Tree Species Classification Using Optimized Features Derived from Light Detection and Ranging Point Clouds Based on Fractal Geometry and Quantitative Structure Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Method
2.2.1. Multi-Dimensional Feature Vectors Extraction
2.2.2. Dimensionality Reduction of Feature Vectors
2.2.3. Selection of Feature Vectors Combination
3. Experimental Result and Analysis
3.1. Feature Vector Dimensional Reduction
3.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pfeifer, N.; Gorte, B.; Winterhalder, D. Automatic Reconstruction of Single Trees from Terrestrial Laser Scanner Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 114–119. [Google Scholar]
- Terryn, L.; Calders, K.; Disney, M.; Origo, N.; Malhi, Y.; Newnham, G.; Raumonen, P.; Å Kerblom, M.; Verbeeck, H. Tree species classification using structural features derived from terrestrial laser scanning. ISPRS J. Photogramm. 2020, 168, 170–181. [Google Scholar] [CrossRef]
- Knapp, N.; Fischer, R.; Cazcarra-Bes, V.; Huth, A. Structure metrics to generalize biomass estimation from lidar across forest types from different continents. Remote Sens. Environ. 2020, 237, 111597. [Google Scholar] [CrossRef]
- Xi, Z.; Hopkinson, C.; Rood, S.B.; Peddle, D.R. See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning. ISPRS J. Photogramm. 2020, 168, 1–16. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Tree species mixing can increase maximum stand density. Can. J. For. Res. 2016, 46, 1179–1193. [Google Scholar] [CrossRef] [Green Version]
- Åkerblom, M.; Raumonen, P.; Mäkipää, R.; Kaasalainen, M. Automatic tree species recognition with quantitative structure models. Remote Sens. Environ. 2017, 191, 1–12. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Jin, S.; Sun, X.; Wu, F.; Su, Y.; Li, Y.; Song, S.; Xu, K.; Ma, Q.; Baret, F.; Jiang, D.; et al. Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects. ISPRS J. Photogramm. 2021, 171, 202–223. [Google Scholar] [CrossRef]
- Hui, Z.; Jin, S.; Xia, Y.; Wang, L.; Yevenyo Ziggah, Y.; Cheng, P. Wood and leaf separation from terrestrial LiDAR point clouds based on mode points evolution. ISPRS J. Photogramm. 2021, 178, 219–239. [Google Scholar] [CrossRef]
- Hui, Z.; Jin, S.; Li, D.; Ziggah, Y.Y.; Liu, B. Individual Tree Extraction from Terrestrial LiDAR Point Clouds Based on Transfer Learning and Gaussian Mixture Model Separation. Remote Sens. 2021, 13, 223. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S.; Zhang, J.; Zhao, X.; Xu, K.; Wei, D.; Kelly, M. Lidar Boosts 3D Ecological Observations and Modeling:A Review and Perspective. IEEE Geosci. Remote Sens. 2021, 9, 232–257. [Google Scholar] [CrossRef]
- Lin, Y.; Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agr. For. Meteorol. 2016, 216, 105–114. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.; Hopkinson, C.; Chasmer, L. Filtering Stems and Branches from Terrestrial Laser Scanning Point Clouds Using Deep 3-D Fully Convolutional Networks. Remote Sens. 2018, 10, 1215. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Han, Z.; Chen, Y.; Liu, Z.; Han, Y. Tree species classification of LiDAR data based on 3D deep learning. Measurement 2021, 177, 109301. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Trans. Geosci. Remote 2008, 46, 1416–1427. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; McGaughey, R.J.; Andersen, H.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586. [Google Scholar] [CrossRef]
