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Abstract: To determine the spatial–temporal variations and the factors leading to vegetation recovery
in the loess hilly and gully region of China, this study analyzed a two-decade trend in the variation
of vegetation cover based on normalized difference vegetation index (NDVI) data from 1998 to 2019
using the Sen + MK test and Hurst index and determined the driving factors using the Geodetector
model. The vegetation index in the area was high in the southeast and low in the northwest, with
an overall increasing rate of 0.0108/year. The areas with significant improvement in vegetation
cover accounted for 95.14%, and the areas with persistent change accounted for 37.36%. Annual
precipitation is the most crucial factor driving the NDVI change, and potential evapotranspiration,
relative humidity, elevation, land use type, and vegetation type can also explain local variations. The
effect of compound factors is significantly greater than that of a single factor. The most effective
factors are annual precipitation, potential evapotranspiration, relative humidity and elevation, which
varied between 559.4–698.6 mm, 530.6–744.6 mm, 59%–62%, and 2006–2717 m, respectively. The land
use, vegetation, and soil types suitable for healthy vegetation growth are forest, coniferous forest,
and eluvial soil.

Keywords: NDVI; spatial–temporal variation; Geodetector model; loess hilly and gully region

1. Introduction

Vegetation in general is closely linked to soil, air, water, and human activity and is
critical to ecological balance [1–3]. The NDVI reflects a quantitative relationship between
leaf area index and effective photosynthetic energy. Thus, it is regularly used in ecosystem
monitoring research in vegetation cover [4–6], desertification, and other fields [7–9].

For quantitative analyses, the Geodetector model has been used to determine the
spatial variability of factors affecting vegetation cover and the interactions among factors
to find the driving factors for vegetation change [10]. For example, the driving forces of
vegetation change in the Three-River Headwater Region were quantified using Geodetector,
which showed that climatic factors had been the foremost drivers, with annual precipitation
having the greatest influence [11]. Geodetector was used to analyze the driving mechanisms
of vegetation cover changes in the Wumeng mountainous region, showing that temperature
and soil texture were the primary drivers due to spatial differentiation [12]. As for the
vegetation dynamic and its drivers in the Yellow River Valley, precipitation was more
important than temperature [13]. In addition, the responses of NDVI to land use, soil
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texture, and mean annual precipitation in the Heihe River Basin were shown to be non-
linear by applying the Geodetector method [10].

The Loess Plateau of China is surrounded by the Gobi Desert in the north, the Naga
Hills in the south, the Plateau of Tibet in the west, and the Taihang Mountains in the east
(Figure 1). The Yellow River runs down the Tibet Plateau and meanders across the Loess
Plateau, passing through the loess soil for half of its length, and eventually flows back
eastward toward the ocean. This region is a natural transitional zone in terms of terrain,
climate, vegetation, and agricultural activities. However, the ecology is fragile owing to
frequent natural disasters, such as soil erosion and dust storm attacks [14]. Especially in
the hilly and gully region on the central east quarter of the Loess Plateau, soil erosion and
land degradation restrict local economic development and ecological health [15].
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Figure 1. Location of the Loess Plateau.

The vegetation cover in most parts of the Loess Plateau is increasing, and the spatial
variation in soil moisture is positively correlated with vegetation cover [16]. Vegetation
cover has improved significantly in the central, southwestern, and northeastern parts of
the Loess Plateau and deteriorated significantly in the southeastern and northern parts,
with precipitation, vegetational form, soil texture, temperature, and land use being the
main drivers of change [17]. However, most studies have considered the Loess Plateau as a
whole, an approach that does not accurately reflect the local variation in such a large area.
For example, the conditions in the loess hilly and gully region are very different from the
rest of the area in terms of soil erosion potential and vegetation type. In addition, systematic
studies on climatic, non-climatic, and anthropogenic factors that affect vegetation cover
are lacking.

This study aims to (a) analyze the spatial–temporal variations of the loess hilly and
gully region based on NDVI data from 1998 to 2019; (b) study the past and future trends
of vegetation cover; and (c) inquire into the driving forces of vegetation change using the
Geodetector model.
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2. Materials and Methods
2.1. Study Area

The Loess Plateau, covering an area of 640,000 km2, is within the continental monsoon
region. It is divided into four ecological regions [18], and this study focuses on the loess
hilly and gully region shown in Figure 2 (107◦43′ E–114◦50′ E, 35◦03′ N–41◦09′ N), which
has a total area of 129,000 km2. The annual average precipitation (1998–2019) is 455 mm
and the annual average temperature is 7.2 ◦C. The terrain is hilly in the southeast and
low-lying in the northwest, with an average elevation of 388–2717 m. The topography is
complex, with dominant hills and mountains.
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Figure 2. Location of the study area.

