An Alternative Method for Estimation of Stand-Level Biomass for Three Conifer Species in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Data Source
2.2. Stand Characteristics and Biomass Estimation
2.3. Stand Biomass Model Specification
2.3.1. NSUR-Based Stand Biomass Model
2.3.2. GAM-Based Stand Biomass Model
2.4. Heteroskedasticity
2.5. Evaluation of Systems of Stand Biomass Models
3. Results
3.1. Stand Biomass Models Fitting
3.2. Stand Biomass Model Validation
3.3. Prediction Accuracy of GAM and NSUR Methods
3.4. Parameter Estimates
4. Discussion
4.1. The Development of Stand Biomass Model Systems
4.2. GAM vs. NSUR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.; Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Global. Change Biol. 2019, 25, 1191–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usoltsev, V.A.; Shobairi, S.O.R.; Tsepordey, I.S.; Chasovskikh, V.P. Modeling the additive structure of stand biomass equations in climatic gradients of Eurasia. Environ. Qual. Manag. 2018, 28, 55–61. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Ponette, Q.; Rapp, M. Relationships between forest tree species, stand production and stand nutrient amount. Ann. Forest. Sci. 2000, 57, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2002, 12, 891–899. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 2009, 114, G00E03. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, J.M.; Tian, Q.J.; Ju, W.M.; Xia, X.Q. Combining remote sensing imagery and forest age inventory for biomass mapping. J. Environ. Manag. 2007, 85, 616–623. [Google Scholar] [CrossRef]
- Fu, L.; Zeng, W.; Tang, S. Individual tree biomass models to estimate forest biomass for large spatial regions developed using four pine species in China. For. Sci. 2017, 63, 241–249. [Google Scholar]
- Levine, J.; de Valpine, P.; Battles, J. Generalized additive models reveal among-stand variation in live tree biomass equations. Can. J. For. Res. 2021, 51, 546–564. [Google Scholar] [CrossRef]
- Xu, Q.; Lei, X.; Zhang, H. A novel method for approaching the compatibility of tree biomass estimation by multi-task neural networks. For. Ecol. Manag. 2022, 508, 120011. [Google Scholar] [CrossRef]
- Li, H.; Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 2013, 289, 153–163. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Gómez-García, E.; Diéguez-Aranda, U.; Barrio-Anta, M.; Crecente-Campo, F. Aboveground stand-level biomass estimation: A comparison of two methods for major forest species in northwest Spain. Ann. For. Sci. 2012, 69, 735–746. [Google Scholar] [CrossRef] [Green Version]
- Somogyi, Z.; Cienciala, E.; Mäkipää, R.; Muukkonen, P.; Lehtonen, A.; Weiss, P. Indirect methods of large-scale forest biomass estimation. Eur. J. For. Res. 2007, 126, 197–207. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Dyderski, M.K.; Gęsikiewicz, K.; Horodecki, P.; Cysewska, A.; Wierczyńska, S.; Maciejczyk, K. How do tree stand parameters affect young Scots pine biomass?–Allometric equations and biomass conversion and expansion factors. For. Ecol. Manag. 2018, 409, 74–83. [Google Scholar] [CrossRef]
- Xin, S.; Wang, J.; Mahardika, S.B.; Jiang, L. Sensitivity of Stand-Level Biomass to Climate for Three Conifer Plantations in Northeast China. Forests 2022, 13, 2022. [Google Scholar] [CrossRef]
