The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions
Abstract
:1. Introduction
- Direct effects:
- (a)
- Removal of particulate matter (impaction) and gaseous pollution (ad/absorption) through the leaves;
- (b)
- Emission of volatile organic compounds (VOCs), called biogenic (BVOCs), that plants use for their communication and interaction with the surrounding environment [2]. BVOCs emitted by plants consist of isoprene, mono and sesquiterpenes, alcohols (mainly methanol), and other volatile oxygenated compounds (mainly acetaldehyde and acetone). BVOCs emissions depend on the intensity of the photosynthetically active radiation (PAR), the component of sunlight ranging from 400 to 700 nm, and leaf temperature;
- Indirect effects:
- (a)
- Modification of wind speed and turbulence, and consequently, the atmospheric dispersion conditions;
- (b)
- Modification of temperature (shadow, albedo) and humidity (evapotranspiration, de-sealing soil) that influence chemical reaction rates and formation of particulate matter.
2. Methodology
2.1. Models’ Configuration
2.2. Simulations Setup
2.3. Evaluation Approach
3. Results and Discussions
3.1. BVOC Emissions
3.2. Spatial and Temporal Variability of Air Concentrations and Depositions
3.2.1. Ozone (O3)
3.2.2. Nitrogen Dioxide (NO2)
3.2.3. Particulate Matter (PM10)
3.3. Pollutants’ Concentrations and Depositions in Relation to Land-Use Classes and Vegetation Fraction
3.4. Overall Discussion of Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to Plant Urban Trees? A Spatially Explicit Methodology to Explore Ecosystem Service Tradeoffs. Landsc. Urban Plan. 2017, 157, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Oxley, T.; Dore, A.J.; ApSimon, H.; Hall, J.; Kryza, M. Modelling Future Impacts of Air Pollution Using the Multi-Scale UK Integrated Assessment Model (UKIAM). Environ. Int. 2013, 61, 17–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of Forests in Ten Italian Metropolitan Cities: Air Quality Improvement by PM10 and O3 Removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Sabatino, S.D.; Pulvirenti, B. Air Pollution Abatement Performances of Green Infrastructure in Open Road and Built-up Street Canyon Environments—A Review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Karttunen, S.; Kurppa, M.; Auvinen, M.; Hellsten, A.; Järvi, L. Large-Eddy Simulation of the Optimal Street-Tree Layout for Pedestrian-Level Aerosol Particle Concentrations—A Case Study from a City-Boulevard. Atmos. Environ. X 2020, 6, 100073. [Google Scholar] [CrossRef]
- Khan, B.; Banzhaf, S.; Chan, E.C.; Forkel, R.; Kanani-Sühring, F.; Ketelsen, K.; Kurppa, M.; Maronga, B.; Mauder, M.; Raasch, S.; et al. Development of an Atmospheric Chemistry Model Coupled to the PALM Model System 6.0: Implementation and First Applications. Geosci. Model Dev. 2021, 14, 1171–1193. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Resler, J.; Krč, P.; Middel, A.; Krayenhoff, E.S.; Krüger, E. High-Fidelity Simulation of the Effects of Street Trees, Green Roofs and Green Walls on the Distribution of Thermal Exposure in Prague-Dejvice. Build. Environ. 2022, 223, 109484. [Google Scholar] [CrossRef]
- San Jose, R.; Perez-Camanyo, J.L. High-Resolution Impacts of Green Areas on Air Quality in Madrid. Air Qual. Atmos. Health 2023, 16, 37–48. [Google Scholar] [CrossRef]
- D’Isidoro, M.; Mircea, M.; Borge, R.; Finardi, S.; de la Paz, D.; Briganti, G.; Russo, F.; Cremona, G.; Villani, M.G.; Adani, M.; et al. The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 1: Evaluation of Vegetation Impact on Meteorological Conditions. Forests 2023, 14, 1235. [Google Scholar] [CrossRef]