2.2. Data

The NDVI data were derived using the maximum value composite method based
on the continuous time series of SPOT VEGETATION NDVI and were obtained from
the Resource and Environment Science and Data Center of China (http://www.resdc.cn
(accessed on 20 August 2022)). Twelve potential influencing factors (including climatic,
topographic, other environmental and human factors, as shown in Table 1) were chosen
to determine the factors causing the NDVI change using Geodetector as the measure [19].
Taking the data of 2015 as an example, the spatial variation of each driving factor is shown
in Figure 3. Because the independent input variables to Geodetector were discrete, this
study reclassified all the factors using ArcGIS and resampled them to the same resolution
of 1 × 1 km as used in the NDVI data. In addition, the coordinate system of the input data
was uniformly transformed into Clarke_1866_Albers.

http://www.resdc.cn
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Table 1. Selected potential influencing factors.

Code Detection Factors Unit Source

X1 Annual precipitation mm
http://data.tpdc.ac.cn (accessed on 20 August 2022)X2 Mean annual temperature ◦C

X3 Potential evapotranspiration mm

X4 Relative humidity % http://www.geodata.cn (accessed on 20 August 2022)

X5 Elevation m http://www.resdc.cn (accessed on 20 August 2022)

X6 Slope ◦ Extraction from digital elevation model (DEM)

X7 Land use type /

http://www.resdc.cn (accessed on 20 August 2022)
X8 Population density people/km2

X9 GDP 10,000 yuan/km2

X10 Vegetation type /
X11 Soil type /

X12 Aspect / Extraction from digital elevation model (DEM)
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2.3. Data Analysis Methods
2.3.1. Sen + MK Test

Sen’s trend analysis [20] was employed to analyze the vegetation trends and the MK
test can judge whether the tendency to change is significant and sensitive to outliers [21,22].
Usually, the two are combined to analyze changes in vegetation over a long time series.

http://data.tpdc.ac.cn
http://www.geodata.cn
http://www.resdc.cn
http://www.resdc.cn
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The slope β of Sen’s trend analysis can be calculated using:

β = median
(Nj − Ni

j− i

)
, 1998 ≤ i ≤ j ≤ 2019 (1)

where i and j are the number of time periods, Ni and Nj are the NDVI values of the
corresponding time periods, median is the median function; β greater than 0 signifies a
rising trend, β less than 0 signifies a decreasing trend, and β equal to 0 signifies no change.

The formulas for calculating the Z value of the MK test were described in detail by
Dinpashoh et al. [23]. If |Z| ≥ u (1−α⁄2) at a given significance level α, it indicates that the
values vary significantly. In this study, “α = 95%” is used; thus, u is equal to 1.96 (assuming
normal distribution). If |Z| ≥ 1.96, the NDVI is significantly changed, otherwise the NDVI
change is not significant.

2.3.2. Hurst Index

The Hurst index can describe what happens in the past and whether or not present
conditions have an impact on the future [24]. It is relatively reliable to calculate the
Hurst index using R/S analysis [25]. The calculated value of H reflects the stochastic and
persistent characteristics of the NDVI series [26]. When 0.5 < H < 1, it indicates that the
time series is a persistent series, that is, the future trend of NDVI is consistent with the
past, and the closer H is to 1, the stronger the persistence is. When H = 0.5, it indicates
that the time series is stochastic, that is, future changes in NDVI are uncertain and have no
long-term relevance. When 0 < H < 0.5, it indicates that the time series is anti-persistent,
that is, the future trend of NDVI is opposite to the past, and the closer H is to 0, the stronger
the anti-persistence is. The classification criteria are listed in Table 2.

Table 2. Classification criteria for the future evolution of NDVI trend.