- Balboa-Murias, M.Á.; Rodríguez-Soalleiro, R.; Merino, A.; Álvarez-González, J.G. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For. Ecol. Manag. 2006, 237, 29–38. [Google Scholar] [CrossRef]
- Xie, L.; Fu, L.; Widagdo, F.R.A.; Dong, L.; Li, F. Improving the accuracy of tree biomass estimations for three coniferous tree species in Northeast China. Trees 2021, 62, 129. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A review of biomass equations for China’s tree species. Earth Syst. Sci. Data 2020, 12, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Long, Y.; Turner, J.; Lei, Y.; Snowdon, P.; Li, Y.; Harper, R.; Zerihun, A.; Ximenes, F. Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations. For. Ecol. Manag. 2010, 259, 2301–2314. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Lehtonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R.; Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For. Ecol. Manag. 2004, 188, 211–224. [Google Scholar] [CrossRef]
- Soares, P.; Tomé, M. Biomass expansion factors for Eucalyptus globulus stands in Portugal. For. Syst. 2012, 21, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five North American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Návar, J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For. Ecol. Manag. 2009, 257, 427–434. [Google Scholar] [CrossRef]
- Zeng, W.; Duo, H.; Lei, X.; Chen, X.; Wang, X.; Pu, Y.; Zou, W. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. Eur. J. For. Res. 2017, 136, 233–249. [Google Scholar] [CrossRef]
- Romero, F.M.B.; Jacovine, L.A.G.; Ribeiro, S.C.; Torres, C.M.M.E.; Silva, L.F.d.; Gaspar, R.d.O.; Rocha, S.J.S.S.d.; Staudhammer, C.L.; Fearnside, P.M. Allometric equations for volume, biomass, and carbon in commercial stems harvested in a managed forest in the southwestern Amazon: A case study. Forests 2020, 11, 874. [Google Scholar] [CrossRef]
- Bi, H.; Murphy, S.; Volkova, L.; Weston, C.; Fairman, T.; Li, Y.; Law, R.; Norris, J.; Lei, X.; Caccamo, G. Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. For. Ecol. Manag. 2015, 349, 106–121. [Google Scholar] [CrossRef]
- Kenzo, T.; Himmapan, W.; Yoneda, R.; Tedsorn, N.; Vacharangkura, T.; Hitsuma, G.; Noda, I. General estimation models for above-and below-ground biomass of teak (Tectona grandis) plantations in Thailand. For. Ecol. Manag. 2020, 457, 117701. [Google Scholar] [CrossRef]
- Güner, Ş.T.; Diamantopoulou, M.J.; Poudel, K.P.; Çömez, A.; Özçelik, R. Employing artificial neural network for effective biomass prediction: An alternative approach. Comput. Electron. Agr. 2022, 192, 106596. [Google Scholar] [CrossRef]
- Usoltsev, V.A.; Shobairi, S.O.R.; Tsepordey, I.S.; Chasovkikh, V.P. Modelling forest stand biomass and net primary production with the focus on additive models sensitive to climate variables for two-needled pines in Eurasia. J. Clim. Change 2019, 5, 41–49. [Google Scholar] [CrossRef]
- Usoltsev, V.A.; Shobairi, S.O.R.; Chasovskikh, V.P. Modeling the additive stand biomass of Larix spp. for Eurasia. Ecol. Quest. 2019, 30, 35–46. [Google Scholar]
- Kozak, A. Methods for ensuring additivity of biomass components by regression analysis. For. Chron. 1970, 46, 402–405. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, H.; Xu, H. Study on establish and estimate method of compatible biomass model. Sci. Silivae Sin. 2000, 36, 19–27, (In Chinese with English an abstract). [Google Scholar]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Affleck, D.L.R.; Diéguez-Aranda, U. Additive nonlinear biomass equations: A likelihood-based approach. For. Sci. 2016, 62, 129–140. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. A three-step proportional weighting system of nonlinear biomass equations. For. Sci. 2015, 61, 35–45. [Google Scholar] [CrossRef]