- Mircea, M.; Ciancarella, L.; Briganti, G.; Calori, G.; Cappelletti, A.; Cionni, I.; Costa, M.; Cremona, G.; D’Isidoro, M.; Finardi, S.; et al. Assessment of the AMS-MINNI System Capabilities to Simulate Air Quality over Italy for the Calendar Year 2005. Atmos. Environ. 2014, 84, 178–188. [Google Scholar] [CrossRef]
- Mircea, M.; Grigoras, G.; D’Isidoro, M.; Righini, G.; Adani, M.; Briganti, G.; Ciancarella, L.; Cappelletti, A.; Calori, G.; Cionni, I.; et al. Impact of Grid Resolution on Aerosol Predictions: A Case Study over Italy. Aerosol Air Qual. Res. 2016, 16, 1253–1267. [Google Scholar] [CrossRef] [Green Version]
- Adani, M.; Piersanti, A.; Ciancarella, L.; D’Isidoro, M.; Villani, M.G.; Vitali, L. Preliminary Tests on the Sensitivity of the FORAIR_IT Air Quality Forecasting System to Different Meteorological Drivers. Atmosphere 2020, 11, 574. [Google Scholar] [CrossRef]
- D’Elia, I.; Briganti, G.; Vitali, L.; Piersanti, A.; Righini, G.; D’Isidoro, M.; Cappelletti, A.; Mircea, M.; Adani, M.; Zanini, G.; et al. Measured and Modelled Air Quality Trends in Italy over the Period 2003–2010. Atmos. Chem. Phys. 2021, 21, 10825–10849. [Google Scholar] [CrossRef]
- Saiz-Lopez, A.; Borge, R.; Notario, A.; Adame, J.A.; de la Paz, D.; Querol, X.; Artíñano, B.; Gómez-Moreno, F.J.; Cuevas, C.A. Unexpected Increase in the Oxidation Capacity of the Urban Atmosphere of Madrid, Spain. Sci. Rep. 2017, 7, 45956. [Google Scholar] [CrossRef] [Green Version]
- Borge, R.; Santiago, J.L.; de la Paz, D.; Martín, F.; Domingo, J.; Valdés, C.; Sánchez, B.; Rivas, E.; Rozas, M.T.; Lázaro, S.; et al. Application of a Short Term Air Quality Action Plan in Madrid (Spain) under a High-Pollution Episode—Part II: Assessment from Multi-Scale Modelling. Sci. Total Environ. 2018, 635, 1574–1584. [Google Scholar] [CrossRef]
- de la Paz, D.; de Andrés, J.M.; Narros, A.; Silibello, C.; Finardi, S.; Fares, S.; Tejero, L.; Borge, R.; Mircea, M. Assessment of Air Quality and Meteorological Changes Induced by Future Vegetation in Madrid. Forests 2022, 13, 690. [Google Scholar] [CrossRef]
- Ciccioli, P.; Silibello, C.; Finardi, S.; Pepe, N.; Ciccioli, P.; Rapparini, F.; Neri, L.; Fares, S.; Brilli, F.; Mircea, M.; et al. The Potential Impact of Biogenic Volatile Organic Compounds (BVOCs) from Terrestrial Vegetation on a Mediterranean Area Using Two Different Emission Models. Agric. For. Meteorol. 2023, 328, 109255. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.J. A Description of the Advanced Research Wrf Version 3; UCAR: Boulder, CO, USA, 2008. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.J.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research Wrf Model Version 4.1; UCAR: Boulder, CO, USA, 2019. [Google Scholar]
- ARIA/ARIANET. Emission Manager-Processing System for Model-Ready Emission Input-User’s Guide. R2013.19; ARIA/ARIANET: Milan, Italy, 2013; Available online: https://www.afs.enea.it/forecast/R2013.19-EmissionManager_manual.eng.pdf (accessed on 15 May 2023).
- Baek, B.H.; Seppanen, C. Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System (Version SMOKE User’s Documentation); 2018. Available online: https://www.cmascenter.org/smoke/ (accessed on 15 May 2023).
- Silibello, C.; Calori, G.; Brusasca, G.; Giudici, A.; Angelino, E.; Fossati, G.; Peroni, E.; Buganza, E. Modelling of PM10 Concentrations over Milano Urban Area Using Two Aerosol Modules. Environ. Model. Softw. 2008, 23, 333–343. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Carter, W.P.L. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to California Air Resources Board. In Final Report to California Air Resources Board. 2000. Available online: https://intra.engr.ucr.edu/~carter/pubs/s99doc.pdf (accessed on 15 May 2023).