β Z H The Description of NDVI Trend

>0
[1.96, ∞) (0, 0.5) Anti-persistent and significant improvement
[0, 1.96) (0, 0.5) Anti-persistent and insignificant improvement

<0
[1.96, ∞) (0, 0.5) Anti-persistent and significant degradation
[0, 1.96) (0, 0.5) Anti-persistent and insignificant degradation

>0
[1.96, ∞) (0.5, 1) Persistent and significant improvement
[0, 1.96) (0.5, 1) Persistent and insignificant improvement

<0
[1.96, ∞) (0.5, 1) Persistent and significant degradation
[0, 1.96) (0.5, 1) Persistent and insignificant degradation

=0 — — Remaining stable

— — 0.5 Uncertainty of change

2.3.3. Geodetector Model

Geodetector reveals the role of the driving factors behind dependent variables through
spatial heterogeneity detection [11]. It includes four principal elements: factor, interaction,
ecological, and risk detection [27].

Factor detection can detect the explainability of NDVI by the potential influencing
factors X. This was measured using the value of q varying between 0 and 1:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 , (2)

where h is the categorization of NDVI or X; Nh and N are the number of samples in h of a
certain driving factor and the entire area, respectively; σ2

h and σ2 are the variances of NDVI
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in h and the entire area, respectively. A larger q indicates a better explanation of the spatial
heterogeneity of X about NDVI and vice versa [28].

Interaction detection was used to assess interaction between two factors. The q values
of individual factors (q(X1) and q(X2)) were first calculated separately, and the value of
two-factor interaction (q(X1∩X2)) was calculated. The results are defined by comparing the
q value of individual factor and two-factor interaction as shown in Table 3.

Table 3. Categories of factor interactions.

Foundation Interaction

C = A + B Independent
C > A + B Non-linear enhancement

C < D Non-linear weakening
D < C < E Single-factor non-linear weakening

C > E Dual-factor enhancement
Note: A = q(X1), B = q(X2), C = q(X1∩X2), D = Min(q(X1), q(X2)), E = Max(q(X1), q(X2)).

Ecological detection can determine whether there are significant differences among
factors. Risk detection is used to determine a suitable range or type. That with a larger
NDVI value is the most appropriate range or type.

In this study, data from four typical years, 2000, 2005, 2010, and 2015, were used in the
Geodetector model.

2.3.4. Selection and Pre-Processing of Indicators

Twelve factors were chosen and discretely classified using the natural intermittent
point grading method (Table 1). Annual precipitation, potential evapotranspiration, eleva-
tion, population density, and GDP were classified into nine categories, and annual mean
temperature, relative humidity, and slope were classified into seven categories. Land use,
vegetation, and soil types were classified based on the type. Aspect was classified into nine
categories. In addition, to reduce the calculation time and improve accuracy, the study
area was divided into 3 × 3 km grids, which resulted in a total of 13,949 centroid sampling
points. Attribute values of NDVI and the potential influencing factors were extracted from
each sampling point. Finally, the attribute values were inserted into the Geodetector to
process the data.

3. Results and Analysis
3.1. Spatial–Temporal Variation of NDVI

Based on relevant studies, the NDVI value was divided into classes I to V with the
values varying between 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1, respectively [29]. The
mean NDVI value for class I in the study area (Figure 4a) was 0.172, showing a highly
significant (p < 0.01) decreasing trend at a rate of 0.0012/year. The mean NDVI values of
class II (Figure 4b) and class IV (Figure 4d) showed a significant (p < 0.05) increasing trend,
with the rates of 0.0007/year and 0.0004/year, respectively. In contrast, the mean NDVI
values of class III (Figure 4c) and class V (Figure 4e) showed extremely significant (p < 0.01)
increasing trends, with the rates of 0.0020/year and 0.0031/year, respectively. Overall, as
shown in Figure 4f, the mean NDVI showed a highly significant (p < 0.01) increasing trend
with a rate of 0.0108/year, with a minimum of 0.3787 in 1999 and a maximum of 0.6567 in
2018. This indicates that the vegetation of the study area is improving.
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The spatial distribution of NDVI in 1998, 2010, and 2019 and the multi-year averages
are shown in Figure 5. Generally, the vegetation cover was improved, with the multi-year
average dominated by class III, accounting for 56.51%, and the vegetation cover was high
in the southeast and low in the northwest. The results showed that vegetation cover classes
IV and V were concentrated in the east part of Lvliang and the east and south parts of
Yan’an; class III appeared mostly in the west of Lvliang, the north of Yan’an, and the east
and south of Yulin; and classes I and II were mostly located in the west and north of Yulin.
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The area in classes I and II decreased greatly during 1998–2010 (Figure 6a). All these
distributions were transformed to higher classes, with 12.72% transforming from class II to
class III. In contrast, the area with classes IV and V increased greatly, mainly from lower
classes, with 13.62% transforming from class III to class IV and 4.44% transforming from
class IV to class V. During this period, the area where the vegetation cover remained stable
accounted for 64.64% and was mainly distributed in the west of Lvliang and the north of
Yan’an. The area with improved NDVI accounted for 32.18% and was mostly apparent in
the north of Yulin, the east and south of Lvliang and the southeast of Yan’an. In contrast,
the vegetation degradation area covers 3.18% and mostly appeared in the west of Datong.
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During 2010–2019 (Figure 6b), the area in classes II and III decreased significantly by
7.69% and 18.13%, respectively, mainly transforming to higher vegetation cover classes.
The conversion from class III to class IV accounted for a relatively large area (26.14%).
Meanwhile, the area in classes IV and V increased significantly. During this period, the
vegetation cover remained stable at 53.7%, mainly in the west of Yulin, east and south of
Yan’an, and northeast of Lvliang. The improved area occupied 43.68% and was mostly
apparent in northwestern Yan’an, eastern Yulin, western and eastern Datong and Lvliang.
The degraded area occupied 2.62% and was sporadically present in eastern Yan’an and
southeastern Lvliang. Generally, the trend of vegetation cover evolution is positive, which
is a trend that may be related to closing the mountains to grazing and returning farmland
to forest and grass in the study area of northern Shaanxi since 1999.

