Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. CCD Experimental Analysis
2.2.2. Surface Roughness and Chip Measurement
2.2.3. Wood Chip Size Measurement
2.2.4. ANN Model Analysis Method
3. Results and Discussion
3.1. Experimental Analysis of Response Surfaces for Surface Quality
3.2. Neural Network Analysis of Surface Roughness and Chip Size Correlation
3.3. Surface Roughness and ANN Model Prediction Value Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chutturi, M.; Gillela, S.; Yadav, S.M.; Wibowo, E.S.; Sihag, K.; Rangppa, S.M.; Bhuyar, P.; Siengchin, S.; Antov, P.; Kristak, L.; et al. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource. Sci. Total Environ. 2023, 864, 161067. [Google Scholar] [CrossRef]
- Beims, R.F.; Rizkalla, A.; Kermanshahi-Pour, A.; Xu, C.C. Reengineering wood into a high-strength, and lightweight bio-composite material for structural applications. Chem. Eng. J. 2023, 454, 139896. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, J.; Bao, X.; Liu, H.; Li, L. The effect of granularity on surface roughness and contact angle in wood sanding process. Measurement 2020, 165, 108133. [Google Scholar] [CrossRef]
- Aras, U.; Kalaycioğlu, H.; Yel, H.; Durmaz, S. Fire performance, decay resistance and surface roughness of particleboards made from stone pine (Pinus pinea L.) cones. Mugla J. Sci. Technol. 2016, 2, 96–99. [Google Scholar] [CrossRef]
- Aydin, I. Activation of wood surfaces for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surfaces and plywood panels. Appl. Surf. Sci. 2004, 233, 268–274. [Google Scholar] [CrossRef]
- Hiziroglu, S.; Zhong, Z.W.; Tan, H.L. Measurement of bonding strength of pine, kapur and meranti wood species as function of their surface quality. Measurement 2013, 46, 3198–3201. [Google Scholar] [CrossRef]
- Gurleyen, L. The study for the strain of hardwood materials against machines and cutters in planning process. Sci. Res. Essays 2010, 5, 3903–3913. [Google Scholar]
- Salca, E.A.; Hiziroglu, S. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Mater. Des. 2014, 62, 416–423. [Google Scholar] [CrossRef]
- Kilic, M.; Hiziroglu, S.; Burdurlu, E. Effect of machining on surface roughness of wood. Build. Environ. 2006, 41, 1074–1078. [Google Scholar] [CrossRef]
- Malkoçoğlu, A. Machining properties and surface roughness of various wood species planed in different conditions. Build. Environ. 2007, 42, 2562–2567. [Google Scholar] [CrossRef]
- Aslan, S.; Coşkun, H.; Kılıç, M. The effect of the cutting direction, number of blades and grain size of the abrasives on surface roughness of Taurus cedar (Cedrus Libani A. Rich.) woods. Build. Environ. 2008, 43, 696–701. [Google Scholar] [CrossRef]
- Kamboj, G.; Gašparík, M.; Gaff, M.; Kačík, F.; Sethy, A.K.; Corleto, R.; Rezaei, F.; Ditommaso, G.; Sikora, A.; Kaplan, L.; et al. Surface quality and cutting power requirement after edge milling of thermally modified meranti (Shorea spp.) wood. J. Build. Eng. 2020, 29, 101213. [Google Scholar] [CrossRef]
- Tomak, E.D.; Ustaomer, D.; Ermeydan, M.A.; Yildiz, S. An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement 2018, 127, 187–197. [Google Scholar] [CrossRef]