- Emery, C.; Jung, J.; Koo, B.; Yarwood, G. Improvements to CAMx Snow Cover Treatments and Carbon Bond Chemical Mechanism for Winter Ozone; 2015. Available online: https://www.camx.com/files/udaq_snowchem_final_6aug15.pdf (accessed on 15 May 2023).
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) Model Aerosol Component 1. Model Description. J. Geophys. Res. 2003, 108, 2001JD001409. [Google Scholar] [CrossRef]
- Appel, K.W.; Pouliot, G.A.; Simon, H.; Sarwar, G.; Pye, H.O.T.; Napelenok, S.L.; Akhtar, F.; Roselle, S.J. Evaluation of Dust and Trace Metal Estimates from the Community Multiscale Air Quality (CMAQ) Model Version 5.0. Geosci. Model Dev. 2013, 6, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A Computationally Efficient Aerosol Thermodynamic Equilibrium Model for K+, Ca2+, Mg2+, NH4+, Na+, SO42−, NO3−, Cl−, H2O Aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the Formation of Secondary Organic Aerosol within a Comprehensive Air Quality Model System. J. Geophys. Res. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Murphy, B.N.; Xu, L.; Ng, N.L.; Carlton, A.G.; Guo, H.; Weber, R.; Vasilakos, P.; Appel, K.W.; Budisulistiorini, S.H.; et al. On the Implications of Aerosol Liquid Water and Phase\hack\newline Separation for Organic Aerosol Mass. Atmos. Chem. Phys. 2017, 17, 343–369. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.N.; Woody, M.C.; Jimenez, J.L.; Carlton, A.M.G.; Hayes, P.L.; Liu, S.; Ng, N.L.; Russell, L.M.; Setyan, A.; Xu, L.; et al. Semivolatile POA and Parameterized Total Combustion SOA in CMAQv5.2: Impacts on Source Strength and Partitioning. Atmos. Chem. Phys. 2017, 17, 11107–11133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.M.; Knipping, E.M.; Wexler, A.S.; Bhave, P.V.; Tonnesen, G.S. Size Distribution of Sea-Salt Emissions as a Function of Relative Humidity. Atmos. Environ. 2005, 39, 3373–3379. [Google Scholar] [CrossRef]
- Gantt, B.; Kelly, J.T.; Bash, J.O. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality (CMAQ) Model Version 5.0.2. Geosci. Model Dev. 2015, 8, 3733–3746. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Bessagnet, B.; Chin, M.; Menut, L. On the Contribution of Natural Aeolian Sources to Particulate Matter Concentrations in Europe: Testing Hypotheses with a Modelling Approach. Atmos. Environ. 2005, 39, 3291–3303. [Google Scholar] [CrossRef]
- Wesely, M.L. Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Pleim, J.; Ran, L. Surface Flux Modeling for Air Quality Applications. Atmosphere 2011, 2, 271–302. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.; Fagerli, H.; Jonson, J.E.; Tsyro, S.; Wind, P.; Tuovinen, J.P.; Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. PART I. Unified EMEP Model Description. In EMEP Report 1/2003; 2003. Available online: https://www.emep.int/publ/reports/2003/emep_report_1_part1_2003.pdf (accessed on 15 May 2023).