From 1998 to 2019, the biggest spatial and temporal variation of NDVI class V, which
was mainly distributed in the southeastern part of the study area, was transformed from
NDVI class III and class IV.

3.2. Past NDVI Trends

From 1998 to 2019, the NDVI trend in the study area ranged from −0.23 to 0.27
(Figure 7a), in which 98.56% showed a rising trend and only 1.44% showed a decreasing
trend. The decreasing area was mainly located in areas such as Yulin, Yan’an, and Lvliang,
which have seen relatively rapid urban development. According to the significance test
(Figure 7b), the NDVI values were improved significantly in 95.14% of the area, and 3.42%
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were improved insignificantly. The vegetation cover near the major urban sites in the
northwest and southeast showed significant or insignificant degradation, accounting for
0.84% and 0.4%, respectively, and the land use here mostly comprised construction sites and
unused land. Overall, compared to the degraded area, the improved area was much larger.

Figure 7. Spatial distribution of NDVI trend and significance.

3.3. Future NDVI Trends

As for the persistence of NDVI trends, there were relatively few areas with persis-
tent change, accounting for 37.36% (Figure 8). These areas were mainly concentrated in
western Yulin, northeastern Yan’an, and eastern Lvliang, with persistent and significant
improvement (35.25%) > persistent and insignificant improvement (1.30%) > persistent and
insignificant degradation (0.49%) > persistent and significant degradation (0.22%) > remain-
ing stable (0.10%). The regions with H values lower than 0.5, that is, the anti-persistence
change trend, were widely distributed, accounting for 62.64%, mainly in southwestern
Yan’an, eastern Yulin, western Lvliang, and Datong. This indicated that NDVI changes in
these regions were affected by natural and anthropogenic factors. Thus, vegetation growth
is not persistent and requires further strengthening of environmental protection work.
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3.4. Temporal Variation of Driving Factors

There was no change in elevation (X5), slope (X6), vegetation type (X10), soil type (X11),
or aspect (X12), so precipitation (X1), annual temperature (X2), potential evapotranspiration
(X3), relative humidity (X4), land use type (X7), population density (X8) and GDP (X9) are
shown in Figure 9.
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From 1998 to 2019, annual precipitation (X1) showed a significant increasing trend
(p < 0.05) at a rate of 3.508 mm/year and mean annual temperature (X2) showed a non-
significant increasing trend (p > 0.05) at a rate of 0.007 ◦C/year (Figure 9a). Both potential
evapotranspiration (X3) and relative humidity (X4) showed a non-significant decreasing
trend (p > 0.05) (Figure 9b). From 2000 to 2015, the area of cropland and unused land
decreased by 1471 km2 and 168 km2, respectively, the area of forest land and construction
land increased by 1083 km2 and 963 km2, respectively, and there were only slight changes
in the grassland and water areas (X7, Figure 9c). Population density (X8) and GDP (X9)
increased substantially (Figure 9d).
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3.5. Effects of Different Factors on the Spatial Variation of NDVI
3.5.1. Factor Detection