- Korkut, S. Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 2012, 36, 355–362. [Google Scholar] [CrossRef]
- Yildiz, S.; Yildiz, U.C.; Tomak, E.D. The effects of natural weathering on the properties of heat-treated alder wood. BioResources 2011, 6, 2504–2521. [Google Scholar]
- Gašparík, M.; Gaff, M.; Kačík, F.; Sikora, A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. Bioresources 2019, 14, 2667–2683. [Google Scholar] [CrossRef]
- Ozdemir, T.; Hiziroglu, S. Evaluation of surface quality and adhesion strength of treated solid wood. J. Mater. Process. Technol. 2007, 186, 311–314. [Google Scholar] [CrossRef]
- Gündüz, G.; Korkut, S.; Korkut, D.S. The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresour. Technol. 2008, 99, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Castaneda, J.C.; Sezer, H.K.; Li, L. Dual gas jet-assisted fibre laser blind cutting of dry pine wood by statistical modelling. Int. J. Adv. Manuf. Technol. 2010, 50, 195–206. [Google Scholar] [CrossRef]
- Hu, C.; Afzal, M.T. Automatic measurement of wood surface roughness by laser imaging. Part I: Development of laser imaging system. For. Prod. J. 2005, 55, 158–163. [Google Scholar]
- Yuan, D.; Han, Y. Computer-based Online Monitoring of wood surface roughness by Laser measurement. J. Northeast For. Univ. 2010, 38, 126–127. [Google Scholar]
- Baradit, E.; Gatica, C.; Yáñez, M.; Figueroa, J.C.; Guzmán, R.; Catalán, C. Surface roughness estimation of wood boards using speckle interferometry. Opt. Lasers Eng. 2020, 128, 106009. [Google Scholar] [CrossRef]
- Mishra, H.P.; Jalan, A. Analysis of faults in rotor-bearing system using three-level full factorial design and response surface methodology. Noise Vib. Worldw. 2021, 52, 365–376. [Google Scholar] [CrossRef]
- Kim, P.; Haber, H.L.; Lloyd, J.; Kim, J.-W.; Abdoulmoumine, N.; Labbé, N. Optimization of thermal desorption conditions for recovering wood preservative from used railroad ties through response surface methodology. J. Clean. Prod. 2018, 201, 802–811. [Google Scholar] [CrossRef]
- Tiryaki, S.; Malkoçoğlu, A.; Özşahin, Ş. Using artificial neural networks for modeling surface roughness of wood in machining process. Constr. Build. Mater. 2014, 66, 329–335. [Google Scholar] [CrossRef]
- Meng, Y.; Wei, J.; Wei, J.; Chen, H.; Cui, Y. An ANSYS/LS-DYNA simulation and experimental study of circular saw blade cutting system of mulberry cutting machine. Comput. Electron. Agric. 2019, 157, 38–48. [Google Scholar] [CrossRef]
- Novák, V.; Rousek, M.; Kopecký, Z. Assessment of wood surface quality obtained during high speed milling by use of non-contact method. Drv. Ind. 2011, 62, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liu, T.; Ma, Y.; Qu, W.; Ding, Y.; Zhang, T.; Song, W. Study of the Movement of Chips during Pine Wood Milling. Forests 2023, 14, 849. [Google Scholar] [CrossRef]
- Bao, X.; Ying, J.; Cheng, F.; Zhang, J.; Luo, B.; Li, L.; Liu, H. Research on neural network model of surface roughness in belt sanding process for Pinus koraiensis. Measurement 2018, 115, 11–18. [Google Scholar] [CrossRef]
- Boga, C.; Koroglu, T. Proper estimation of surface roughness using hybrid intelligence based on artificial neural network and genetic algorithm. J. Manuf. Process. 2021, 70, 560–569. [Google Scholar] [CrossRef]