- Sarwar, G.; Gantt, B.; Schwede, D.; Foley, K.; Mathur, R.; Saiz-Lopez, A. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere. Environ. Sci. Technol. 2015, 49, 9203–9211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics from Air Pollution to Climate Change; Wiley-Interscience-John Wiley & Sons: New York, NY, USA, 1998; ISBN 978-0-471-17816-3. [Google Scholar]
- Fahey, K.M.; Carlton, A.G.; Pye, H.O.T.; Baek, J.; Hutzell, W.T.; Stanier, C.O.; Baker, K.R.; Appel, K.W.; Jaoui, M.; Offenberg, J.H. A Framework for Expanding Aqueous Chemistry in the Community Multiscale Air Quality (CMAQ) Model Version 5.1. Geosci. Model Dev. 2017, 10, 1587–1605. [Google Scholar] [CrossRef] [Green Version]
- Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Diamantakis, M.; Engelen, R.J.; Gaudel, A.; Inness, A.; et al. Tropospheric Chemistry in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2015, 8, 975–1003. [Google Scholar] [CrossRef] [Green Version]
- Mircea, M.; Bessagnet, B.; D’Isidoro, M.; Pirovano, G.; Aksoyoglu, S.; Ciarelli, G.; Tsyro, S.; Manders, A.; Bieser, J.; Stern, R.; et al. EURODELTA III Exercise: An Evaluation of Air Quality Models’ Capacity to Reproduce the Carbonaceous Aerosol. Atmos. Environ. X 2019, 2, 100018. [Google Scholar] [CrossRef]
- Steiner, A.L.; Davis, A.J.; Sillman, S.; Owen, R.C.; Michalak, A.M.; Fiore, A.M. Observed Suppression of Ozone Formation at Extremely High Temperatures Due to Chemical and Biophysical Feedbacks. Proc. Natl. Acad. Sci. USA 2010, 107, 19685–19690. [Google Scholar] [CrossRef] [Green Version]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving Air Quality in the Po Valley, Italy: Some Results by the LIFE-IP-PREPAIR Project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Huang, L.; Li, Q.; Huo, J.; Duan, Y.; Wang, Y.; Yaluk, E.; Wang, Y.; Fu, Q.; Li, L. Explicit Modeling of Isoprene Chemical Processing in Polluted Air Masses in Suburban Areas of the Yangtze River Delta Region: Radical Cycling and Formation of Ozone and Formaldehyde. Atmos. Chem. Phys. 2021, 21, 5905–5917. [Google Scholar] [CrossRef]
- Mircea, M.; Borge, R.; Finardi, S.; Fares, S.; Briganti, G.; D’Isidoro, M.; Cremona, G.; Russo, F.; Cappelletti, A.; D’Elia, I.; et al. Urban Vegetation Effects on Meteorology and Air Quality: A Comparison of Three European Cities. In Air Pollution Modeling and its Application XXVIII; Mensink, C., Jorba, O., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 13–19. [Google Scholar]
- Dunker, A.M.; Koo, B.; Yarwood, G. Ozone Sensitivity to Isoprene Chemistry and Emissions and Anthropogenic Emissions in Central California. Atmos. Environ. 2016, 145, 326–337. [Google Scholar] [CrossRef]
Model | Italy (Milan, Bologna) | Spain (Madrid) |
---|---|---|
Meteorological model | WRF v3.9.1.1 [20] | WRFv4.1.2 [21] |
Anthropogenic emission processor | EMission Manager (EMMAv6.0) [22] | Sparse Matrix Operator Kernel Emissions (SMOKEv3.6.5) [23] |