- Fu, L.; Sharma, R.P.; Wang, G.; Tang, S. Modelling a system of nonlinear additive crown width models applying seemingly unrelated regression for Prince Rupprecht larch in northern China. For. Ecol. Manag. 2017, 386, 71–80. [Google Scholar] [CrossRef]
- González-García, M.; Hevia, A.; Majada, J.; Barrio-Anta, M. Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass Bioenergy 2013, 54, 147–157. [Google Scholar]
- Jagodziński, A.M.; Dyderski, M.K.; Gęsikiewicz, K.; Horodecki, P. Tree-and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. Forests 2018, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.P.; Lane, S.E.; Thérien, G. Fitting forestry models using generalized additive models: A taper model example. Can. J. For. Res. 2011, 41, 1909–1916. [Google Scholar] [CrossRef]
- Picard, N.; Rutishauser, E.; Ploton, P.; Ngomanda, A.; Henry, M. Should tree biomass allometry be restricted to power models? For. Ecol. Manag. 2015, 353, 156–163. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Adamec, Z.; Drápela, K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship. J. For. Sci 2015, 61, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mao, X. Comparison of canopy closure estimation of plantations using parametric, semi-parametric, and non-parametric models based on GF-1 remote sensing images. Forests 2020, 11, 597. [Google Scholar] [CrossRef]
- Munro, H.L.; Montes, C.R.; Kinane, S.M.; Gandhi, K.J.K. Through space and time: Predicting numbers of an eruptive pine tree pest and its predator under changing climate conditions. For. Ecol. Manag. 2021, 483, 118770. [Google Scholar] [CrossRef]
- Vospernik, S. Basal area increment models accounting for climate and mixture for Austrian tree species. For. Ecol. Manag. 2021, 480, 118725. [Google Scholar] [CrossRef]
- He, P.; Hussain, A.; Khurram Shahzad, M.; Jiang, L.; Li, F. Evaluation of four regression techniques for stem taper modeling of Dahurian larch (Larix gmelinii) in Northeastern China. For. Ecol. Manag. 2021, 494, 119336. [Google Scholar] [CrossRef]
- Jin, X.; Li, F.; Pukkala, T.; Dong, L. Modelling the cone yields of Korean pine. For. Ecol. Manag. 2020, 464, 118086. [Google Scholar] [CrossRef]
- Peng, W.; Pukkala, T.; Jin, X.; Li, F. Optimal management of larch (Larix olgensis A. Henry) plantations in Northeast China when timber production and carbon stock are considered. Ann. For. Sci. 2018, 75, 513. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Zhao, Q.; Sun, Q.; Liu, L.; Zeng, D. Nitrogen addition elevated autumn phosphorus retranslocation of living needles but not resorption in a nutrient-poor Pinus sylvestris var. Mongolica plantation. For. Ecol. Manag. 2020, 468, 118174. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, H.; Shi, Z.; Yang, X. Biomass Accumulation and Carbon Sequestration in an Age-Sequence of Mongolian Pine Plantations in Horqin Sandy Land, China. Forests 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- State Forestry and Grassland Administration. The Ninth Forest Resource Survey Report 2014–2018; China Forestry Publishing House: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Peichl, M.; Arain, M.A. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agr. Forest. Meteorol 2006, 140, 51–63. [Google Scholar] [CrossRef]