- Rifai, A.P.; Aoyama, H.; Tho, N.H.; Dawal, S.Z.M.; Masruroh, N.A. Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 2020, 161, 107860. [Google Scholar] [CrossRef]
- Škaljić, N.; Beljo Lučić, R.; Čavlović, A.; Obućina, M. Effect of Feed Speed and Wood Species on Roughness of Machined Surface. Drv. Ind. 2009, 60, 229–234. [Google Scholar]
- Demir, A.; Birinci, A.U.; Ozturk, H. Determination of the surface characteristics of medium density fibreboard processed with CNC machine and optimisation of CNC process parameters by using artificial neural network. CIRP J. Manuf. Sci. Technol. 2021, 35, 929–942. [Google Scholar] [CrossRef]
Density (kg/m3) | Compressive Strength (MPa) | Bending Strength (MPa) | Tensile Strength (MPa) | Shear Strength (MPa) | Modulus of Elasticity (MPa) | Poisson’s Ratio | Coefficient of Friction | Water Content |
---|---|---|---|---|---|---|---|---|
420 | 50 | 87 | 104 | 10 | 12,000 | 0.65 | 0.35 | 8% |
Level | Factors | ||
---|---|---|---|
Spindle Speed Vc (r/min) | Feeding Speed Vf (m/min) | Cutting Depth Cd (mm) | |
+1.68 | 11,000 | 1770 | 15 |
+1 | 10,000 | 1500 | 13 |
0 | 8500 | 1100 | 10 |
−1 | 7000 | 700 | 7 |
−1.68 | 6000 | 430 | 5 |
Group | Vc | Vf | Cd | Rs |
---|---|---|---|---|
Spindle Speed (r/min) | Feeding Speed (m/min) | Cutting Depth (mm) | ||
1 | 8500 | 30.1134 | 10 | 1.854 |
2 | 8500 | 17.5 | 10 | 1.564 |
3 | 7000 | 25 | 13 | 2.415 |
4 | 10,000 | 25 | 7 | 1.421 |
5 | 5977.31 | 17.5 | 10 | 2.103 |
6 | 8500 | 17.5 | 10 | 1.654 |
7 | 10,000 | 10 | 7 | 0.833 |
8 | 10,000 | 25 | 13 | 1.159 |
9 | 7000 | 25 | 7 | 2.215 |
10 | 8500 | 4.88655 | 10 | 0.713 |
11 | 10,000 | 10 | 13 | 0.654 |
12 | 7000 | 10 | 13 | 1.586 |
13 | 7000 | 10 | 7 | 1.485 |
14 | 8500 | 17.5 | 10 | 1.881 |
15 | 8500 | 17.5 | 10 | 1.611 |
16 | 8500 | 17.5 | 10 | 1.459 |
17 | 8500 | 17.5 | 4.95462 | 1.313 |
18 | 8500 | 17.5 | 10 | 1.562 |
19 | 11,022.7 | 17.5 | 10 | 0.642 |
20 | 8500 | 17.5 | 15.0454 | 1.842 |
21 * | 10,000 | 17.5 | 10 | 2.029 |
22 * | 7000 | 17.5 | 13 | 1.086 |
23 * | 8500 | 25 | 13 | 2.612 |
24 * | 8500 | 10 | 10 | 1.075 |
25 * | 8500 | 10 | 7 | 1.102 |
26 * | 8500 | 17.5 | 7 | 1.263 |
Model | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
4.67 | 7 | 0.6678 | 52.92 | <0.0001 | Yes | |
A-Spindle Speed | 2.72 | 1 | 2.72 | 215.29 | <0.0001 | - |
B-Feeding Speed | 1.53 | 1 | 1.53 | 121.24 | <0.0001 | - |
C-Cutting Fepth | 0.1399 | 1 | 0.1399 | 11.09 | 0.006 | - |
AC | 0.0688 | 1 | 0.0688 | 5.45 | 0.0377 | - |
A2 | 0.0771 | 1 | 0.0771 | 6.11 | 0.0294 | - |
B2 | 0.1582 | 1 | 0.1582 | 12.54 | 0.0041 | - |
A2C | 0.1012 | 1 | 0.1012 | 8.02 | 0.0151 | - |
Residual | 0.1514 | 12 | 0.0126 | - | - | - |
Lack of Fit | 0.0497 | 7 | 0.0071 | 0.3486 | 0.8989 | no |
Pure Error | 0.1018 | 5 | 0.0204 | - | - | - |
Cor Total | 4.83 | 19 | - | - | - | - |
Group | La (mm) | Lb (mm) | Lc (mm) | Ld (mm) | LA (mm) | |
---|---|---|---|---|---|---|
1 | 0.382 | 0.692 | 1.131 | 1.821 | 1.007 | 1.854 |
2 | 0.284 | 0.541 | 0.871 | 1.376 | 0.768 | 1.564 |
3 | 0.492 | 0.759 | 1.820 | 1.988 | 1.265 | 2.415 |
4 | 0.319 | 0.462 | 0.948 | 1.310 | 0.760 | 1.421 |
5 | 0.427 | 0.557 | 0.955 | 1.241 | 0.795 | 2.103 |