The q values obtained by factor detection are shown in Figure 10. All factors signifi-
cantly affected the NDVI (p < 0.01). The average q values were ranked as follows: annual
precipitation (X1) > relative humidity (X4) > vegetation type (X10) > potential evapotran-
spiration (X3) > land-use type (X7) > elevation (X5) > soil type (X11) > slope (X6) > mean
annual temperature (X2) > GDP (X9) > population density (X8) > aspect (X12). The q values
of X1, X4, and X10 were all greater than 0.3; thus, X1, X4, and X10 were key impacting
factors. The q values of elevation (X5), slope (X6), and aspect (X12) were less fluctuating in
typical years, with values ranging from 0.20–0.28, 0.14–0.16, and 0–0.01, respectively, mainly
because elevation, slope and aspect did not change much in the period. The q value of
land use type among human factors for NDVI was relatively high, ranging from 0.23–0.26.
Generally, the annual precipitation (climatic factors), vegetation type (other environmental
factors), and land use type (human factors) have a decisive influence on NDVI.
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3.5.2. Interaction Detection

Interaction detection shows that the influence of each driver interaction was sig-
nificantly greater than the independent effect, and its interaction showed dual-factor or
non-linear enhancement (Figure 11). Meteorological factors, such as annual precipitation
(X1) and relative humidity (X4), significantly influenced the NDVI values. Among the
interaction detection results, annual precipitation (X1) had the largest q value for interaction
with other factors, and the highest interaction was between relative humidity and annual
precipitation, with q reaching 0.62–0.72. Although the q value for the single-factor effect of
population density (X8) was only 0.02–0.08, its interaction value increased significantly up
to 0.18–0.73 when combined with other factors. The single-factor effect of aspect (X12) has
a q value of only 0–0.01, but when combined with annual precipitation (X1), the interaction
value can reach 0.36–0.55.
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3.5.3. Significant Differences among NDVI Drivers

The ecological detection results for four typical years (p < 0.05), 2000, 2005, 2010,
and 2015, were obtained based on the F-test (Figure 12). No significant differences were
observed between annual precipitation (X1) or aspect (X12) and other factors, and there
were significant differences between relative humidity (X4) and annual mean temperature
(X2) or potential evapotranspiration (X3). No significant differences were observed between
relative humidity and other factors. The relationships between slope (X6) and mean annual
temperature (X2), GDP (X9) and mean annual temperature (X2), vegetation type (X10) and
potential evapotranspiration (X3), land use type (X10) and elevation (X5), soil type (X11)
and slope (X6), population density (X8) and GDP (X9), and GDP (X9) and soil type (X11)
were significantly related only in some years.
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3.5.4. Appropriate Range or Type of Each NDVI Driver

Due to the small q values of mean annual temperature (X2), slope (X6), population
density (X8), and GDP (X9) and the uncertainty of the significance of ecological detection,
their impacts on NDVI were weak. The appropriate range or type of other indicators
were determined by risk detection using the t-test (p < 0.05) and are shown in Table 4
and Figure 11.

Table 4. Appropriate range or type of each indicator.

Factors Appropriate Range or Type Mean NDVI

annual precipitation (X1) 559.4–698.6 0.848
potential evapotranspiration (X3) 530.6–744.6 0.865

relative humidity (X4) 59–62 0.762
elevation (X5) 2006–2717 0.845

land use type (X7) forest 0.696
vegetation type (X10) coniferous forest 0.774

soil type (X11) eluvial soil 0.842

Among the climatic factors, the mean NDVI increased with increasing annual precipi-
tation (Figure 13a) and relative humidity (Figure 13c). When the annual precipitation is
559.4–698.6 mm, and the annual relative humidity is 59%–62%, the maximum NDVI reaches
0.848 and 0.762, respectively, indicating that higher precipitation and relative humidity
can promote vegetation growth. In contrast, the average NDVI first decreased and then
increased rapidly as potential evapotranspiration increased (Figure 13b) and reached a
maximum of 0.865 at the potential evapotranspiration of 530.6–744.6 mm.
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Among the topographic and other environmental factors, the average NDVI did not
change with an elevation of less than 1269 m. However, with an elevation greater than
1269 m, the NDVI tended to be greater with increased elevation (Figure 13d), and the
average NDVI reached the maximum (0.845) at an elevation of 2006–2717 m. Thus, a
higher elevation is more fit for vegetation growth. The vegetation type (Figure 13f) with
the highest NDVI was coniferous forest, and the soil type (Figure 13g) was eluvial soil.