- State Forestry and Grassland Administration. Forest Mensuration, 4th ed.; China Forestry Publishing House: Beijing, China, 2019. (In Chinese) [Google Scholar]
- He, X.; Lei, X.; Dong, L. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? Ecol. Indic 2021, 126, 107569. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. Evaluation of stand biomass estimation methods for major forest types in the eastern Da Xing’an Mountains, northeast China. Forests 2019, 10, 715. [Google Scholar] [CrossRef] [Green Version]
- Xin, S.; Mahardika, S.B.; Jiang, L. Stand-level biomass estimation for Korean pine plantations based on four additive methods in Heilongjiang province, northeast China. CERNE 2022, 28, 129. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Z.; Guo, L. Spatially assessing model errors of four regression techniques for three types of forest stands. Forestry 2008, 81, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Edwards Jr, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model 2002, 157, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman & Hall/CRC texts in statistical science series; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wood, S.N. Thin plate regression splines. J. Roy. Stat. Soc. B. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Fu, L.; Lei, Y.; Wang, G.; Bi, H.; Tang, S.; Song, X. Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations. Trees 2016, 30, 839–857. [Google Scholar] [CrossRef]
- Tang, S.; Lang, K.; Li, H. Statistics and Computation of Biomathematical Models (ForStat Course); Science Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Saint-André, L.; M’Bou, A.T.; Mabiala, A.; Mouvondy, W.; Jourdan, C.; Roupsard, O.; Deleporte, P.; Hamel, O.; Nouvellon, Y. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For. Ecol. Manag. 2005, 205, 199–214. [Google Scholar] [CrossRef]
- Mascaro, J.; Litton, C.M.; Hughes, R.F.; Uowolo, A.; Schnitzer, S.A. Minimizing bias in biomass allometry: Model selection and log-transformation of data. Biotropica 2011, 43, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Dutcă, I.; McRoberts, R.E.; Næsset, E.; Blujdea, V.N.B. Accommodating heteroscedasticity in allometric biomass models. For. Ecol. Manag. 2021, 34, 119865. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/ETS® 9.3. User’s Guide 2011; SAS Institute Inc.: Cary, NC, USA, 2011; p. 3302. [Google Scholar]
- Zhao, D.; Kane, M.; Markewitz, D.; Teskey, R.; Clutter, M. Additive tree biomass equations for midrotation loblolly pine plantations. For. Sci. 2015, 61, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.C. Estimating regression models with multiplicative heteroscedasticity. Econometrica 1976, 44, 461–465. [Google Scholar] [CrossRef]
- Kozak, A.; Kozak, R. Does cross validation provide additional information in the evaluation of regression models? Ann. Forest. Sci. 2003, 33, 976–987. [Google Scholar] [CrossRef]
- Timilsina, N.; Staudhammer, C.L. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed Modeling. For. Sci. 2013, 59, 27–37. [Google Scholar] [CrossRef]