- Puttonen, E.; Suomalainen, J.; Hakala, T.; Räikkönen, E.; Kaartinen, H.; Kaasalainen, S.; Litkey, P. Tree species classification from fused active hyperspectral reflectance and LIDAR measurements. For. Ecol. Manag. 2010, 260, 1843–1852. [Google Scholar] [CrossRef]
- Othmani, A.; Lew Yan Voon, L.F.C.; Stolz, C.; Piboule, A. Single tree species classification from Terrestrial Laser Scanning data for forest inventory. Pattern Recogn. Lett. 2013, 34, 2144–2150. [Google Scholar] [CrossRef]
- Zhang, Z.; Kazakova, A.; Moskal, L.; Styers, D. Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data. Forests 2016, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Weiser, H.; Schäfer, J.; Winiwarter, L.; Krašovec, N.; Fassnacht, F.E.; Höfle, B. Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth Syst. Sci. Data 2022, 14, 2989–3012. [Google Scholar] [CrossRef]
- Wang, D.; Kankare, V.; Puttonen, E.; Hollaus, M.; Pfeifer, N. Reconstructing Stem Cross Section Shapes from Terrestrial Laser Scanning. IEEE Geosci. Remote Sens. 2017, 14, 272–276. [Google Scholar] [CrossRef]
- Guzmán, Q.J.A.; Sharp, I.; Alencastro, F.; Sánchez Azofeifa, G.A. On the relationship of fractal geometry and tree–stand metrics on point clouds derived from terrestrial laser scanning. Methods Ecol. Evol. 2020, 11, 1309–1318. [Google Scholar] [CrossRef]
Species | Number of Trees | Average of Height (m) | Std of Tree Height (m) | Average of DBH (m) | Std of DBH (m) |
---|---|---|---|---|---|
Fagus sylvatica (abbr: FagSyl) | 129 | 28.02 | 4.08 | 0.35 | 0.15 |
Picea abies (abbr: PicAbi) | 123 | 20.84 | 5.59 | 0.26 | 0.12 |
Pinus sylvestris (abbr: PinSyl) | 81 | 29.20 | 3.45 | 0.29 | 0.13 |
Pseudotsuga menziesii (abbr: PseMen) | 124 | 36.30 | 4.76 | 0.28 | 0.12 |
Quercus petraea (abbr: QuePet) | 111 | 21.18 | 7.46 | 0.19 | 0.08 |
Dimensionality | Lowest Overall Accuracy | Highest Overall Accuracy | Combination of Feature Vectors | Number of Combinations |
---|---|---|---|---|
1 | 0.354 | 0.583 | {},{}…{} | 10 |
2 | 0.426 | 0.734 | {,},{,}…{,} | 45 |
3 | 0.421 | 0.845 | {,,},{,,}…{,,} | 120 |
4 | 0.440 | 0.896 | {,,,},{,,,}… {,,,} | 210 |
5 | 0.521 | 0.938 | {,,,,},{,,,,}… {,,,,} | 252 |
6 | 0.610 | 0.928 | {,,,,,}, {,,,,,}… {,,,,,} | 210 |
7 | 0.688 | 0.931 | {,,,,,,}, {,,,,,,}… {,,,,,,} | 120 |
8 | 0.783 | 0.947 | {,,,,,,,}, {,,,,,,,}… {,,,,,,,} | 45 |
9 | 0.880 | 0.938 | {,,,,,,,,}, {,,,,,,,,}... {,,,,,,,,} | 10 |
10 | 0.923 | 0.923 | {,,,,,,,,,} | 1 |
In total | / | / | / | 1023 |
FagSyl | PicAbi | PinSyl | PseMen | QuePet | |
---|---|---|---|---|---|
(%) | 98.06 | 96.83 | 97.71 | 97.36 | 96.65 |
(%) | 94.03 | 92.00 | 92.50 | 95.04 | 92.59 |
(%) | 97.67 | 93.50 | 91.36 | 92.74 | 90.09 |
(%) | 95.82 | 92.74 | 91.93 | 93.88 | 91.32 |
(%) | 94.56 | 90.72 | 90.59 | 92.19 | 89.25 |
AdaBoost | KNN | NB | RF | The Proposed Method | |
---|---|---|---|---|---|
(%) | 88.03 | 89.61 | 81.34 | 89.79 | 93.31 |
(%) | 87.69 | 89.63 | 81.11 | 89.66 | 93.23 |
(%) | 87.34 | 89.21 | 81.37 | 88.95 | 93.07 |
(%) | 87.49 | 89.37 | 80.95 | 89.22 | 93.14 |
(%) | 85.36 | 87.26 | 77.60 | 87.44 | 91.72 |
Combination | OA (%) | Pre (%) | Rec (%) | F1 (%) | Ka (%) |
---|---|---|---|---|---|
{,,,,,,,R12} | 85.74 | 84.99 | 85.19 | 85.05 | 82.08 |
{,,,,,,,} | 88.73 | 87.83 | 88.01 | 87.9 | 85.85 |
{,,,,,,,} | 82.04 | 80.79 | 81.18 | 80.82 | 77.44 |
{,,,,,,,} | 85.74 | 84.71 | 84.63 | 84.66 | 82.06 |
{,,,,,,,} | 84.86 | 84.22 | 84.64 | 84.39 | 80.98 |
{,,,,,,,} | 89.61 | 89.45 | 89.29 | 89.34 | 86.93 |
{,,,,,,,} | 88.38 | 87.62 | 87.65 | 87.62 | 85.39 |
{,,,,,,,} | 88.38 | 87.98 | 88.26 | 88.09 | 85.4 |