Among the human factors, NDVI reached the maximum (0.696) when the land use type
(Figure 13e) was forest land, followed by 0.542 when it was cropland, and the minimum
value of 0.364 was reached when the land use type was unused land.

4. Discussion
4.1. Explanation for NDVI Spatial Distribution

The vegetation cover in the study area from 1998 to 2019 was dominated by class
III (0.4–0.6), with NDVI decreasing from southeast to northwest. The mean NDVI value
of the Loess Plateau from 1998 to 2019 was 0.5393 (Figure 14). The Loess Plateau can be
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divided into four ecological divisions [18], and analysis of NDVI values for each ecological
partition of the Loess Plateau revealed that the NDVI of the earth-rocky mountainous and
river valley plain region was the highest, with a multi-year NDVI mean value of 0.6719,
followed by the loess sorghum gully region. The NDVI of the study area was lower, with
a value of 0.5425. The NDVI values for each ecological partition showed a rising trend,
which is consistent with the pattern of the Loess Plateau recorded by Dong et al. [30].
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The NDVI value of the study area is high in the southeast and low in the northwest
because the climatic and topographic conditions in the southeast are more conducive to
vegetation growth. For example, annual precipitation, relative humidity, elevation, and soil
type are all in the favorable range or type for vegetation growth. In addition, the land use
type in the southeast is mainly forest, which makes the NDVI value in the southeast higher,
whereas the northwest is the opposite.

The degraded vegetation cover areas are mainly situated in the city of Yulin, Yan’an,
and Lvliang, which have seen relatively rapid urban development. These areas have large
population concentrations and large-scale urbanization. The latter is exemplified by the
“Bulldoze Mountains to Build New City” project in Yan’an in 2012, which eradicated local
vegetation and caused serious ecological and environmental concerns [31]. In addition,
vegetation degradation occurred on the northwestern side of Yulin near the sandy land
and agricultural irrigation region, which is related to the construction of agricultural water
irrigation facilities. This indicates that human activities can positively affect vegetation
cover, mainly through ecosystem recovery projects [32]. By contrast, human activities also
cause vegetation degeneration due to economic development and urban expansion [33].

4.2. Analysis of NDVI Drivers
4.2.1. Analysis of Land Use Drivers on NDVI

The study area is mainly occupied by sloping cropland, which is prone to soil ero-
sion [34]. In fact, it is one of the major soil-water-loss areas in China. Since 1999, it has
been a targeted area for forest and grassland restoration from cropland to woodland or
grassland. From 2000 to 2015, the conversions of land use types in the study area were more
frequent (Figure 15). A total of 3609 km2 of land use types were converted, accounting for
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2.80% of the total area. The conversion of cropland was the highest among other land use
types, with a total of 1767 km2 converted during the 15-year period, accounting for 48.96%
of the land use conversion area. The conversion of cropland to forest is the largest, with
an area of 739 km2, accounting for 41.82% of the area converted from cropland, followed
by the conversion to grassland, with 612 km2, accounting for 34.63% of the area converted
from cropland. It indicates that the various ecological restoration projects carried out in the
study area have had a significant effect.
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Figure 15. Land use transfer chord diagram for the study area from 2000 to 2015.

The mean NDVI values of different land use types for four typical years, 2000, 2005
2010, and 2015, are shown in Figure 16. Forest had the highest NDVI value with a mean
value of 0.64, followed by cropland with a mean value of 0.51, and the smallest NDVI value
was unused land with a mean value of 0.31. The NDVI values of cropland, forest, grassland,
and unused land all showed an increasing trend from 2000 to 2015.
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In general, there are some differences in NDVI values of different land use types,
and changes in land use types can affect changes in vegetation cover [35]. For example,
deforestation, overgrazing, and urban expansion can lead to a decrease in vegetation cover,
whereas rational land use can improve vegetation cover.

4.2.2. Analysis of Topography Drivers on NDVI

NDVI changed slightly in lower elevation areas. As altitude increased, the NDVI
showed a rapid increase, with the highest NDVI value at the highest elevation. Elevation
affects vegetation cover by changing the hydrothermal conditions [36]. Within a certain
altitude range, NDVI increases with an increase in altitude, whereas high elevations with
lower temperatures, poor soil quality, and undulating terrain can negatively impact vegeta-
tion growth [10,37]. However, the elevation of the study area ranged from 388 m to 2717 m,
with a mean value of 1238 m, which is relatively low. Therefore, the risk detection results
show that NDVI did not show a downward trend at higher elevations (Figure 13d).