- He, P.; Jiang, L.; Li, F. Evaluation of parametric and non-parametric stem taper modeling approaches: A case study for Betula platyphylla in Northeast China. For. Ecol. Manag. 2022, 525, 120535. [Google Scholar] [CrossRef]
- Diamantopoulou, M.J.; Özçelik, R.; Yavuz, H. Tree-bark volume prediction via machine learning: A case study based on black alder’s tree-bark production. Comput. Electron. Agric. 2018, 151, 431–440. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9048131707. [Google Scholar]
- Snowdon, P. Ratio methods for estimating forest biomass. N. Z. J. For. Sci 1992, 22, 54–62. [Google Scholar]
- Xin, S.; Yan, Y.; Jiang, L. Stand biomass model for Pinus koraiensis plantation based on different additive methods in Heilongjiang Province, China. Chin. J. Appl. Ecol. 2020, 31, 3322–3330, (In Chinese with an English abstract). [Google Scholar]
- Kiernan, D.H.; Bevilacqua, E.; Nyland, R.D. Individual-tree diameter growth model for sugar maple trees in uneven-aged northern hardwood stands under selection system. For. Ecol. Manag. 2008, 256, 1579–1586. [Google Scholar] [CrossRef]
- Adame, P.; del Río, M.; Canellas, I. A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 2008, 256, 88–98. [Google Scholar] [CrossRef]
- Calama, S.R.A.; Montero, G. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): A calibrating approach. Silva. Fenn. 2005, 39, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Kane, M.; Teskey, R.; Markewitz, D. Modeling aboveground biomass components and volume-to-weight conversion ratios for Loblolly Pine trees. For. Sci. 2016, 62, 463–473. [Google Scholar] [CrossRef]
- Poudel, K.P.; Temesgen, H. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees. Can. J. For. Res. 2016, 46, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Poudel, K.P.; Temesgen, H.; Radtke, P.J.; Gray, A.N. Estimating individual-tree aboveground biomass of tree species in the western USA. Can. J. For. Res. 2019, 49, 701–714. [Google Scholar] [CrossRef]
- Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 1972, 2, 49–53. [Google Scholar] [CrossRef]
- Zianis, D.; Xanthopoulos, G.; Kalabokidis, K.; Kazakis, G.; Ghosn, D.; Roussou, O. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece. Eur. J. For. Res. 2011, 130, 145–160. [Google Scholar] [CrossRef]
- Bi, H. Converting stem volume to biomass with additivity bias correction sand confidence bands for two Australian tree species. N. Z. J. For. Sci. 2001, 31, 298–319. [Google Scholar]
- McRoberts, R.E.; Westfall, J.A. Propagating uncertainty through individual tree volume model predictions to large-area volume estimates. Ann. For. Sci. 2016, 73, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.D.; Green, E.J. A method of forcing additivity of biomass tables when using nonlinear models. Can. J. For. Res. 1985, 15, 1184–1187. [Google Scholar] [CrossRef]
- Moisen, G.G.; Frescino, T.S. Comparing five modelling techniques for predicting forest characteristics. Ecol. Model. 2002, 157, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. mgcv: GAMs and generalized ridge regression for R. R News 2001, 1, 20–25. [Google Scholar]
- Bi, H.; Turner, J.; Lambert, M.J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 2004, 18, 467–479. [Google Scholar] [CrossRef]
- Zhao, D.; Westfall, J.; Coulston, J.W.; Lynch, T.B.; Bullock, B.P.; Montes, C.R. Additive biomass equations for slash pine trees: Comparing three modeling approaches. Can. J. For. Res. 2019, 49, 27–40. [Google Scholar] [CrossRef]