{,,,,,,,} | 91.02 | 90.85 | 90.67 | 90.75 | 88.71 |
{,,,,,,,} | 90.32 | 90.16 | 89.91 | 90.00 | 87.82 |
{,,,,,,,} | 87.85 | 86.86 | 86.85 | 86.84 | 84.73 |
{,,,,,,,L23} | 87.68 | 87.39 | 87.25 | 87.26 | 84.5 |
{,,,,,,,} | 92.78 | 92.93 | 92.33 | 92.58 | 90.91 |
{,,,,,,,} | 93.13 | 92.85 | 92.86 | 92.85 | 91.37 |
{,,,,,,,} | 91.9 | 91.61 | 91.68 | 91.64 | 89.82 |
{,,,,,,,} | 89.44 | 88.65 | 88.61 | 88.61 | 86.72 |
{,,,,,,,} | 87.85 | 87.65 | 87.37 | 87.46 | 84.72 |
{,,,,,,,} | 93.13 | 93.44 | 92.82 | 93.08 | 91.36 |
{,,,,,,,} | 91.02 | 90.54 | 90.8 | 90.65 | 88.72 |
{,,,,,,,} | 92.43 | 92.24 | 92.28 | 92.23 | 90.48 |
{,,,,,,,} | 92.25 | 92.08 | 92.1 | 92.07 | 90.26 |
{,l1,,,E,,,} | 88.56 | 87.98 | 87.86 | 87.89 | 85.61 |
{,,,,,,,} | 89.79 | 89.37 | 89.58 | 89.46 | 87.17 |
{,,,,,,,} | 94.01 | 94.23 | 93.89 | 93.96 | 92.47 |
{,,,,,,,} | 91.37 | 91.03 | 91.14 | 91.05 | 89.16 |
{,,,,,,,} | 90.67 | 90.48 | 90.32 | 90.38 | 88.26 |
{,,,,,,,} | 94.19 | 94.12 | 93.94 | 94.02 | 92.69 |
{,,,,,,,} | 93.31 | 93.23 | 93.07 | 93.14 | 91.72 |
{,,,,,,,} | 89.61 | 88.95 | 89.13 | 89.03 | 86.95 |
{,,,,,,,} | 90.14 | 90.11 | 89.72 | 89.86 | 87.6 |
{,,,,,,,} | 91.9 | 91.93 | 91.61 | 91.74 | 89.81 |
{,,,,,,,} | 90.67 | 90.39 | 90.49 | 90.39 | 88.27 |
{,,,,,,,} | 91.9 | 91.7 | 91.78 | 91.65 | 89.83 |
{,,,,,,,} | 93.84 | 93.81 | 93.75 | 93.78 | 92.25 |
{,,,,,,,} | 93.66 | 93.39 | 93.33 | 93.35 | 92.03 |
{,,,,,,,} | 91.37 | 91.07 | 91.27 | 91.14 | 89.16 |
{,,,,,,,} | 81.51 | 81.09 | 81.05 | 81.04 | 76.76 |
{,,,,,,,} | 82.92 | 82.77 | 82.53 | 82.62 | 78.52 |
{,,,,,,,} | 85.21 | 85.88 | 85.66 | 85.71 | 81.4 |
{,,,,,,,} | 80.46 | 80.99 | 80.69 | 80.8 | 75.42 |
{,,,,,,,} | 85.21 | 86.1 | 85.91 | 85.99 | 81.4 |
{,,,,,,,} | 88.03 | 88.37 | 88.16 | 88.23 | 84.94 |
{,,,,,,,} | 86.27 | 86.92 | 86.7 | 86.75 | 82.73 |
{,,,,,,,} | 86.27 | 86.72 | 86.74 | 86.67 | 82.74 |
{,,,,,,,} | 86.27 | 86.73 | 86.64 | 86.62 | 82.73 |
Åkerblom et al. [6] | The Proposed Method | |||||
---|---|---|---|---|---|---|
KNN | MNR | SVMlin | SVMpol | SVMrbf | ||
(%) | 79.75 | 81.87 | 81.69 | 75.88 | 82.04 | 93.31 |
(%) | 80.00 | 80.94 | 80.87 | 78.79 | 81.82 | 93.23 |
(%) | 78.18 | 80.93 | 80.96 | 73.54 | 80.75 | 93.07 |
(%) | 78.44 | 80.90 | 80.91 | 74.01 | 81.09 | 93.14 |
(%) | 74.46 | 77.21 | 76.99 | 69.47 | 77.37 | 91.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, Z.; Cai, Z.; Xu, P.; Xia, Y.; Cheng, P. Tree Species Classification Using Optimized Features Derived from Light Detection and Ranging Point Clouds Based on Fractal Geometry and Quantitative Structure Model. Forests 2023, 14, 1265. https://doi.org/10.3390/f14061265
Hui Z, Cai Z, Xu P, Xia Y, Cheng P. Tree Species Classification Using Optimized Features Derived from Light Detection and Ranging Point Clouds Based on Fractal Geometry and Quantitative Structure Model. Forests. 2023; 14(6):1265. https://doi.org/10.3390/f14061265
Chicago/Turabian StyleHui, Zhenyang, Zhaochen Cai, Peng Xu, Yuanping Xia, and Penggen Cheng. 2023. "Tree Species Classification Using Optimized Features Derived from Light Detection and Ranging Point Clouds Based on Fractal Geometry and Quantitative Structure Model" Forests 14, no. 6: 1265. https://doi.org/10.3390/f14061265
APA StyleHui, Z., Cai, Z., Xu, P., Xia, Y., & Cheng, P. (2023). Tree Species Classification Using Optimized Features Derived from Light Detection and Ranging Point Clouds Based on Fractal Geometry and Quantitative Structure Model. Forests, 14(6), 1265. https://doi.org/10.3390/f14061265