slowing the
SOC renewal rate, and reducing SOC leaching through adsorption and aggregation [60,61].
Therefore, higher SOC content is usually found in the clay zone.

In short, due to the different spatial distributions of forest SOC content, both fertiliza-
tion patterns and planting patterns should consider the local SOC content. In broadleaf
forests and clay areas, it may be more appropriate to grow plants with higher soil fertility
requirements due to higher SOC content. Fertilization patterns should also be different
for plants with inconsistent root systems [62,63]. Plants with root systems mainly in the
0- to 40-cm soil layer do not need to be considered for SOC application, plants with root
systems in the 40- to 80-cm range may need to be considered for a small amount of SOC
furrow application in localized areas, and plants with root systems mainly below 80 cm
need to be considered for a small amount of SOC furrow application in the entire study
area. Therefore, it is important to know the three-dimensional variation in forest SOC to
improve the fertilization efficiency and forest productivity.

4.3. Limitations

Although this study achieved better forest SOC content predictions based on the
segmented region approach and ensemble learning, there are still some limitations. First,
there may have been sampling and experimental errors in the data collection and laboratory
analysis. Second, the method of segmenting homogeneous areas is based on vegetation
type maps and soil texture maps, and the resolution of these qualitative maps was coarser
than the target resolution (10 m), so the homogeneous areas segmented by this method
may not be homogeneous enough. Therefore, it would be better to include quantitative
environmental information in the segmentation process in the future. Third, some uncer-
tainties in the prediction covariates were inevitably involved in the prediction process. For
example, errors arose from the extraction of topographic variables from digital elevation
models and vegetation variables from remotely sensed images. These uncertainties were
indirectly propagated to the SOC content prediction maps. Finally, only the ANN model
with the three-layer structure was used to explore the effect of partition modelling in this



Forests 2023, 14, 1197 15 of 17

study. Deep-learning neural networks with multiple hidden layers and improved training
algorithms or other soil models could also be considered in future soil mapping work.

5. Conclusions

In this study, two zonal modelling approaches and ensemble learning were used to
predict the three-dimensional spatial distribution of depth-specific SOC over a large forest
area. The forest type map and soil texture class map were utilized to divide the modelling
area, resulting in several relatively homogeneous regions being modelled separately. This
paper also compared the regional models with the global model (entire study area) and
the covariate model (forest type and soil texture class as covariates), and the independent
validation showed that the regional model had the best accuracy, while the covariate model
had the worst generalization performance. The utility of regional modelling by forest type
and soil texture class decreased with soil depth. The R2 for the regional model by forest
type ranged from 0.61 to 0.78, which was an improvement of 0.05–0.15 compared to the
global model, while the R2 values for the regional model by soil texture class varied from
0.63 to 0.76, which was an improvement of 0.07–0.13 compared to the global model. This
outcome demonstrates that segmenting areas based on easily accessible soil information,
such as forest type and soil texture, can efficiently improve the predictive power of the
forest soil prediction model. In conclusion, the present study found zonal modelling to be
promising for forest soil mapping and recommends further investigation of zonal modelling
to extrapolate to larger areas.
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of each soil layer.
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