- Liu, J.; Meng, S.; Zhou, H.; Zhou, G.; Li, Y. Tree Volume Tables of China; China Forestry Publishing House: Beijing, China, 2017; pp. 173–180. (In Chinese) [Google Scholar]
- Dong, L. Developing individual and stand-level biomass equations in Northeast China forest area. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2015. (In Chinese with an English abstract). [Google Scholar]
- Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
Variables | Korean Pine | Korean Larch | Mongolian Pine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | |
G (m2·ha−1) | 18.82 | 42.52 | 29.65 | 5.18 | 11.00 | 35.76 | 24.71 | 5.19 | 20.18 | 45.80 | 31.20 | 5.41 |
Dg (cm) | 7.61 | 35.78 | 21.07 | 4.86 | 8.42 | 27.50 | 18.99 | 4.09 | 11.95 | 23.90 | 18.61 | 2.80 |
Hm (m) | 5.08 | 18.18 | 13.29 | 2.41 | 7.02 | 24.90 | 17.39 | 3.63 | 8.92 | 18.96 | 14.80 | 2.18 |
N (trees·ha−1) | 350.00 | 4375.00 | 988.77 | 561.95 | 400.00 | 2625.00 | 981.34 | 452.92 | 450.00 | 3200.00 | 1244.33 | 481.30 |
V (m3·ha−1) | 78.97 | 266.49 | 172.57 | 36.38 | 55.94 | 284.11 | 185.83 | 48.66 | 109.92 | 264.86 | 183.61 | 32.54 |
Age (a) | 19.00 | 65.00 | 45.72 | 11.12 | 14.00 | 58.00 | 39.73 | 14.60 | 18.00 | 49.00 | 33.96 | 7.58 |
Bt (Mg·ha−1) | 65.82 | 224.97 | 140.84 | 32.25 | 35.10 | 235.74 | 144.53 | 44.32 | 83.21 | 208.13 | 143.72 | 26.06 |
Ba (Mg·ha−1) | 50.28 | 181.12 | 111.91 | 26.58 | 28.58 | 185.76 | 114.45 | 34.63 | 65.83 | 171.71 | 118.67 | 22.12 |
Br (Mg·ha−1) | 15.54 | 43.85 | 28.92 | 5.82 | 6.53 | 49.97 | 30.09 | 9.70 | 15.84 | 36.42 | 25.04 | 4.40 |
Bs (Mg·ha−1) | 40.33 | 117.92 | 77.55 | 15.61 | 24.02 | 167.15 | 101.97 | 31.73 | 51.36 | 140.13 | 95.39 | 18.17 |
Bb (Mg·ha−1) | 4.87 | 48.49 | 22.41 | 8.62 | 4.36 | 15.63 | 10.72 | 2.38 | 8.49 | 21.20 | 14.61 | 2.67 |
Bn (Mg·ha−1) | 4.32 | 20.13 | 11.95 | 3.24 | 0.19 | 3.92 | 1.76 | 0.74 | 5.21 | 12.84 | 8.67 | 1.55 |
Model Type | Method | Components | Korean Pine | Korean Larch | Mongolian Pine | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | Weight Function | R2 | RMSE | Weight Function | R2 | RMSE | Weight Function | |||
Model-1 | NSUR | Total | 0.9428 | 7.7168 | G2.6765 | 0.9261 | 12.0525 | G1.1228 | 0.9250 | 7.1377 | G4.4215 |
Aboveground | 0.9299 | 7.0347 | G2.7411 | 0.9302 | 9.1551 | G0.9810 | 0.9002 | 6.9891 | G4.3542 | ||
Belowground | 0.9738 | 0.9429 | G4.2025Hm−3.3574 | 0.9104 | 2.9025 | G0.2832 | 0.9595 | 0.8846 | G−2.2436Hm5.7752 | ||
Stem | 0.9515 | 3.4382 | G2.0790 | 0.9248 | 8.7041 | G0.9381 | 0.8774 | 6.3642 | G4.8456 | ||
Branch | 0.8058 | 3.7971 | G4.9491 | 0.9899 | 0.2387 | G2.6160Hm−2.6810 | 0.9260 | 0.7265 | G4.3753 | ||
Needle | 0.8839 | 1.1051 | G2.9662 | 0.6451 | 0.4435 | G3.7972Hm−3.1957 | 0.9680 | 0.2777 | G−3.0660Hm4.9095 | ||
Model-1 | GAM | Total | 0.9510 | 7.1376 | — | 0.9278 | 11.9050 | — | 0.9304 | 6.8725 | — |
Aboveground | 0.9400 | 6.5088 | — | 0.9318 | 9.0403 | — | 0.9079 | 6.7126 | — | ||
Belowground | 0.9767 | 0.8895 | — | 0.9124 | 2.8698 | — | 0.9603 | 0.8766 | — | ||
Stem | 0.9554 | 3.2972 | — | 0.9263 | 8.6145 | — | 0.8865 | 6.1239 | — | ||
Branch | 0.8345 | 3.5058 | — | 0.9901 | 0.2363 | — | 0.9317 | 0.6981 | — | ||
Needle | 0.8953 | 1.0491 | — | 0.6618 | 0.4329 | — | 0.9683 | 0.2766 | — | ||
Model-2 | NSUR | Total | 0.9853 | 3.9155 | V3.3461 | 0.9740 | 7.1482 | V1.8583 | 0.9895 | 2.6644 | V0.1614 |
Aboveground | 0.9752 | 4.1908 | V2.6208 | 0.9773 | 5.2144 | V1.5499 | 0.9708 | 3.7786 | V0.3408 | ||