The greater the slope, the easier soil is lost, and the water and nutrients are difficult to
maintain, which will lead to a lower vegetation cover. The different slope aspect results in
different intensity and duration of light received, the distribution of moisture, the texture,
thickness and fertility of the soil, and has a great influence on the growth and distribution
of vegetation. However, the q values of both slope and aspect obtained in this study were
small, which is similar to the studies of many previous scholars [21,28,30].

In addition to influencing environmental conditions such as meteorology, moisture
and soil, topographic factors also determine the extent and intensity of human activities,
thus affecting vegetation cover. This further shows that the effects of each factor are not
independent, and it is especially important to study the interaction of each factor.

4.2.3. Analysis of Climatic and Other Environmental Drivers on NDVI

Precipitation is the most important factor affecting vegetation cover in the study area.
This is consistent with previous studies showing that vegetation NDVI and precipitation
are well correlated in the Loess Plateau, with a significant one-month lag correlation
between growing season NDVI and precipitation [38]. In addition to precipitation, climatic
factors such as temperature and relative humidity also have important effects on vegetation
cover. However, the loess hilly and gully region is located in a semi-arid climate zone
with low precipitation and high evapotranspiration, resulting in insufficient moisture
for vegetation [39], and moisture conditions limit the effects of temperature and relative
humidity on vegetation cover.

Different vegetation types have different responses to soil hydrothermal conditions
due to differences in physical conditions. Risk detection showed that the highest mean
NDVI values were 0.774 and 0.842 for coniferous forest vegetation and eluvial soil types,
respectively. Coniferous forest and eluvial soil are concentrated in the southeast of the
region. Here, the elevation is higher, 1722–2717 m, the area is less disturbed by humans, and
the land use type is prioritized to forest. Unlike many other vegetation types, coniferous
forests have needle-shaped leaves, which reduce transpiration and are cold- and drought-
tolerant. Eluvial soil has high organic and moisture content, favoring the retention of
soil nutrients and vegetation growth. The use of water and heat by vegetation in more
arid areas depends largely on soil and vegetation types [40], which further explains the
study finding that the interaction of vegetation and soil types had the dominant impact
on vegetation.

Vegetation responds variously to changes in external factors under different environ-
mental conditions [41,42]. Specific vegetation reconstruction measures suitable for regional
conditions should be proposed for environmental recovery, considering regional vegetation
types, soil conditions, and water and heat conditions [43]. This study found that rapid
urbanization can cause damage to vegetation in the surrounding area. Therefore, the
construction of green infrastructure should be emphasized along with urban construction
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to alleviate the pressure of urban development on vegetation degradation, ensuring healthy
and sustainable regional development.

5. Conclusions

The spatial–temporal variations of NDVI in the loess hilly and gully region of the
Loess Plateau were analyzed, and the impacts of different potential factors on NDVI were
investigated. It can be concluded that:

1. The NDVI showed a fluctuating upward trend, with a rate of 0.0108/year and a
multi-year average of 0.542. The NDVI values in 98.56% of the study area increased,
whereas only 1.44% declined. The declining NDVI areas are mainly concentrated in
the cities of Yulin, Yan’an, and Lvliang, where urban development is relatively rapid.

2. The vegetation cover has improved significantly over the last 20 years in 95.14% of the
total area, which means that the study area’s ecological reconstruction was effective.
However, the percentage of persistent vegetation improvement was relatively low,
accounting for 37.36%.

3. The Geodetector model results show that annual precipitation and relative humidity
were the primary factors among climatic factors leading to vegetation improvement.
The influence of elevation is greater than that of slope and aspect among the topo-
graphic factors. Vegetation type had significant effects among other environmental
factors. For human factors, land use type was the major driver.

4. There was a dual-factor and non-linear enhancement interaction between the drivers
on NDVI, and the influence of the interaction was greater than the independent. The
favorable ranges of annual precipitation, potential evapotranspiration, and relative
humidity were 559.4–698.6 mm, 530.6–744.6 mm, and 59%–62%, respectively. The
suitable elevation range was 2006–2717 m. The suitable land use type was forest land;
the vegetation type was coniferous forest; and the soil type was eluvial soil.
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