6 | 0.306 | 0.549 | 0.888 | 1.455 | 0.800 | 1.654 |
7 | 0.215 | 0.313 | 0.823 | 1.414 | 0.691 | 0.833 |
8 | 0.301 | 0.439 | 1.793 | 2.528 | 1.265 | 1.159 |
9 | 0.421 | 0.663 | 1.158 | 2.470 | 1.178 | 2.215 |
10 | 0.245 | 0.388 | 0.942 | 1.445 | 0.755 | 0.713 |
11 | 0.296 | 0.393 | 0.865 | 1.095 | 0.662 | 0.654 |
12 | 0.464 | 0.671 | 1.347 | 2.354 | 1.209 | 1.586 |
13 | 0.369 | 0.489 | 0.775 | 1.630 | 0.816 | 1.385 |
14 | 0.423 | 0.668 | 0.889 | 3.110 | 1.273 | 1.881 |
15 | 0.391 | 0.505 | 0.918 | 1.903 | 0.929 | 1.611 |
16 | 0.324 | 0.484 | 0.914 | 1.417 | 0.785 | 1.459 |
17 | 0.309 | 0.477 | 0.911 | 1.445 | 0.786 | 1.313 |
18 | 0.312 | 0.514 | 0.727 | 1.368 | 0.730 | 1.562 |
19 | 0.283 | 0.405 | 0.944 | 1.447 | 0.770 | 0.642 |
20 | 0.414 | 0.687 | 1.475 | 1.909 | 1.121 | 1.842 |
21 | 0.504 | 0.695 | 0.769 | 1.345 | 0.828 | 2.029 |
22 | 0.321 | 0.518 | 1.018 | 1.964 | 0.955 | 1.086 |
23 | 0.514 | 0.834 | 1.241 | 2.140 | 1.182 | 2.612 |
24 | 0.315 | 0.439 | 0.725 | 1.314 | 0.698 | 1.075 |
25 | 0.301 | 0.438 | 1.127 | 2.275 | 1.035 | 1.102 |
26 | 0.326 | 0.494 | 0.809 | 1.391 | 0.755 | 1.263 |
Group | True Value | Response Surface Predicted Values | Neural Network Predicted Values | Response Surface Prediction Error | Neural Network Prediction Error |
---|---|---|---|---|---|
1 | 1.854 | 1.924 | 1.789 | 0.038 | 0.035 |
2 | 1.564 | 1.656 | 1.493 | 0.059 | 0.045 |
3 | 2.415 | 2.337 | 2.328 | 0.032 | 0.036 |
4 | 1.421 | 1.471 | 1.257 | 0.035 | 0.115 |
5 | 2.103 | 1.656 | 1.952 | 0.213 | 0.072 |
6 | 1.654 | 1.656 | 1.634 | 0.001 | 0.012 |
7 | 0.833 | 0.802 | 0.853 | 0.038 | 0.023 |
8 | 1.159 | 1.277 | 1.205 | 0.102 | 0.040 |
9 | 2.215 | 2.168 | 2.067 | 0.021 | 0.067 |
10 | 0.713 | 0.798 | 0.894 | 0.120 | 0.254 |
11 | 0.654 | 0.608 | 0.653 | 0.071 | 0.001 |
12 | 1.586 | 1.668 | 1.848 | 0.052 | 0.164 |
13 | 1.385 | 1.499 | 1.711 | 0.082 | 0.235 |
14 | 1.881 | 1.611 | 1.836 | 0.144 | 0.023 |
15 | 1.611 | 1.656 | 1.612 | 0.028 | 0.001 |
16 | 1.459 | 1.656 | 1.430 | 0.135 | 0.020 |
17 | 1.313 | 1.372 | 1.315 | 0.045 | 0.002 |
18 | 1.562 | 1.656 | 1.546 | 0.006 | 0.010 |
19 | 0.642 | 0.711 | 0.911 | 0.107 | 0.419 |
20 | 1.842 | 1.939 | 1.788 | 0.053 | 0.029 |
21 * | 2.029 | 1.144 | 1.951 | 0.436 | 0.038 |
22 * | 1.086 | 1.938 | 1.184 | 0.785 | 0.089 |
23 * | 2.612 | 2.055 | 2.635 | 0.213 | 0.009 |
24 * | 1.075 | 1.217 | 1.169 | 0.132 | 0.087 |
25 * | 1.102 | 1.048 | 1.079 | 0.049 | 0.021 |
26 * | 1.263 | 1.487 | 1.517 | 0.178 | 0.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ma, Y.; Liu, T.; Ding, Y.; Qu, W. Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling. Forests 2023, 14, 1275. https://doi.org/10.3390/f14061275
Yang C, Ma Y, Liu T, Ding Y, Qu W. Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling. Forests. 2023; 14(6):1275. https://doi.org/10.3390/f14061275
Chicago/Turabian StyleYang, Chunmei, Yaqiang Ma, Tongbin Liu, Yucheng Ding, and Wen Qu. 2023. "Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling" Forests 14, no. 6: 1275. https://doi.org/10.3390/f14061275
APA StyleYang, C., Ma, Y., Liu, T., Ding, Y., & Qu, W. (2023). Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling. Forests, 14(6), 1275. https://doi.org/10.3390/f14061275