Belowground | 0.9793 | 0.8390 | V−0.4416 | 0.9600 | 1.9403 | V1.6494 | 0.8783 | 1.5342 | V−0.0474 | ||
Stem | 0.9765 | 2.3933 | V−0.0536 | 0.9714 | 5.3676 | V1.3832 | 0.9512 | 4.0169 | V0.3475 | ||
Branch | 0.7986 | 3.8668 | V−2.4178 | 0.9521 | 0.5207 | V−0.4525 | 0.9760 | 0.4135 | V−0.6777 | ||
Needle | 0.9197 | 0.9197 | V−1.5208 | 0.7228 | 0.3920 | V−0.6429 | 0.8533 | 0.5946 | V−0.4920 | ||
Model-2 | GAM | Total | 0.9879 | 3.5504 | — | 0.9749 | 7.0253 | — | 0.9906 | 2.5300 | — |
Aboveground | 0.9791 | 3.8407 | — | 0.9781 | 5.1306 | — | 0.9732 | 3.6238 | — | ||
Belowground | 0.9798 | 0.8285 | — | 0.9616 | 1.9011 | — | 0.8790 | 1.5297 | — | ||
Stem | 0.9774 | 2.3481 | — | 0.9725 | 5.2644 | — | 0.9548 | 3.8641 | — | ||
Branch | 0.8203 | 3.6524 | — | 0.9555 | 0.5017 | — | 0.9760 | 0.4136 | — | ||
Needle | 0.9249 | 0.8887 | — | 0.7303 | 0.3866 | — | 0.8535 | 0.5942 | — |
Model Type | Method | Components | Korean Pine | Korean Larch | Mongolian Pine | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ME | RMSE | RRMSE | ME | RMSE | RRMSE | ME | RMSE | RRMSE | |||
Model-1 | NSUR | Total | −0.5504 | 7.8563 | 5.5783 | 0.9524 | 12.4345 | 8.6033 | 0.1155 | 7.2955 | 5.0763 |
Aboveground | −0.4118 | 7.1647 | 6.4020 | 0.7250 | 9.4467 | 8.2544 | 0.0340 | 7.1503 | 6.0252 | ||
Belowground | −0.1386 | 0.9548 | 3.3011 | 0.2274 | 2.9931 | 9.9482 | 0.0814 | 0.8951 | 3.5742 | ||
Stem | −0.0273 | 3.5093 | 4.5252 | 0.7044 | 8.9834 | 8.8101 | 0.0689 | 6.5092 | 6.8235 | ||
Branch | −0.2745 | 3.8622 | 17.2346 | 0.0043 | 0.2467 | 2.3020 | −0.0154 | 0.7437 | 5.0897 | ||
Needle | −0.1099 | 1.1231 | 9.3948 | 0.0162 | 0.4564 | 25.8887 | −0.0194 | 0.2812 | 3.2436 | ||
Model-1 | GAM | Total | −0.0099 | 7.5668 | 5.3728 | 0.0222 | 12.3306 | 8.5314 | −0.0229 | 7.2490 | 5.0439 |
Aboveground | −0.0102 | 6.9119 | 6.1761 | 0.0178 | 9.3666 | 8.1844 | −0.0212 | 7.0872 | 5.9721 | ||
Belowground | −0.0003 | 0.9283 | 3.2095 | 0.0044 | 2.9693 | 9.8691 | −0.0017 | 0.9077 | 3.6247 | ||
Stem | −0.0085 | 3.5047 | 4.5194 | 0.0154 | 8.9198 | 8.7477 | −0.0198 | 6.4655 | 6.7768 | ||
Branch | −0.0011 | 3.7245 | 16.6200 | 0.0026 | 0.2506 | 2.3384 | −0.0033 | 0.7375 | 5.0470 | ||
Needle | −0.0006 | 1.1019 | 9.2177 | −0.0002 | 0.4477 | 25.3993 | 0.0019 | 0.2895 | 3.3393 | ||
Model-2 | NSUR | Total | −0.0173 | 3.9802 | 2.8261 | 0.2464 | 7.2727 | 5.0319 | −0.0536 | 2.7190 | 1.8919 |
Aboveground | −0.0298 | 4.2552 | 3.8022 | 0.1848 | 5.3045 | 4.6350 | −0.0479 | 3.8606 | 3.2532 | ||
Belowground | 0.0124 | 0.8540 | 2.9528 | 0.0616 | 1.9748 | 6.5636 | −0.0056 | 1.5688 | 6.2644 | ||
Stem | −0.2630 | 2.4398 | 3.1461 | 0.2447 | 5.4619 | 5.3565 | −0.0529 | 4.1005 | 4.2986 | ||
Branch | 0.1904 | 3.9274 | 17.5256 | −0.0388 | 0.5306 | 4.9521 | −0.0001 | 0.4258 | 2.9139 | ||
Needle | 0.0429 | 0.9354 | 7.8252 | −0.0211 | 0.3982 | 22.5869 | 0.0051 | 0.6103 | 7.0403 | ||
Model-2 | GAM | Total | −0.0016 | 3.7532 | 2.6649 | 0.0044 | 7.1727 | 4.9627 | −0.0116 | 2.6935 | 1.8742 |
Aboveground | −0.0025 | 4.0415 | 3.6113 | 0.0036 | 5.2381 | 4.5770 | −0.0160 | 3.8290 | 3.2265 | ||
Belowground | 0.0010 | 0.8429 | 2.9142 | 0.0007 | 1.9412 | 6.4519 | 0.0044 | 1.5829 | 6.3207 | ||
Stem | 0.0074 | 2.4107 | 3.1085 | 0.0029 | 5.3750 | 5.2713 | −0.0151 | 4.0687 | 4.2652 | ||
Branch | −0.0097 | 3.8200 | 17.0463 | 0.0011 | 0.5128 | 4.7852 | −0.0036 | 0.4371 | 2.9913 | ||