BVOC emission model | PSEM [19] | PSEM [19] |
CTM | FARMv4.14 [24] | CMAQv5.3.2 [25] |
Gas-phase mechanism | SAPRC99 [26] | CB6 [27] |
Aerosol dynamics | AERO3 [28] | AERO6 (3 modes) [29] |
Inorganic aerosol chemistry (SIA) | ISORROPIA v1.7 [30] | ISORROPIA II [31] |
Organic aerosol formation (SOA) | SORGAM module [32] | [33,34] |
Sea Salt production | [35] | [36] |
Windblown dust | [37] Vautard et al. (2005) | No |
Dry deposition gas | Resistance model based on [38] | |
Dry deposition aerosol | Resistance model based on [38] | Model based on [39] |
Wet deposition | In-cloud and below-cloud scavenging coefficients [40] | [41] |
Cloud chemistry | Simplified S(IV) to S(VI) formation [42] | acm_ae6 [43] |
a | ||||||||||
O3 | VEG-NOVEG | VEG | ||||||||
City | Average | Month | Minimum | Mean | Maximum | Mean | ||||
min | max | min | max | min | max | min | max | |||
Bologna | hourly | Jan | −40.13 | 0.00 | −2.94 | 6.78 | 0.00 | 45.27 | 0.00 | 58.62 |
Jul | −55.81 | −0.90 | −9.35 | 8.39 | 0.31 | 84.25 | 12.80 | 143.02 | ||
daily | Jan | −4.34 | −0.07 | −0.19 | 1.40 | 0.35 | 6.45 | 3.79 | 37.34 | |
Jul | −7.03 | −1.19 | −0.93 | 0.68 | 1.13 | 6.39 | 45.56 | 84.60 | ||
monthly | Jan | −0.23 | 0.20 | 0.63 | 13.45 | |||||
Jul | −1.36 | 0.00 | 1.45 | 73.88 | ||||||
yearly | −0.63 | 0.09 | 1.20 | 44.13 | ||||||
Milan | hourly | Jan | −28.52 | 0.19 | −2.70 | 4.58 | 0.00 | 22.28 | 0.00 | 56.17 |
Jul | −61.58 | 0.22 | −12.10 | 14.04 | −0.61 | 55.26 | 17.92 | 144.90 | ||
daily | Jan | −3.16 | 0.00 | −0.20 | 1.32 | 0.10 | 3.93 | 1.46 | 22.01 | |
Jul | −7.24 | −2.12 | −3.11 | 0.46 | 0.99 | 6.53 | 52.09 | 94.53 | ||
monthly | Jan | −0.13 | 0.17 | 0.70 | 7.12 | |||||
Jul | −2.45 | −0.86 | 2.67 | 73.21 | ||||||
yearly | −1.06 | −0.32 | 2.23 | 37.54 | ||||||
Madrid | hourly | Jan | −55.64 | −0.19 | −10.26 | 2.11 | −0.00 | 18.65 | 0.19 | 96.79 |
Jul | −97.92 | 9.16 | −42.86 | 27.67 | −2.58 | 70.74 | 10.69 | 153.74 | ||
daily | Jan | −16.22 | −1.58 | −3.61 | −0.38 | −0.11 | 2.64 | 12.19 | 83.04 | |
Jul | −13.22 | −5.49 | −5.49 | −1.11 | −1.00 | 7.42 | 59.69 | 88.37 | ||
monthly | Jan | −4.82 | −1.49 | 0.08 | 36.71 | |||||
Jul | −7.40 | −2.67 | 0.11 | 73.23 | ||||||
yearly | −6.54 | −2.61 | −0.23 | 57.31 | ||||||
b | ||||||||||
NO2 | VEG-NOVEG | VEG | ||||||||
City | Average | Month | Minimum | Mean | Maximum | Mean | ||||
min | max | min | max | min | max | min | max | |||
Bologna | hourly | Jan | −47.94 | −0.37 | −5.43 | 2.31 | −0.01 | 39.82 | 4.72 | 76.11 |
Jul | −87.34 | −0.21 | −7.83 | 8.90 | 0.28 | 63.95 | 2.45 | 62.10 | ||
daily | Jan | −6.42 | −0.50 | −1.19 | 0.28 | 0.37 | 3.69 | 16.24 | 51.96 | |
Jul | −5.52 | −1.42 | −0.67 | 0.39 | 0.75 | 5.67 | 9.92 | 31.02 | ||
monthly | Jan | −1.32 | −0.25 | 0.60 | 38.93 | |||||
Jul | −1.82 | −0.19 | 1.12 | 21.50 | ||||||
yearly | −1.37 | −0.21 | 0.91 | 30.16 | ||||||