Needle | −0.0003 | 0.9207 | 7.7021 | −0.0003 | 0.3943 | 22.3655 | 0.0026 | 0.6141 | 7.0838 |
Model Type | Components | Korean Pine | Korean Larch | Mongolian Pine | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ci1 | ki1 | mi1 | ci2 | ki2 | mi2 | ci3 | ki3 | mi3 | ||
Model 1 | Belowground | 0.5676 ** (0.0122) | 1.0160 ** (0.0068) | 0.1898 ** (0.0060) | 0.1378 ** (0.0121) | 1.0948 ** (0.0284) | 0.6488 ** (0.0347) | 0.8164 ** (0.0223) | 1.0083 ** (0.0082) | −0.0180 * (0.0067) |
Stem | 1.6851 ** (0.1178) | 0.9574 ** (0.0227) | 0.2259 ** (0.0210) | 0.5606 ** (0.0437) | 1.0805 ** (0.0260) | 0.6020 ** (0.0311) | 1.4037 ** (0.1161) | 0.8019 ** (0.0195) | 0.5426 ** (0.0240) | |
Branch | 0.0425 ** (0.0052) | 1.0562 ** (0.0378) | 1.0357 ** (0.0359) | 0.3374 ** (0.0121) | 1.0075 ** (0.0104) | 0.0791 ** (0.0112) | 0.2616 ** (0.0189) | 0.8657 ** (0.0174) | 0.3889 ** (0.0196) | |
Needle | 0.0923 ** (0.0058) | 1.0199 ** (0.0204) | 0.5448 ** (0.0206) | 0.0033 * (0.0010) | 1.2843 ** (0.0734) | 0.7405 ** (0.1026) | 0.2676 ** (0.0085) | 1.0555 ** (0.0095) | 0.0078 ns(0.0076) | |
Model 2 | Belowground | 0.2053 ** (0.0095) | 0.9607 ** (0.0088) | 0.0438 ** (0.0028) | 1.2478 ** (0.0125) | 0.2266 ** (0.0269) | 0.9029 ** (0.0223) | |||
Stem | 0.6402 ** (0.0218) | 0.9322 ** (0.0065) | 0.1815 ** (0.0094) | 1.2096 ** (0.0101) | 0.3665 ** (0.0260) | 1.0668 ** (0.0135) | ||||
Branch | 0.0110 * (0.0032) | 1.4739 ** (0.0560) | 0.1553 ** (0.0082) | 0.8121 ** (0.0101) | 0.0692 ** (0.0038) | 1.0266 ** (0.0104) | ||||
Needle | 0.0267 ** (0.0032) | 1.1837 ** (0.0230) | 0.0014 * (0.0004) | 1.3603 ** (0.0546) | 0.0753 ** (0.0087) | 0.9106 ** (0.0220) |
Model Type | Components | Korean Pine | Korean Larch | Mongolian Pine |
---|---|---|---|---|
Model-1 | Belowground | 28.9231 ** (0.0816) | 30.0867 ** (0.3025) | 25.0433 ** (0.0877) |
Stem | 77.5495 ** (0.3035) | 101.9671 ** (0.9081) | 95.3928 ** (0.6195) | |
Branch | 22.4097 ** (0.3237) | 10.7153 ** (0.0249) | 14.6117 ** (0.0705) | |
Needle | 11.9541 ** (0.0966) | 1.7628 ** (0.0456) | 8.6684 ** (0.0277) | |
Model-2 | Belowground | 28.9231 ** (0.0753) | 30.0867 ** (0.2004) | 25.0430 ** (0.1530) |
Stem | 77.5495 ** (0.2135) | 101.9671 ** (0.5549) | 95.3928 ** (0.3911) | |
Branch | 22.4100 ** (0.3360) | 10.7153 ** (0.0529) | 14.6117 ** (0.0414) | |
Needle | 11.9541 ** (0.0816) | 1.7628 ** (0.0408) | 8.6684 ** (0.0594) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, S.; Shahzad, M.K.; Mahardika, S.B.; Wang, W.; Jiang, L. An Alternative Method for Estimation of Stand-Level Biomass for Three Conifer Species in Northeast China. Forests 2023, 14, 1274. https://doi.org/10.3390/f14061274
Xin S, Shahzad MK, Mahardika SB, Wang W, Jiang L. An Alternative Method for Estimation of Stand-Level Biomass for Three Conifer Species in Northeast China. Forests. 2023; 14(6):1274. https://doi.org/10.3390/f14061274
Chicago/Turabian StyleXin, Shidong, Muhammad Khurram Shahzad, Surya Bagus Mahardika, Weifang Wang, and Lichun Jiang. 2023. "An Alternative Method for Estimation of Stand-Level Biomass for Three Conifer Species in Northeast China" Forests 14, no. 6: 1274. https://doi.org/10.3390/f14061274
APA StyleXin, S., Shahzad, M. K., Mahardika, S. B., Wang, W., & Jiang, L. (2023). An Alternative Method for Estimation of Stand-Level Biomass for Three Conifer Species in Northeast China. Forests, 14(6), 1274. https://doi.org/10.3390/f14061274