Milan | hourly | Jan | −39.02 | 0.83 | −9.60 | 3.68 | 0.01 | 35.20 | 8.90 | 87.18 |
Jul | −67.97 | −0.13 | −14.81 | 11.66 | −0.06 | 65.80 | 5.31 | 83.57 | ||
daily | Jan | −4.73 | −0.64 | −1.53 | 0.67 | 0.49 | 4.05 | 33.02 | 61.72 | |
Jul | −6.84 | −0.68 | −0.50 | 2.82 | 1.90 | 7.23 | 20.08 | 36.34 | ||
monthly | Jan | −1.33 | −0.07 | 0.60 | 52.05 | |||||
Jul | −3.01 | 0.63 | 2.26 | 28.58 | ||||||
yearly | −2.75 | 0.35 | 1.31 | 42.18 | ||||||
Madrid | hourly | Jan | −27.28 | −0.01 | −5.37 | 9.13 | −0.19 | 47.63 | 0.96 | 88.91 |
Jul | −74.70 | 0.66 | −10.50 | 47.66 | 0.51 | 126.98 | 1.74 | 82.18 | ||
daily | Jan | −9.71 | −0.05 | −2.54 | 2.26 | −0.04 | 10.87 | 6.92 | 57.00 | |
Jul | −6.94 | 1.60 | 0.64 | 9.95 | 4.52 | 20.21 | 11.15 | 25.26 | ||
monthly | Jan | −1.417 | 0.076 | 2.57 | 35.72 | |||||
Jul | −0.067 | 2.04 | 7.17 | 18.85 | ||||||
yearly | 0.05 | 1.33 | 4.82 | 25.49 | ||||||
c | ||||||||||
PM10 | VEG-NOVEG | VEG | ||||||||
City | Average | Month | Minimum | Mean | Maximum | Mean | ||||
min | max | min | max | min | max | min | Max | |||
Bologna | hourly | Jan | −29.92 | −0.14 | −5.36 | 3.10 | −0.14 | 23.37 | 6.15 | 61.58 |
Jul | −12.44 | 0.01 | −0.98 | 0.89 | 0.02 | 10.42 | 2.35 | 30.64 | ||
daily | Jan | −3.18 | −0.63 | −0.86 | 0.32 | 0.14 | 1.78 | 13.05 | 43.60 | |
Jul | −0.97 | −0.23 | −0.32 | 0.05 | 0.04 | 0.80 | 5.12 | 17.60 | ||
monthly | Jan | −0.86 | −0.30 | 0.23 | 27.64 | |||||
Jul | −0.39 | −0.07 | 0.13 | 9.79 | ||||||
yearly | −0.69 | −0.18 | 0.04 | 18.68 | ||||||
Milan | hourly | Jan | −95.79 | −0.15 | −25.65 | 6.35 | −0.92 | 112.45 | 4.55 | 135.77 |
Jul | −24.27 | 0.90 | −6.73 | 4.46 | −0.13 | 25.27 | 3.73 | 41.11 | ||
daily | Jan | −10.56 | −2.11 | −1.84 | 0.47 | 0.44 | 7.76 | 24.77 | 78.58 | |
Jul | −3.07 | −0.62 | −0.72 | 0.66 | 0.41 | 2.08 | 7.91 | 24.77 | ||
monthly | Jan | −3.14 | −0.43 | 0.61 | 56.42 | |||||
Jul | −1.59 | −0.09 | 0.72 | 16.53 | ||||||
yearly | −2.27 | 0.02 | 0.89 | 36.17 | ||||||
Madrid | hourly | Jan | −12.92 | −0.00 | −2.44 | 2.01 | −0.05 | 21.44 | 0.10 | 54.47 |
Jul | −54.43 | 0.44 | −17.51 | 8.02 | −13.99 | 44.78 | 1.45 | 29.08 | ||
daily | Jan | −2.58 | 0.00 | −0.42 | 0.63 | 0.39 | 3.84 | 1.41 | 43.02 | |
Jul | −5.97 | 0.00 | −4.17 | 0.85 | −1.46 | 4.18 | 6.49 | 18.64 | ||
monthly | Jan | −0.47 | 0.20 | 2.01 | 18.69 | |||||
Jul | −0.26 | 0.17 | 1.32 | 13.12 | ||||||
yearly | −0.04 | 0.28 | 1.53 | 14.37 |
a | ||||||||
O3 | VEG-NOVEG | VEG | ||||||
City | Average | Month | Min | Mean | Max | Min | Mean | Max |
Bologna | monthly | Jan | −4.13 | 6.64 | 40.48 | 52.89 | 104.53 | 234.43 |
Jul | −23.00 | 85.64 | 524.27 | 443.64 | 885.44 | 1400.60 | ||
yearly | −149.52 | 478.45 | 2988.40 | 2884.40 | 5456.30 | 8784.00 | ||
Milan | monthly | Jan | −2.13 | 6.51 | 29.70 | 34.54 | 56.36 | 114.36 |
Jul | −38.61 | 134.46 | 561.35 | 421.20 | 735.75 | 1407.60 | ||
yearly | −163.88 | 638.54 | 2820.10 | 2454.00 | 4034.70 | 7651.20 | ||
Madrid | monthly | Jan | −9.63 | 12.43 | 71.19 | 100.49 | 147.71 | 250.99 |
Jul | −23.86 | 22.83 | 112.03 | 264.17 | 362.42 | 510.09 | ||
yearly | −196.25 | 306.27 | 1509.20 | 2476.10 | 3409.20 | 5193.00 | ||
b | ||||||||
NO2 | VEG-NOVEG | VEG | ||||||
City | Average | Month | Min | Mean | Max | Min | Mean | Max |
Bologna | monthly | Jan | −1.56 | 3.56 | 18.08 | 28.18 | 43.48 | 68.04 |
Jul | −3.21 | 18.08 | 132.63 | 20.11 | 98.47 | 353.20 | ||
yearly | −24.57 | 104.10 | 740.06 | 318.59 | 729.22 | 2118.10 | ||
Milan | monthly | Jan | −1.10 | 7.11 | 21.76 | 42.81 | 51.46 | 60.20 |
Jul | −0.51 | 25.17 | 82.08 | 25.59 | 69.18 | 155.43 | ||
yearly | −10.73 | 174.44 | 552.18 | 403.83 | 693.02 | 1186.10 | ||
Madrid | monthly | Jan | −5.12 | 9.24 | 53.55 | 10.53 | 38.98 | 96.09 |
Jul | −0.29 | 12.26 | 83.57 | 2.72 | 25.21 | 107.84 | ||
yearly | −33.43 | 159.26 | 776.41 | 76.90 | 409.12 | 1053.20 | ||
c | ||||||||
PM10 | VEG-NOVEG | VEG | ||||||
City | Average | Month | Min | Mean | Max | Min | Mean | Max |
Bologna | monthly | Jan | −5.90 | 8.74 | 57.01 | 31.50 | 73.27 | 142.54 |
Jul | −15.91 | 17.67 | 88.48 | 33.33 | 119.86 | 239.96 | ||
yearly | −119.60 | 123.49 | 681.58 | 336.16 | 985.22 | 2036.90 | ||
Milan | monthly | Jan | −29.17 | 41.10 | 153.99 | 66.67 | 351.35 | 782.95 |
Jul | −65.44 | 98.63 | 256.62 | 76.61 | 393.38 | 889.16 | ||
yearly | −482.05 | 739.89 | 2002.20 | 974.41 | 4182.00 | 9440.50 | ||
Madrid | monthly | Jan | −6.07 | 5.15 | 54.54 | 43.20 | 73.53 | 160.45 |
Jul | −14.47 | 9.65 | 87.05 | 70.31 | 101.02 | 192.66 | ||
yearly | −142.21 | 91.33 | 709.66 | 680.23 | 973.26 | 1911.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mircea, M.; Borge, R.; Finardi, S.; Briganti, G.; Russo, F.; de la Paz, D.; D’Isidoro, M.; Cremona, G.; Villani, M.G.; Cappelletti, A.; et al. The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions. Forests 2023, 14, 1255. https://doi.org/10.3390/f14061255
Mircea M, Borge R, Finardi S, Briganti G, Russo F, de la Paz D, D’Isidoro M, Cremona G, Villani MG, Cappelletti A, et al. The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions. Forests. 2023; 14(6):1255. https://doi.org/10.3390/f14061255
Chicago/Turabian StyleMircea, Mihaela, Rafael Borge, Sandro Finardi, Gino Briganti, Felicita Russo, David de la Paz, Massimo D’Isidoro, Giuseppe Cremona, Maria Gabriella Villani, Andrea Cappelletti, and et al. 2023. "The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions" Forests 14, no. 6: 1255. https://doi.org/10.3390/f14061255
APA StyleMircea, M., Borge, R., Finardi, S., Briganti, G., Russo, F., de la Paz, D., D’Isidoro, M., Cremona, G., Villani, M. G., Cappelletti, A., Adani, M., D’Elia, I., Piersanti, A., Sorrentino, B., Petralia, E., de Andrés, J. M., Narros, A., Silibello, C., Pepe, N., ... Carlino, G. (2023). The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions. Forests, 14(6), 1255. https://doi.org/10.3390/f14061255